
Handbook of Research on
Social and Organizational
Liabilities in Information
Security

Manish Gupta
State University of New York at Buffalo, USA

Raj Sharman
State University of New York at Buffalo, USA

Hershey • New York
Information science reference

Director of Editorial Content:	 Kristin Klinger
Director of Production: 	 Jennifer Neidig
Managing Editor:		 Jamie Snavely
Assistant Managing Editor:	 Carole Coulson
Typesetter: 		 Jeff Ash
Cover Design:		 Lisa Tosheff
Printed at:			 Yurchak Printing Inc.

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue, Suite 200
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

and in the United Kingdom by
Information Science Reference (an imprint of IGI Global)
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax: 44 20 7379 0609
Web site: http://www.eurospanbookstore.com

Copyright © 2009 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in any form or by
any means, electronic or mechanical, including photocopying, without written permission from the publisher.

Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or companies does
not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

Library of Congress Cataloging-in-Publication Data

Handbook of research on social and organizational liabilities in information security / Manish Gupta and Raj Sharman, editors.

 p. cm.

Includes bibliographical references and index.

Summary: "This book offers insightful articles on the most salient contemporary issues of managing social and human aspects of
information security"--Provided by publisher.

ISBN 978-1-60566-132-2 (hardcover) -- ISBN 978-1-60566-133-9 (ebook)

1. Computer security--Management--Handbooks, manuals, etc. 2. Data protection--Management--Handbooks, manuals, etc. 3. Computer
crimes--Prevention--Handbooks, manuals, etc. 4. Human computer interaction--Handbooks, manuals, etc. I. Gupta, Manish, 1978- II.
Sharman, Raj.

QA76.9.A25.H365 2008

658.4'78--dc22

 2008035140

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book set is original material. The views expressed in this book are those of the authors, but not necessarily of
the publisher.

If a library purchased a print copy of this publication, please go to http://www.igi-global.com/agreement for information on activating
the library's complimentary electronic access to this publication.

94

Chapter VI
Towards a Scalable Role
and Organization Based

Access Control Model with
Decentralized Security

Administration

Zhixiong Zhang
The College Board, USA

Xinwen Zhang
Samsung Information System America, USA

Ravi Sandhu
University of Texas at San Antonio, USA

TriCipher Inc., USA

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Abstract

This chapter addresses the problem that traditional role-base access control (RBAC) models do not
scale up well for modeling security policies spanning multiple organizations. After reviewing recently
proposed Role and Organization Based Access Control (ROBAC) models, an administrative ROBAC
model called AROBAC07 is presented and formalized in this chapter. Two examples are used to motivate
and demonstrate the usefulness of ROBAC. Comparison between AROBAC07 and other administrative
RBAC models are given. We show that ROBAC/AROBAC07 can significantly reduce administration
complexity for applications involving a large number of organizational units. Finally, an application
compartment-based delegation model is introduced, which provides a method to construct administra-
tive role hierarchy in AROBAC07. We show that the AROBAC07 model provides convenient ways to
decentralize administrative tasks for ROBAC systems and scales up well for role-based systems involving
a large number of organizational units.

 95

Towards a Scalable Role and Organization Based Access Control Model

INTRODUCTION

With the wide Internet usage in our society, the
security and privacy issues become more impor-
tant than ever. In the last decade, role-based access
control (RBAC) had been generating considerable
interests among the researchers and practitioners.
In RBAC, roles are defined based on job functions,
permissions are associated with roles, and users
are made members of appropriate roles, thereby
acquiring the roles’ permissions. This indirect
association between users and permissions greatly
simplifies users’ permission management. RBAC
has several attractive features, such as policy
neutrality, principle of least privilege, and ease of
management. Several well-known RBAC models,
such as RBAC96 (Sandhu et al, 1996), the role
graph model (Nyanchama & Osborn, 1999), and
NIST model (Ferraiolo et al., 2001), have been
developed during the last decade. Those models
form the basis for the ANSI RBAC standard (ANSI
INCITS 359-2004). As a powerful alternative to
traditional discretionary and mandatory access
control, the adoption of RBAC in commercial
software and enterprises has rapidly increased in
recent years (RTI International, 2002).

The complexity of an RBAC system can be
defined on the basis of the number of roles, the
number of permissions, the size of the role hier-
archy, the constraints on user-role and permis-
sion-role assignments, etc. (Sandhu et al, 2000).
For existing large-scale RBAC systems, the
number of roles and the number of permissions
are in the order of 1000s. Beyond that magnitude,
the performance of RBAC may degrade and its
management becomes too difficult to handle cor-
rectly. Several approaches (Giuri & Iglio, 1997;
Thomas, 1997; Perwaiz & Sommerville, 2001;
Park et al, 2004) have been proposed to scale up
RBAC systems by extending the RBAC model
from various perspectives. To achieve decentral-
ized administration of RBAC, some role-based
administrative models have been proposed
(Sandhu et al, 1999; Crampton & Loizou, 2003;

Oh et al, 2006; Bhatti et al, 2004). Most of the
previous work address RBAC in the context of
a single organization and are mainly motivated
by B2E (Business to Employee) applications. On
the other hand, B2B (Business to Business) and
B2C (Business to Consumer) applications often
involve a large number of organizations such as
corporations, schools, families, etc. Typically,
users from different organizations with the same
role name have slightly different access privileges
due to privacy consideration. For example, a user
with parent role in family A has permission to
view the progress records of Family A’s kids but
not the progress recodes of other families’ kids.
Using standard RBAC naively in these situations
can result in an enormous number of roles and
permissions, well into the order of millions.

This chapter tries to address the scalability
problem when applying RBAC to applications
involving many organizational units. The rest of
this chapter is organized as follows. Section 2 gives
background and two motivating examples. Section
3 reviews Role and Organization Based Access
Control (ROBAC) models. Section 4 presents
a decentralized administrative ROBAC model
called AROBAC07 (administrative ROBAC ’07)
to control administrative tasks in ROBAC sys-
tems. Section 5 discusses the implementation
perspective of ROBAC. Section 6 concludes the
chapter.

BACKGROUND

ANSI RBAC reference model includes core
RBAC (no role hierarchy), hierarchy RBAC
(has role hierarchy), and constrained RBAC (has
Separation of Duty constraints). Figure 1 shows
a classic (standard) RBAC which is based on the
well-known RBAC96 and permission definition
from ANSI RBAC.

Here we use the term classic RBAC to refer the
typical RBAC models proposed in (Sandhu et al,
1996; Nyanchama & Osborn, 1999; Ferraiolo et al,

96

Towards a Scalable Role and Organization Based Access Control Model

2001). As you can see, permissions are assigned
to roles and users are assigned to roles. Users
acquire permissions via their memberships in
roles during session. The permissions in standard
RBAC are defined as operations over objects.
Here objects represent any resources need to be
protected in the system. Assigning permissions to
roles and assigning roles to users are two separate
administrative tasks. How to define roles and
permissions depends on desired security policy
in an organization. RBAC models have been ex-
tended from various aspects (temporal, spatial,
or context-aware) to better meet the needs in
real world (Bertino et al, 2001; Joshi et al, 2005;
Bertino et al, 2005, Covington et al, 2001; Kumar
et al, 2002). Due to indirect assignment between
users and permissions, RBAC based system is
more flexible and scales up better than traditional
MAC and DAC based system with respecting to
the number of users. But RBAC does not scale up
well with respecting to the number of roles and
permissions. Beyond the magnitude of thousand
roles, the management of RBAC is very error
prone. Several approaches have been proposed to
scale up RBAC systems. Giuri and Iglio (1997)
extend RBAC by introducing the concept of

role templates with parameterized privileges to
achieve content-based access control. Thomas
(1997) proposes Team Based Access Control
(TMAC) to scale up permission assignment with
fine-grained run-time permission activation at the
level of individual users and objects. Perwaiz and
Sommerville (2001) describe a mechanism for
viewing role-permission relationships in the con-
text of organizational structures, which reduces
the number of roles in an RBAC implementation.
Park et al. (2004) propose a composite RBAC for
large and complex organizations. Most of these
existing models address problem in the context of
one organization. Many B2B and B2C applications
involve a large number of organizations and often
have some privacy requirements such as users in
one organization are only allowed to access the
resources related to the organization and are not
allowed to access other organizations’ resources.
We discuss two examples from B2B and B2C
context, respectively, to show the motivation of
our new models. These are abstracted from our
experience with similar real-world applications.

B2B example: Consider access control poli-
cies for a web based report delivery system, which
only allows authorized users to access specific

Figure 1. Classic (standard) RBAC

 97

Towards a Scalable Role and Organization Based Access Control Model

reports. Users are educational professionals from
schools, districts, and states in USA. There are on
the order of 10,000 schools participating in the
system. Reports are classified into types based on
the sensitivity and nature of the content. Because
some report types include privacy-sensitive data
such as student test results and personal infor-
mation, only an authorized user, say, School_1’s
official, can view School_1’s reports but cannot
view School_2’s reports. There are many different
types of reports, each of which may have up to
three different levels of information (state level,
district level, and school level). Some sample
report types are listed in Table 1.

States, districts, and schools usually form a
management hierarchy. Figure 2 shows an example
of a possible management hierarchy among states,
districts, and schools.

Informal security policies of the system may
include:	

•	 Users from a school are only allowed to
access the reports related to this school.

•	 Users from a district education office are
allowed to access the reports related to this
district and the schools under it.

•	 Users from a state education office are al-
lowed to access the reports related to this
state and the districts and schools under it.

•	 School principles can view type A and type
B reports.

•	 School teachers can view type B and type
E reports.

•	 Officials from a district’s board of education
offices can view type A and type B reports
but cannot view type D reports

 Under the above policies, an authorized school
level user (say School_1 teacher) can only access
certain types of the user’s own school’s reports,
but is not allowed to access other types of reports,
and, further, cannot access other school’s or any
district or state level reports. Here we assume
that an access not explicitly allowed by the stated
policies is denied. An authorized district level user
can access certain types of the user’s own district’s
reports (district level) and may also access the
same types of its subordinate schools’ reports.
For example, an authorized District_1 official can
access District_1’s district level Type_A reports
and school level Type_A report for School_1 and
School_2 since the School_1 and School_2 are
under District_1.

Assuming there are 10,000 organizations and
10 types of reports, if we use standard RBAC to
model this problem directly, we have to define
about 100,000 (10,000 x 10) permissions because
viewing School_1’s Type_A report is different
from viewing School_2’s Type_A report. We
also need to define 100,000 different roles be-
cause a role that can view a School_1_Type_A
report is different from a role that can view a
School_2_Type_A report. Table 2 and Table 3
show some samples of the possible permissions
and roles in this example.

The goal here is not to define a complete and
coherent policy for this example but rather to il-
lustrate the issues and complexities involved.

B2C example: Consider an online subscrip-
tion-based tutoring system, where customers are
families that have children in elementary schools.
Parents pay subscription fees for their children
and are authorized to create/update the family’s
profile and view their children’s progress reports.
Students that have subscribed to the service can
take classes on the web and view their progress

Table 1. Sample report types in B2B example

Type A Report (school level, district level, and state level)

Type B Report (school level only)

Type C Report (school level only)

Type D Report (school level only)

Type E Report (school level and district level)

…

98

Towards a Scalable Role and Organization Based Access Control Model

reports and family profiles. Here, family profiles
and student’s progress reports need to be protected
against unauthorized access. There are potentially
millions of families, and even 10s or 100s of mil-
lions. The informal description of some security
policies of this system may include:	

•	 Parents can only view their own children’s
progress reports.

•	 Parents can create/update/view their family’s
profile.

•	 A student can view his/her own progress
report and view his/her family’s profile.

	
Suppose we use standard RBAC to model

these policies. Because Family_1’s parent is only
allowed to access Family_1’s profile and Fam-
ily_1’s children’s progress reports, the Family_1’s
parents have slightly different permissions from
that of Family_2’s parents. Table 4 and Table 5
show some samples of the possible permissions

Figure 2. A sample organization hierarchy

Table 2. Sample permissions in B2B example
(with RBAC)

p1: View School_1 Type A Report

p2: View School_2 Type A Report

p3: View District_1 Type A Report

…

Table 3. Sample roles in B2B example (with
RBAC)

r1: School_1 Type A Report Viewer with permission p1.

r2: School_2 Type A Report Viewer with permission p2.

r3: District_1 Type A Report Viewer with permission p3.

…

Table 4. Sample permissions in B2C example
(with RBAC)

p1: Update Family_1’s Profile

p2: View Family_1’s Kids’ Progress Reports

p3: View Family_1’s Profile

p4: Update Family_2’s Profile

p5: View Family_2’s Kids’ Progress Reports

p6: View Family_2’s Profile

……

Table 5. Sample roles in B2C example (with
RBAC)

r1: Family_1 Parents with permission p1 and p2.

r2: Family_1 Student with permission p2 and p3.

r3: Family_2 Parents with permission p4 and p5.

r4: Family_2 Student with permission p5 and p6.

…

 99

Towards a Scalable Role and Organization Based Access Control Model

and roles when using classic RBAC in this B2C
example.

We can see that the administrative complex-
ity is very high in applying RBAC directly to the
above two examples. These scenarios are quite
typical for B2B and B2C applications. In prac-
tice, security and application engineers usually
work around this problem by combining RBAC
with other access control mechanisms such as
context-based or attribute-based access control.
The result is an ad hoc access control model with
a specialized administrative tool for each applica-
tion (Georgiadis et al, 2001; Schaad et al, 2001).

ROBAC MODELS

To address the issue that classic RBAC does not
scale up well for applications involving multiple
organizations where privacy issue is the main
concern, a family of extended RBAC models
called Role and Organization Based Access
Control (ROBAC) models has been proposed by
the authors (Zhang et al, 2006).

The central idea behind ROBAC is quite
simple. Instead of only using role related infor-
mation, ROBAC utilizes both the role informa-
tion and the organization information during the
authorization process. Specifically, in ROBAC,
a user is assigned to role and organization pairs
instead of roles only. The permissions in ROBAC
are defined as operations over object types instead
of operations over objects. A user can access an
object if and only if the user is assigned to a role
and organization pair, and the role has the right to
access the object’s type and the object is related
to the organization. In the following sections, we
show that the number of roles and permissions for
the above B2B and B2C examples can be reduced
significantly if we use ROBAC to model them.

ROBAC models consist of four models (RO-
BAC0, ROBAC1, ROBAC2, ROBAC3) based on
the increasing security functionality in direct
correspondence with the four models of well-

known RBAC96 family (RBAC0, RBAC1, RBAC2,
RBAC3). ROBAC0 is a base model. ROBAC1 is
ROBAC0 plus role hierarchy and organization
hierarchy. ROBAC2 is ROBAC0 plus constraints.
ROBAC3 is ROBAC0 plus role hierarchy, organi-
zation hierarchy and constraints. Figure 3 shows
their essential characteristics.

To make the chapter concise, we only review
the formal definitions for ROBAC0 and ROBAC1
here.

Definition 1: ROBAC0 has the following com-
ponents:

•	 U -- a set of users (same as U in RBAC96);	

•	 S -- a set of sessions (same as S in
RBAC96);

•	 R -- a set of roles (same as R in RBAC96);
•	 O -- a set of organizations;
•	 Op -- a set of operations;
•	 A -- a set of assets;
•	 At -- a set of asset types;
•	 P ⊆ Op × At -- a set of permissions;
•	 RO ⊆ R × O -- a set of applicable role and

organization associations;
•	 PA ⊆ P × R -- a many-to-many permis-

sion-to-role assignment relation;
•	 UA ⊆ U × RO -- a many-to-many user-

to-role-and-organization assignment rela-
tion;

•	 user: S → U -- a function mapping a session
si to a single user user(si) (same as user in
RBAC96);

•	 atype: A → At -- a function mapping an
asset to its type;

•	 aorg: A→ O -- a function mapping an asset
to the organization is related to;

•	 assigned_role-orgs: U → 2RO -- a function
mapping a user to a set of role-organiza-
tion pairs assigned to the user; formally:
assigned_role-orgs(u) = { (r,o) | (u, (r,o))
∈ UA };

100

Towards a Scalable Role and Organization Based Access Control Model

•	 active_role-orgs: S → 2RO -- a function
mapping a session si to a set of active role-
organization pairs such that active_role-
orgs(si) ⊆ assigned_role-orgs(user(si));

•	 can_access: S × Op × A → {true, false}
-- a predicate defined as can_access(s, op,
a) is true iff ∃ (r, o) ∈ active_role-orgs(s)
∧ aorg(a) = o ∧ ((op, atype(a)), r) ∈ PA ;

where the operations (Op) are similar to the opera-
tions or actions in classic RBAC; the assets (A) are
similar to objects; the active_role-orgs is used to
model activation of role-organization pairs inside
a session and it returns a subset of the role and
organization pairs that the assigned_role-orgs
returns. Because certain roles are only meaningful
for certain organizations, such as School Principle
role is only meaningful for school type organiza-
tions, we introduce the set of applicable role and
organization pairs (RO) to model that requirement.
Briefly, ROBAC0 extends RBAC0 by:

•	 introducing new sets: Organizations(O),
Asset Types (At), and Role-Organization
pairs (RO);

•	 introducing new functions: atype, aorg;
•	 extending assigned_role and roles (ses-

sion_role) to assigned_role-orgs and ac-
tive_role-orgs;

•	 redefining permissions (P) and user to role
assignment (UA);

•	 introducing a predicate can_access(s, op,
a).

Any access control system needs to answer
the following question: Can a subject perform
an operation over an object?

The newly introduced predicate can_access
serves this purpose in ROBAC. The definition
of can_access in ROBAC0 indicates that a user
(user(s)) in a session s can perform an operation
op over an asset a if and only if that the user has
an active role and organization pair (r, o) in that

Figure 3. A family of ROBAC models

 101

Towards a Scalable Role and Organization Based Access Control Model

session and the r has a permission to perform the
op over a’s type and a is related to o.

Definition 2: ROBAC1 has the following com-
ponents:

•	 U, S, R, O, Op, A, At, P, RO, PA, UA, user,
atype, aorg are same as those from RO-
BAC0.

•	 OH ⊆ O × O -- a partial order relation on
O called organization hierarchy;

•	 RH ⊆ R × R -- role hierarchy (same as RH
in RBAC96);

•	 assigned_role-orgs: U → 2RO -- a function
mapping a user to a set of role-organiza-
tion pairs assigned to the user; formally:
assigned_role-orgs(u) = { (r,o) | ∃r’ ≥ r ∧
∃o’ ≥ o ∧ (u, (r’,o’)) ∈ UA };

•	 active_role-orgs: S → 2RO -- a function
mapping each session si to a set of active role-
organization pairs such that active_role-
orgs(si) ⊆ assigned_role-orgs(user(si));

•	 can_access: S × Op × A → {true, false}
– a predicate defined as can_access(s, op,
a) is true iff ∃(r, o) ∈ active_role-orgs(s) ∧
aorg(a) ≤ o ∧ (∃r’ ≤ r, ((op, atype(a)), r’) ∈
PA) ;

ROBAC1 adds OH (organization hierarchy) and
RH (role hierarchy) and changes assigned_role-
orgs function and can_access predicate from
ROBAC0.

The definition of can_access in ROBAC1
means that a user user(s) in a session s can per-
form an operation op over an asset a if and only
if that the user has an active role and organization
pair (r, o) in that session and the role r or any of
its junior roles has a permission to perform the
operation op over the asset a’s type, and the as-
set a is related to the organization o or any of its
subordinate organizations.

For the aforementioned B2B example, we can
use ROBAC1 to model it very conveniently. We

show some ROBAC elements differing from those
in RBAC as follows.

•	 O= {State_1, State_2, District_1, District_2,
District_3, School_1, School_2, School_3,
School_4, …}

•	 OH = {(State_1, District_1), (State_1, Dis-
trict_2), (District_1, School_1), (District_1,
School_2), (District_ 2, School_3), (State_2,
District_3), (District_3, School_4), …}

•	 At = {Type_A_Report, Type_B_Report,
…}

•	 RO = { (r1, District_1), (r2, District_1), (r1,
School_1), (r2, School_2), (r3, School_1),
(r4, School_1), … }

Possible permissions and roles are listed in

Table 6 and Table 7.
In this B2B example, ROBAC only creates one

role called Type_A_Report_Viewer which has
one permission called View_Type_A_Report for
viewing type A report, but a classic RBAC needs to

Table 6. Sample permissions in B2B example
(with ROBAC)

p1: View Type A Report

p2: View Type B Report

p3: View Type C Report

p4: View Type D Report

…

Table 7. Sample roles in B2B example (with
ROBAC)

r1: Type A Report Viewer which has permission p1.

r2: Type B Report Viewer which has permission p2.

r3: Type C Report Viewer which has permission p3.

r4: Type D Report Viewer which has permission p4.

…

102

Towards a Scalable Role and Organization Based Access Control Model

create a role for each organization’s type A report
viewer, such as School_1_Type_A_Report_View-
er which has View_School_1_Type_A_Report
permission, and School_2_Type_A_Report_
Viewer which has View_School_2_Type_A_Re-
port permission, etc.

Based on the security policies, r1 and r2 can
have role-organization pairs with all levels of or-
ganizations but r3 and r4 can only have role-orga-
nization pairs with school level organizations.

 For the aforementioned B2C example, we can
use ROBAC0. Possible permissions and roles are
listed in Table 8 and Table 9.

In this B2C example, ROBAC only creates
two roles (parent and student) instead of a par-
ent role and a student role for each family in the
classic RBAC.

Permissions in ROBAC are defined as a subset
of Op × AT while permissions in classic RBAC
are defined as a subset of Op × A. Usually, |AT| is
much smaller than |A|. In the above B2B example,
|A| ≈ 10,000 × |AT|

Comparing to RBAC, the number of roles and
permissions in RODBC are reduced dramatically
in the above B2B and B2C examples. The set of
applicable role and organization pairs (RO) is a
newly introduced concept in ROBAC. The size

of RO may become large when there are a large
number of organizations involved. Instead of cre-
ating RO explicitly, we can define RO implicitly
by using some rules. For example, in the afore-
mentioned B2B example, we use the following
rules to establish RO implicitly:

•	 r1 (Type A Report Viewer) and r2 (Type
B Report Viewer) can associate with any
organizations.

•	 r3 (Type C Report Viewer) and r4 (Type
D Report Viewer) can only associate with
school type organizations.

For the B2C example, we allow any role as-
sociate to any organization. While the size of
RO may be large, the administrative work for
RO is small.

Because the number of roles and permissions
in ROBAC is much smaller than that in RBAC
under the situations similar to the above two ex-
amples, the administrative complexity in Permis-
sion-to-Role assignment is significantly reduced.
Therefore, using ROBAC to model the problems
similar to the above B2B and B2C examples is
more succinct and intuitive than using RBAC.

The organization concept in ROBAC intro-
duces a powerful abstraction that can be coupled
quite naturally with the traditional concept of
roles. For example, we can treat the divisions
or project teams in an enterprise as organiza-
tions. So ROBAC can also be used in many B2E
applications. A user with an assigned role and
organization pair (r, o) indicates that the user
can act as role r within the organization o and
its subordinate organizations. Because ROBAC
performs access control based on both roles and
association relations between users and protected
resources (assets), it is suitable to model privacy-
related policies in applications involving a large
number of similar organizational units. A detail
comparison between ROBAC and other RBAC
extensions can be found in Zhang et al, 2006.

Table 8. Sample permissions in B2C example
(with ROBAC)

p1: Update Family Profile

p2: View Kid’s Progress Reports

p3: View Family Profile

…

Table 9. Sample roles in B2C example (with
ROBAC)

r1: Parent which has permission p1 and p2.

r2: Student which has permission p2 and p3.

…

 103

Towards a Scalable Role and Organization Based Access Control Model

ADMINISTRATIVE ROBAC

In any security systems, administrative actions
need to be controlled. Using role-based method
to control RBAC administrative tasks is often a
preferred way because it can share the underline
authorization mechanism. There are two main
approaches to perform RBAC administration. One
is centralized such as Gavrila and Barkley’s NIST
model (1998) and Nyanchama and Osborn’s role
graph model (1999), where one or more security
administrators perform all administrative tasks.
Another is decentralized such as Sandhu et al’s
ARBAC97 model (1999), Crampton and Loizou’s
SARBAC model (2003), Oh et al’s ARBAC02
model (2006), and Bhatti et al’s X-GTRBAC
admin (2004), where administrative tasks are
distributed among many different administra-
tors in a controlled manner. Those role-based
decentralized approaches usually add a separate
administrative role hierarchy in the original RBAC
model. Figure 4 shows an example of regular

role hierarchy and administrative role hierarchy
created in ARBAC97 model for an engineering
department within an organization.

Department Security Officer (DSO) can per-
form administrative tasks on the department level
and Project Security Officer (PSO) can perform
administrative tasks on the project level. Each
project not only has its own instance of Project
Leader role, Production Engineer role, and Quality
Engineer role in the regular role hierarchy, but also
has its own instance of Project Security Officer
role in the administrative role hierarchy. If there
are a large number of projects, say in the degree
of 100s or more, in an enterprise, both the regular
role hierarchy and administrative role hierarchy
will become very clumsy and hard to manage
correctly. Many classic administrative RBAC
models, such as ARBAC97, do not scale up well
when a large numbers of similar organizational
units are involved.

As we mentioned earlier, the organization
concept in ROBAC should not be treated literally.

Figure 4. Examples of role hierarchy using classic administrative RBAC

104

Towards a Scalable Role and Organization Based Access Control Model

For business to employee (B2E) applications,
we may treat the divisions or project teams in
an enterprise as organizations. ROBAC model
is suitable to be used in large enterprises where
there are many similar organizational units. A
decentralized administrative approach is preferred
for large enterprises. Based on the observation
that administrative tasks are very similar in many
enterprises, we believe that it is an effective ap-
proach to utilize the role and organization based
access control concept to manage administrative
tasks in ROBAC. The main topic of this section
is to present a comprehensive model for role and
organization based administration of ROBAC.

 In classic RBAC, major administrative
tasks include assigning users to roles, assigning
permissions to roles, and adjusting role hierarchy.
So some role-based administrative model, such
as ARBAC97, has three separate sub-models:
URA97 (user-role assignment), PRA97 (per-
mission-role assignment), and RRA97 (role-role
assignment), to deal with these three major ad-
ministrative tasks. There are more components
in ROBAC than those in RBAC, making the
administration of ROBAC more multifaceted
than RBAC. Following the ARBAC97 approach,
we divide administrative tasks into the following
categories: assigning users to role-organization
pairs, assigning permissions to roles, managing
roles and role hierarchy, managing organizations
and organization hierarchy, and managing role and
organization association. The reason is that these
administrative activities in ROBAC affect user’s
access rights in different ways. Our administra-
tive model is called AROBAC07 (administrative
ROBAC ’07). It has five components.

1.	 UROA07 (user to role and organization pair
assignment ’07) is concerned with user to
role and organization pair assignment;

2.	 PRA07 (permission to role assignment ’07)
deals with permission-role assignment;

3.	 RRA07 (role to role assignment ’07) man-
ages roles and role hierarchy;

4.	 OOA07 (organization to organization as-
signment ’07) handles organizations and
organization hierarchy; and

5.	 ROA07 (role to organization assignment
’07) controls applicable association between
roles and organizations.

The development of AROBAC07 was heavily

influenced by ARBAC97, SARBAC, and AR-
BAC02. Our AROBAC07 model is presented in the
context of ROBAC1. Its interpretation for ROBAC0,
ROBAC2, and ROBAC3 is straightforward.

AROBAC07 adds some additional sets, re-
lationships, and functions to ROBAC model.
Similar to ROBAC, an administrative user is
assigned to administrative role and organization
pairs instead of administrative role only. An ad-
ministrative decision is made based on both role
and organization information. The common ele-
ments of AROBAC07 are described in Definition
3 and Figure 5 shows some relationship among
the elements of AROBAC07.

Definition 3: AROBAC07 has the following
components:

•	 U, S, O, OH, Op, A, At, P, RO, PA, UA,
user, atype, aorg, assigned_role-orgs, ac-
tive_role-orgs, can_access are same as those
from ROBAC;

•	 RR -- a set of regular roles (renamed R in
ROBAC);

•	 RRH ⊆ RR × RR – regular role hierarchy
(renamed RH in ROBAC);

•	 AR -- a set of administrative roles (same as
AR in ARBAC97), where RR ∩ AR=∅.

•	 ARH ⊆ AR × AR -- administrative role
hierarchy (same as ARH in ARBAC97);

•	 R = RR ∪ AR -- the set of all roles;
•	 ARRA ⊆ AR × RR -- a many-to-many

administrative role to regular role assign-
ment;

 105

Towards a Scalable Role and Organization Based Access Control Model

•	 RH = RRH ∪ ARH -- a combined role
hierarchy;

•	 UO ⊆ U × O -- a set of user-organization
affiliations;

•	 PO ⊆ P × O -- a set of applicable permis-
sion-organization associations;

•	 CRU – a set of applicable prerequisite condi-
tion for users;

•	 CRP – a set of applicable prerequisite condi-
tion for permissions;

•	 CAN_ASSIGN_USER ⊆ ARRA × CRU -
an association defines the constraints when
assigning users to role-organization pairs;

•	 CAN_REVOKE_USER ⊆ ARRA × CRU
- an association defines the constraints
when revoking users from role-organization
pairs;

•	 can_assign_user: S × U × RO → {true,
false} – a predicate which indicates that
if can_assign_user(s, u, (r,o)) is true then
user u can be assigned to the role-org pair
(r,o) within the session s (the definition is
described in UROA07);

•	 can_revoke_user: S × U × RO → {true,
false} – a predicate which indicates that if
can_revoke_user(s, u, (r,o), c) is true then
user u can be revoked from role-org pair
(r,o) within the session s (the definition is
described in UROA07);

•	 CAN_ASSIGN_PERMISSION ⊆ ARRA ×
CRP - an association defines the constraints
when assigning permissions to roles;

•	 CAN_REVOKE_PERMISSION ⊆ ARRA ×
CRP - an association defines the constraints
when revoking permissions from roles;

•	 can_assign_ permission: S × P × RR →
{true, false} – a predicate which indicates
that if can_assign_ permission(s, p, r) is
true then the permission p can be assigned
to the regular role r within the session s (the
definition is described in PRA07);

•	 can_revoke_ permission: S × P × RR →
{true, false} – a predicate which indicates
that if can_revoke_ permission(s, p, r) is

true then the permission p can be revoked
from the regular role r within the session s
(the definition is described in PRA07);

•	 can_modify_R: S × 2RR → {true, false} -- a
predicate which indicates that if can_mod-
ify_R(s, rset) is true then the user user(s)
can modify the roles and their relationship
inside the role set rset within the session s
(the definition is described in RRA07);

•	 can_modify_O: S × 2O → {true, false} -- a
predicate which indicates that if can_modi-
fy_O(s, oset) is true then the user user(s) can
modify the organizations and their relation-
ship inside the organization set oset within
the session s (the definition is described in
OOA07);

•	 can_modify_RO: S × R × O → {true,
false} -- a predicate which indicates that if
can_modify_RO(s, r, o) is true then the user
user(s) can associate or disassociate role r
with organization o within the session s (the
definition is described in ROA07);

In AROBAC97, UO defines user’s organization

affiliation. A user may be affiliated with multiple
organizations. UO is usually pre-determined by
Human Resource (HR) departments of individual
organizations. The applicable permission-orga-
nization association set PO defines permissions
applicable to organizations. Similar to permission
set P, PO is pre-determined via joined efforts
between HR and Information Technology (IT)
departments. So we do not include the manage-
ment of UO, P, and PO in our model. The set
ARRA can be considered as the administrative
role’s permission over the regular roles. Some
constraints need to be enforced when creating or
modifying the role hierarchy (RH) or organization
hierarchy (OH) such as no circular reference. The
detailed descriptions of the prerequisite condition
sets CRU and CRP, the predicates can_assign_
user, can_revoke_user, can_assign_ permission,
can_revoke_ permission, can_modify_R, can_
modify_O, and can_modify_RO are discussed in
the following corresponding subsections.

106

Towards a Scalable Role and Organization Based Access Control Model

The UROA07 Model

The UROA07 model deals with managing user
to role-organization pair assignment. It provides
two predicates to determine whether the cur-
rent session can grant a user membership in a
role-organization pair (or simply role-org pair)
or revoke a user membership in a role-org pair.
Before introducing the details of UROA07 model
we need some definitions.

user prerequisite condition (upc) - a upc is a bool-
ean expression using the usual ∧ and ∨ operators
on terms of form of (r, ?), ¬(r, ?), (r, o), and ¬(r,
o) where (r, o) is a role-org pair belongs to RO.
A user prerequisite condition is evaluated for a
user u by interpreting (r, o) to be true if (∃r’ ≥ r,
∃o’ ≥ o) (u, (r’, o’)) ∈ UA and ¬(r, o) is true if (r,
o) is not true. Here “?” is a place holder for any
o∈O, and (r, ?) is true for user u if (∃r’ ≥ r , ∃o’
≥ ?, (u, (r’, o’)) ∈ UA) and ¬(r, ?) is true if (r, ?)
is not true. CRU is a set including all applicable
upcs plus a null element. The null is interpreted
as true for any user.

Note: The (r, ?) expression represents a condition
template where the value of “?” is set to o when
the system is asked whether a user can be assigned
to a role-organization pair (r, o). We will explain
it in an example later.

	
omembers: O  2U, is a function mapping an
organization to a set of users who affiliated with
the organization; formally, omembers(o) = { u |
(u, o) ∈ UO }; omembers*(o) = { u | ∃o’ ≤ o, (u,
o’) ∈ UO }

Note: omembers(o) is the set of all users affiliated
with organization o and omembers*(o) is the set
of all users affiliated with organization o or its
subordinate organizations.

	
apermissions: AR  2RR, is a function mapping
an administrative role to a set of regular roles
which the administrative role has administrative
privilege over;

	

Figure 5. AROBAC07 model

 107

Towards a Scalable Role and Organization Based Access Control Model

formally, apermissions(ar) = { r | (ar, r) ∈
ARRA }; apermissions*(ar) = {r | ∃ar’ ≤ ar,
(ar’, r)∈ARRA }

Note: apermisions(ar) is the set of regular roles
which the administrative role ar has administra-
tive privilege and apermissions*(ar) is the set of
regular roles which administrative role ar or its
junior administrative roles has administrative
privilege.

may_manage_user: AR × U × RO × CRU
→ {true, false} - a predicate defined as
may_manage_user(ar, u, (r,o), c) is true iff (r ∈
apermissions*(ar)) ∧ c ∧ (u ∈ omembers*(o)).

Note: The definition of may_manage_user(ar, u,
(r,o), c) indicates that a user with administrative
role ar may manage the user u with respect to the
role-org pair (r, o) if and only if the user u satisfies
the user prerequisite condition c and is affiliated
to the organization o or its subordinate organiza-
tions and the administrative role ar or its junior
administrative roles can perform administrative
tasks on role r. The may_manage_user predicate
is used as a sub-routine in the following UROA07
Grant Model and UROA07 Revoke Model.

Definition 4: The UROA07 Grant Model
– can_assign_user predicate controls whether a
user can be assigned to a role-org pair within a
session. Formally, can_assign_user(s, u, (r,o)) is
true iff (∃o’ ≥ o, ∃(ar, o’) ∈ active_role-orgs(s))
∧ (∀c∈CRU, ((ar, r),c) ∈ CAN_ASSIGN_USER
∧ may_manage_user(ar, u, (r,o), c)).

The definition of can_assign_user(s, u, (r,o))

in UROA07 indicates that a user (user(s)) in a
session s can assign a user u to a role-org pair (r,
o) if and only if user(s) has an active role-org pair
(ar, o) (explicitly or implicitly via organization
hierarchy) in that session and user u satisfies all
related user prerequisite conditions defined in
CAN_ASSIGN_USER and is affiliated to the

organization o or its subordinate organizations
and the administrative role ar or its junior ad-
ministrative roles can perform administrative
tasks on role r.

The user prerequisite condition in UROA07 is
likely to be empty in most cases. It may be used
to model some complex policy, so we include it
in the model.

 To appreciate the benefit behind the UROA07
model, let us remodel the aforementioned engi-
neering department example in Figure 4 using
AROBAC07. Figure 6 shows the AROBAC07
model for the engineering department problem in
Figure 4. Here we treat a project team as an orga-
nization. We further assume that roles in different
project teams within the engineering department
perform similar tasks and a team member only
can access the resource related to the team he/she
is in. This assumption will usually hold because
most enterprises need to enforce unified security
policy across multiple teams.

We can see that both the regular role hierarchy
(Figure 6(a)) and the administrative role hierarchy
(Figure 6(c)) in AROBAC07 are simpler. For the
moment please ignore the Greatest Administrative
Role (gar) and the Greatest Organization (go). We
will explain these later. Here we prefix “@” in the
front of organizations to distinguish them from
roles. For example, a user with an active role-org
pair (PSO, @PT1) is a security administrator in
project team 1. may_manage_user(PSO, u, (PE,
@PT1), ¬(QE, ?)) is true if user u is affiliated
with project team 1 (@PT1) and u is not a QE
inside the project team 1. Based on the UROA07
grant-model, the user with active role-org pair
(PSO, @PT1) can assign membership of roles:
PL, PE, QE, and ENG within project team 1, to
users affiliated with the project team 1 but he/she
cannot assign these users to roles within project
team 2 and cannot assign users not affiliated to
project team 1 to any roles. He/she also cannot
assign both (PE, @PT1) and (QE, @PT1) to the
same user because of the user prerequisite con-
ditions, ((PSO, PE), ¬(QE, ?)) and ((PSO, QE),

108

Towards a Scalable Role and Organization Based Access Control Model

¬(PE, ?)) , defined in CAN_ASSIGN_USER at
Figure 6(d), which represents a global separation
of duty constraint in ROBAC.

If there are more project teams in the engineer-
ing department or there are more engineering
departments, we only need to add them in the
organization set O and organization hierarchy
OH but do not need to change other settings in
ROBAC. Even with 100s or more project teams,
the UROA07 model will scale up very nicely
whereas previous models will become incom-
prehensible.

To complete the definition of the UROA07
model we define the Revoke Model as follows.

Definition 5: The UROA07 Revoke Model
– can_revoke_user predicate controls whether a
user can be revoked from a role-org pair within
a session. Formally, can_revoke_user(s, u, (r,o))
is true iff (∃o’ ≥ o, ∃(ar, o’) ∈ active_role-orgs(s)
) ∧ (∀c, ((ar, r), c) ∈ CAN_REVOKE_USER ∧
may_manage_user(ar, u, (r,o), c)).

The PRA07 Model

The PRA07 model deals with managing permis-
sion to role assignment. Similar to UROA07, it
also provides two predicates to determine whether
a session can assign or revoke permission to or
from a role. We give the following definitions in
analogy to similar definitions for UROA07.

permission prerequisite condition (ppc) – a ppc
is a boolean expression using the usual ∧ and ∨
operators on terms of form of r and ¬r where r is
a role in RR. A permission prerequisite condition
is evaluated for a permission p by interpreting r to
be true if (∃r’ ≤ r, (p, r’) ∈ PA) and ¬r is true if
(∀r’ ≥ r , (p, r’) ∉ PA. CRP is a set which includes
all applicable ppcs plus a null element. The null
is interpreted as true for any permission.

opermissions: O  2P, is a function mapping an
organization to a set of permissions which ap-
plicable to the organization;

	

Figure 6. Role and organization hierarchies using administrative ROBAC

 109

Towards a Scalable Role and Organization Based Access Control Model

formally, opermissions(o) = { p: P | (p, o) ∈ PO
}; opermissions*(o) = { p: P | ∃o’ ≤ o, (p, o’) ∈
PO }

Note: opermissions(o) is the set of all permis-
sions applicable to the organization o and
opermissions*(o) is the set of all permissions
applicable to the organization o or its subordinate
organizations.

	
can_manage_ permission: RO × P × RR × CRP
→ {true, false} – a predicate defined as can_man-
age_ permission((ar, o), p, r, c) is true iff (r ∈
apermissions*(ar)) ∧ c ∧ (p ∈ omembers*(o)).

Note: The def init ion of can_ manage_
permission((ar, o), p, r, c) indicates that a user
who is a member of administrative role-org pair
(ar, o) can manage the permission p for the role
r if and only if permission p satisfies the permis-
sion prerequisite condition c and is applicable to
the organization o or its subordinate organiza-
tions and the administrative role ar or its junior
administrative roles can perform administrative
tasks on the regular role r.

This leads to the following Grant Model.

Definition 6: The PRA07 Grant Model – can_as-
sign_ permission predicate controls whether a
permission can be assigned to a role within a
session. Formally, can_assign_ permission(s, p,
r) is true iff ∃(ar, o) ∈ active_role-orgs(s) ∧ (∀c,
((ar, r), c) ∈ CAN_ASSIGN_PERMISSION ∧
can_manage_ permission((ar, o), p, r, c).

The definition of can_assign_ permission(s,
p, r) in PRA07 indicates that a user (user(s)) in a
session s can assign a permission p to a role r if
and only if user(s) has an active role-org pair (ar,
o) in that session, and the administrative role ar or
its junior administrative roles have administrative
right over the regular role r, and the permission p
is applicable to the organization o or its subordi-

nate organizations, and the permission p satisfies
all specified permission prerequisite conditions
defined in CAN_ASSIGN_PERMISSION. The
permission prerequisite condition in PRA07 is
optional.

Finally we have the following Revoke
Model.

Definition 7: The PRA07 Revoke Model – can_re-
voke_ permission predicate controls whether a
permission can be revoked from a role within a
session. Formally, can_revoke_ permission(s, p,
r) is true iff (∃(ar, o) ∈ active_role-orgs(s) ∧ (∀c,
((ar, r), c) ∈ CAN_REVOKE_PERMISSION ∧
can_manage_ permission((ar, o), r, c)).

The RRA07 Model

The RRA07 model deals with managing roles
and role hierarchy. It provides one predicate
called can_modify_R to determine whether the
current session can add/remove a role or change
role hierarchy during the session. To define
can_modify_R predicate, we need to introduce
some definitions.

rjuniors: R  2R, is a function mapping a role
to its junior roles; formally, rjuniors(r) = { r’: R
| r’ < r }

rseniors: R  2R, is a function mapping a role
to its senior roles; formally, rseniors(r) = { r’: R
| r’ > r }

rfamily: R  2R, is a function mapping a role to
a set of roles including itself and its junior role
and senior roles; formally, rfamily(r) = {r} ∪
rjuniors(r) ∪ rseniors(r)

rfamilies: 2R  2R, is a function mapping a set
of roles to a set of roles including all families of
its members; formally, rfamilies({r1, r2, … rn}) =
rfamily(r1) ∪ rfamily(r2) ∪ … ∪ rfamily(rn)

110

Towards a Scalable Role and Organization Based Access Control Model

It is worth noting that rfamily and rfamilies only
include recursive direct family members and do
not include siblings.

permissible administrative role set, parset: AR 
2RR, is a function mapping an administrative role
to a set of regular roles in which the administra-
tive role can modify the regular role hierarchy.
Formally,

parset(ar) = { r : RR | (ar, r) ∈ ARRA ∧ rfamily(r)
⊆ apermissions*(rfamily(ar)) }.

The above definition indicates that parset for an
administrative role ar includes all of the regular
roles it has administrative privilege such that the
regular role’s family is a part of the regular roles
the ar’s family has administrative privilege over.
For example parset(PSO) = { PL, PE }.

Because modifying role hierarchy affects all
organizations in ROBAC, we should only allow the
users at the highest organization level to perform
these actions. We introduce an artificial organiza-
tion called greatest organization (go) which is the
ancestor for all organizations in O (see Figure 3).
Now let us define the can_modify_R predicate.

Definition 8: can_modify_R: S × 2RR → {true,
false} -- a predicate defined as can_modify_R(s,
rset) is true iff ∃(ar, go) ∈ active_role-orgs(s) ∧
rset ⊆ parset(ar).

The definition of can_modify_R means that a
user user(s) in a session s can modify the relation-
ship within the role set rset if and only if that the
user has an active administrative role ar and paired
with the greatest organization go in that session
and the role set rset is a subset of the permissible
administrative role set of ar. Here the modifica-
tion within a set of roles means adding/deleting
an edge or adding/removing a role. For example,
according to Figure 6, PSO can remove the edge
between PL and PE but cannot remove the edge

between ENG and QE because QE and ENG are
not in its permissible administrative role set.

The OOA07 Model

The OOA07 model deals with managing orga-
nizations and organization hierarchy. Similar
to RRA07, it provides one predicate called
can_modify_O to determine whether the cur-
rent session can add/remove an organization or
change organization hierarchy during the session.
To define can_modify_O predicate, we also need
to introduce some definitions.

ojuniors: O  2O, is a function mapping an orga-
nization to its subordinate organizations.

Formally, ojuniors(o) = { o’: O | o’ < o }

oseniors: O  2O, is a function mapping an or-
ganization to its parent organizations.

Formally, oseniors(o) = { o’: O | o’ > o }

ofamily: O  2O, is a function mapping an or-
ganization to a set of organizations including
itself and its subordinate organizations and par-
ent organizations. Formally, ofamily(o) = {o} ∪
ojuniors(o) ∪ oseniors(o)

permissible administrative organization set, pao-
set: O  2O, is a function mapping an organization
to a set of organizations. Formally, paoset(o) = {
o’ : O | o’ < o ∧ ofamily(o’) ⊆ ofamily(o) }

For example, paoset(@ED) = { @PT1, @PT2 }
according to Figure 6(b).

Because modifying organization hierarchy has
some global effects on the access right in ROBAC,
we should only allow the most senior administra-
tive role to modify the organization hierarchy.
We can pre-define a most senior administrative
role called gar (greatest administrative role) in

 111

Towards a Scalable Role and Organization Based Access Control Model

AR. Here is the definition for can_modify_O
predicate.

Definition 9: can_modify_O: S × 2O → {true,
false} -- a predicate defined as can_modify_O(s,
oset) is true iff ∃(gar, o) ∈ active_role-orgs(s) ∧
oset ⊆ paroet(o).

The definition of can_modify_O means that a
user user(s) in a session s can modify the relation-
ship within the organization set oset if and only if
that the user has the greatest administrative role
gar in an organization o in that session and the
organization set oset is a subset of the permissible
administrative organization set of o. For example,
a user assigned (gar, @ED) can remove @PT1
from the organization hierarchy or add a new
organization say @PT3 under it.

The ROA07 Model

The ROA07 model deals with managing role and
organization association in ROBAC. Similar to
other models, it provides one predicate called
can_modify_RO to determine whether the cur-
rent session can associate / disassociate a role
with an organization.

Definition 10: can_modify_RO: S × R × O →
{true, false} -- a predicate defined as can_modi-
fy_RO(s, r, o) is true iff (∃o’ ≥ o, ∃(ar, o’) ∈ ac-
tive_role-orgs(s)) ∧ r ∈ apermissions*(ar).

The definition of can_modify_RO means that
a user user(s) in a session s can associate or disas-
sociate the role r with the organization o if and only
if user(s) has an active role and organization pair
(ar, o’) in that session and o is o’ or a subordinate
of o’ and the administrative role ar or its junior
administrative roles can perform administrative
tasks on the role r. For example, a user assigned
(PSO, @PT1) can associate PE with @PT1 but
cannot disassociate PE from @PT2.

The five sub-models in AROBAC07 decentral-
ize the administrative tasks along the administra-
tive role hierarchy and organization hierarchy.
They control administrative tasks based on both
administrative role permissions and organization
hierarchy. This is a ROBAC approach to perform
administrative work on ROBAC systems.

Discussion and Related Work

ROBAC models require that organizations have
similar roles. Administrator roles across organi-
zations tend to have greater similarity than the
underlying regular roles may have. So the ROBAC
concept is particularly well suited to administra-
tive tasks. A user assigned an administrative role
and organization pair (ar, o) can perform adminis-
trative tasks the ar allowed within the organization
o and its subordinate organizations. Administra-
tive tasks in AROBAC07 can be delegated not
only along the administrative role hierarchy but
also along the organization hierarchy.

As we mentioned earlier, AROBAC07 model
is inspired by the following three role-based
administrative models: ARBAC97, ARBAC02,
and SARBAC.

ARBAC97 is one of the most comprehensive
role-based administrative models. It uses role
range (encapsulated range) concept to define
the scope of administrative permission. The
user prerequisite condition (upc) and permission
prerequisite condition (ppc) in AROBAC07 are
extended versions of the corresponding prereq-
uisite conditions in ARBAC97.

ARBAC02 enhances ARBAC97 by incorpo-
rating two external organization structures: user
organization structure (OS-U) and permission or-
ganization structure (OS-P). URA02 and PRA02
sub-models in ARBAC02 modify the prerequisite
conditions in URA97 and PRA97 of ARABC97
by using memberships of organizations to avoid
some weakness, such as multi-step assignments,
redundant assignment information, restricted

112

Towards a Scalable Role and Organization Based Access Control Model

hierarchy etc., in ARBAC97. ARBAC02 uses the
organization structures only for constructing user
pool and permission pool in prerequisite condi-
tions but does not use it to control administrative
permissions. UROA07 and PRA07 in AROBAC07
use the build-in organization hierarchy and
implicitly enforce the user pool and permission
pool constraints with respect to can_assign_user
and can_revoke_user and can_assign_ permis-
sion and can_revoke_ permission predicates.
So UROA07 and PRA07 have similar benefits
of user pool and permission pool concepts used
in URA02 and PRA02 models without putting
the user pool or permission pool as a part of the
prerequisite conditions. Similar to ARBAC02,
AROBAC07 avoids the weakness of ARBAC97
by using the build-in organization hierarchy, the
user-organization affiliation information, and the
applicable permissions and organization associa-
tion information.

SARBAC introduces a concept called admin-
istrative scope, which can be calculated for each
role-based on the role hierarchy. SARBAC tends
to be simpler, more flexible, and more permissible
than ARBAC97. The ARRA relation in ARO-
BAC07 is similar to the can_admin relation in
SARBAC. The current construction of permissible
administrative role set (parset) concept in RRA07
is similar to the administrative scope concept
in SARBAC. From that perspective, RRA07 is
very similar to RH4 sub-model in SARBAC. So
RRA07 has some similar benefits, such as flex-
ibility, that SARBC enjoys. Unlike RH4, RRA07
enforces strict separation between regular roles
and administrative roles because we believe the
separation of administrative duty from regular
duty is a desired security policy in most cases. It
is possible that we can construct parset differently,
such as using the encapsulated range concept in
RRA97 or other criteria. The OOA07 applies the
similar concept on the role hierarchy.

X-GTRBAC admin (Bhatti et al, 2004) is a
decentralized administrative model for the XML-

based Generalized Temporal Role-based Access
Control (X-GTRBAC) framework (Bhatti et al,
2003). It uses a concept called admin domain to tire
roles (admin roles and regular roles), permissions
(admin permissions and regular permissions), and
users (admin users and regular users) together. It
uses hard-coded Eligible Role (ER) for users in
admin domain to put constraint on user to role
assignment task. It uses Admin Permissions
to model the possible administrative tasks. An
administrator in an Admin Role is authorized to
handle assignment of users to regular roles within
a given domain. Both administrative roles and
admin domains in X-GTRBAC admin are flat.
If considering an admin domain as an organiza-
tion, X-GTRBAC admin’s impact on X-GTRBAC
framework is similar to the UROA07’s impact on
ROBAC0 based system. It is hard for X-GTRBAC
admin to achieve similar functionality ARO-
BAC07 has when organization hierarchy or/and
administrative hierarchy exist.

The first three of aforementioned role-based
administrative models control administrative
tasks based on roles only while AROBAC07
controls administrative tasks based on both roles
and organizations. From the perspective of ad-
ministrative units, the admin domain concept in
X-GTRBAC admin is similar to the organization
concept in UROA07 for ROBAC0 based systems,
but AROBAC07 has more functionality that the
X-GTRBAC admin seems hard to achieve.

In AROBAC07, we use the same ARRA rela-
tion across all sub-models. It may be desirable
that we use a different version of ARRA in each
sub-model when finer-grain control is needed.
The administrative role hierarchy in AROBAC07
tends to be simpler than these existing models
when there are many organizational units, such as
lots of branches or project teams, in an enterprise.
With ROBAC/AROBAC07, security policies can
be defined in a small scope first and then applied
to all organizations.

 113

Towards a Scalable Role and Organization Based Access Control Model

Practical Consideration when
Applying ROBAC to Web
Applications

In real world, an authorization service needs
to support many applications in an enterprise.
AROBAC07 model not only can decentralize
the administrative tasks along organization hier-
archy, but also can decentralize the tasks along
the administrative role hierarchy. Creating ap-
propriate administrative roles and administrative
role hierarchy is critical to achieve decentralized
administration in ROBAC system.

ACom Based Delegation Model

Each application normally has its own set of roles
and these roles are only applicable to the applica-
tion. So the regular role set may be partitioned
based on which application the roles belong to.
Here we introduce the concept of application
compartment. We denote App as a set of all ap-
plications controlled by a ROBAC system.

Definition 11: An Application Compartment
(ACom) for an application appi ∈ App in a RO-
BAC system is a tuple: (Ui, Ri Oi, Pi, ROi, RHi,
OHi, PAi, UAi), where:

•	 Ui = U -- the same set of users as in
ROABC;

•	 Ri ⊆ R -- a subset of roles applicable to this
application;

•	 Oi ⊆ O -- a subset of organizations applicable
to this application;

•	 Pi ⊆ P -- a subset of permissions applicable
to this application;

•	 ROi ⊆ Ri x Oi –- a set of applicable role
and organization association in this applica-
tion;

•	 RHi ⊆ Ri x Ri -- a partial order relation on
Ri called role hierarchy;

•	 OHi ⊆ Oi x Oi -- a partial order relation on
Oi called organization hierarchy;

•	 PAi ⊆ Pi x Ri -- a many-to-many permis-
sion-to-role assignment relation;

•	 UAi ⊆ Ui x ROi -- a many-to-many user-
to-role-and-organization assignment rela-
tion;

Let’s use acom(appi) to represent the ACom
corresponding to application appi and denote
ACOM as a set of all application compartments in
the ROBAC system. We can think of acom(appi)
as being controlled by a sub ROBAC system. Here
we define a dominate relation DOM in ACOM.

Definition 12: DOM ⊆ ACOM × ACOM -- is
a partial order relation on ACOM such that (
acom(appi), acom(appj)) ∈ DOM iff Ui ⊆ Uj ∧
Ri ⊆ Rj ∧ Oi ⊆ Oj ∧ Pi ⊆ Pj ∧ ROi ⊆ ROj ∧ RHi
⊆ RHj ∧ OHi ⊆ OHj ∧ PAi ⊆ PAj ∧ UAi ⊆ UAj.

For administration purpose, we can create
an administrative role ari for each acom(appi).
That requires adding ari in AR, adding { ari }×
Ri into ARRA, and adding (ari , arj) in ARH iff
(acom(appj), acom(appi)) ∈ DOM.

The partitioning process may continue within
an application. In general, we can form a hierarchy
in AR based on the DOM relationship. The senior
administrative role can delegate the administra-
tive tasks to its junior administrative roles safely.
ACom concept not only provides a way to partition
the regular role set (and construct administrative
role hierarchy) in AROBAC07, but also can be
used to enforce application boundary. For example,
when a user u enters an application, say appi, the
ROBAC system only actives the role-org pairs
applicable to this application. That is,

if a user u is inside appi then active_roles-orgs(u)
⊆ assigned_role-orgs(u) ∩ acom(appi).ROi.

where acom(appi).ROi represents the role-org pairs
applicable to the application appi. You may notice

114

Towards a Scalable Role and Organization Based Access Control Model

that AROBAC07 does not explicitly talk about how
to assign / revoke users to/from administrative
role and organization pairs. In practice, a user
with administrative role and organization pair
(ar, o) can assign (or revoke) users to (or from)
administrative role and org pair (ar’, o’) such that
ar’ ≤ ar and o’ ≤ o. It is not hard to develop a
formal sub-model similar to the UROA07 model
if more complex constraints are needed. So a user
assigned with (gar, @go) can act like a super user
in a ROBAC system. The syntax of assigning user
to role and organization pair is same regardless
a role is a regular role or an administrative role.
This feature makes AROBAC07 easy to imple-
ment in practice.

A partial implementation of a ROBAC1 model
has been successfully used as an authorization
engine, which provides authorization services
for multiple web applications (https://epl.colleg-
eboard.com/epl/goHome.do).

CONCLUSION

A family of extended RBAC models called Role
and Organization Based Access Control (ROBAC)
models is reviewed and its corresponding admin-
istrative model called AROBAC07 is presented
and formalized in this chapter. The motivation
behind ROBAC is to scale up RBAC for B2B and
B2C applications where a large number of orga-
nizational units are involved. The advantages of
ROBAC models over traditional RBAC models are
shown via two examples. We claim that ROBAC
is more intuitive and succinct than many RBAC
variants when used for scenarios involving a large
number of similar organizational units and the
privacy issue is a major concern.

The AROABC07 is a decentralized role and
organization based administrative model for
ROBAC. It has five sub-models: UROA07 is
concerned with user to role and organization
pair assignment; PRA07 deals with permission-
role assignment; RRA07 manages roles and role

hierarchy; OOA07 handles organizations and
organization hierarchy; and ROA07 controls appli-
cable association between roles and organizations.
UROA07 and PRA07 obtain the benefits of user
pool and permission pool concepts in ARBAC02
without specifying user pool and permission pool
explicitly. RRA07 has the similar advantage of
RHA4 in SARBAC over RRA97 in ARBAC97
without sacrificing the separation of duty between
administrative roles and regular roles. OOA07
and ROA07 provide ways to decentralize the
administrative tasks on organization hierarchy
and applicable role and organization association.
We claim that AROBAC07 scales up well and is
better than using existing role-based administra-
tive models by providing more controlled and
decentralized approaches to perform administra-
tive tasks on ROBAC.

Many serious security breaches are due to
internal users. So it is very important to restrict
and control administrative actions on access
control systems. ROBAC/AROBAC07 scales
up classic RBAC systems for situations where
many similar organizational units are involved. It
inherits the RBAC’s good features and provides
a way to restrict access control within specified
organizational units without introducing too much
administrative burden on access control systems.
It is quite suitable for modeling privacy related
security policy.

The implication of can_modify_R, can_
modify_O, and can_modify_RO predicates on
different administrative tasks such as add/delete
nodes or edges need to be detailed and studied
further. How to manage other aspects of ROBAC
such as integrating general constraints and de-
fining atype and aorg functions may also merit
further study.

REFERENCES

American National Standard Institute. ANSI
INCITS 359-2004 for Role-based Access Con-
trol. 2004

 115

Towards a Scalable Role and Organization Based Access Control Model

Bertino, E., Bonatti, P. A., & Ferrari, E. (2001,
August). TRBAC: A temporal role-based access
control model. ACM Transactions on Information
& System Security, 4(3), 191-233.

Bertino, E., Catania, B., Damiani, M. L., &
Perlasca, P. (2005, June). Access control model
I: GEO-RBAC: a spatially aware RBAC. Pro-
ceedings of the tenth ACM symposium on Access
control models and technologies.

Bhatti, R. (2003). X-GTRBAC: An XML-based
Policy Specification Framework and Architecture
for Enterprise Wide Access Control. Masters
thesis, Purdue University, May 2003.

Bhatti, R., Joshi, J., Bertino, E., & Ghafoor, A.
(2004, June). Role administration: X-GTRBAC
admin: a decentralized administration model for
enterprise wide access control. Proceedings of the
ninth ACM symposium on Access control models
and technologies.

Crampton, J., & Loizou, G. (2003, May). Admin-
istrative Scope: A Foundation for Role-Based
Administrative Models. ACM Transactions on
Information and System Security, 6(2), 201-231.

Covington, M. J., Long, Srinivasan, S., Dev, A. K.,
Ahamad, M., & Abowd, G. D. (2001, May). Secur-
ing context-aware applications using environment
roles. Proceedings of the sixth ACM symposium
on Access control models and technologies.

Ferraiolo, D. F., Barkley, J. F., & Kuhn, D. R. (1999,
February). A role-based access control model
and reference implementation within a corporate
intranet. ACM Transactions on Information and
System Security (TISSEC), 2(1).

Ferraiolo, D., Sandhu, R., Gavrila, S., Kuhn,
D., & Chandramouli, R. (2001). Proposed NIST
standard for role-based access control. ACM
Transactions on Information and System Security
(TISSEC), 4(3).

Gavrila, S., & Barkley, J. (1998, October). Formal
Specification for RBAC User/Role and Role/Role

Relationship Management. Proceedings of Third
ACM Workshop on Role-Based Access Control.
Fairfax, VA, USA.

Giuri, L., & Iglio, P. (1997). Role Templates for
Content-Based Access Control. Proceedings of
Second ACM Workshop on Role-Based Access
Control, Fairfax, VA, USA, November 1997

Georgiadis, C. K., Mavridis, I., Pangalos, G.,
& Thomas, R. K. (2001). Flexible Team-Based
Access Control Using Contexts. Proceedings of
Sixth ACM Symposium on Access Control Models,
May 2001, Fairfax, Virginia, USA.

 Joshi, J. B. D., Bertino, E., Latif, U., & Ghafoor,
A. (2005). A generalized temporal role-based
access control model (GTRBAC). IEEE Trans-
action on Knowledge and Data Engineering 17,1
(Jan. 2005).

Kumar, A., Karnik, N., & Chafle, G. (2002,
July). Context sensitivity in role-based access
control, ACM SIGOPS Operating Systems Re-
view, 36(3),.

Nyanchama, M., & Osborn, S. (1999, February).
The Role Graph Model and Conflict Of Interest,
ACM Transactions on Information and System
Security, 2(1), 3-33.

Oh, S., Sandhu, R., & Zhang, X. (2006, May).
An Effective Role Administration Model Using
Organization Structure. ACM Transactions on
Information and System Security, 9(2), 113-137.

Park, J. S., Costello, K. P., Neven, T. M., & Dioso-
mito, J. A. (2004). A Composite RBAC Approach
for Large, Complex Organizations. Proceedings of
Ninth ACM Symposium on Access Control Models,
June 2004, Yorktown Heights, New York, USA.

Perwaiz, N., & Sommerville, I. (2001). Structured
Management of Role-Permission Relationships.
Proceedings of Sixth ACM Symposium on Access
Control Models, May 2001, Fairfax, Virginia,
USA.

116

Towards a Scalable Role and Organization Based Access Control Model

RTI International. (2002). The Economic Impact
of Role-Based Access Control. March 2002. Re-
trieved from http://www.nist.gov/director/prog-
ofc/report02-1.pdf

Sandhu, R., Bhamidipati, V., & Munawer, Q. (1999,
February). The ARBAC97 Model for Role-Based
Administration of Roles, ACM Transactions on
Information and Systems Security, 2.

Sandhu, R., Coyne, E., Feinstein, H., & Youman,
C. (1996, February). Role-Based Access Control
Models. IEEE Computer, 29(2).

Sandhu, R., Ferraiolo, D., & Kuhn, R. (2000).
The NIST Model for Role-Based Access Control:
Towards A Unified Standard. National Institute
of Standards and Technology, December 2000,
http://csrc.nist.gov/rbac/sandhu-ferraiolo-kuhn-
00.pdf

Schaad, A., Moffett, J., & Jacob, J. (2001). The
Role-Based Access Control System of a European
Bank: A Case Study and Discussion. Proceed-
ings of Sixth ACM Symposium on Access Control
Models, May 2001, Fairfax, Virginia, USA.

Thomas, R. K. (1997). Team-Based Access
Control (TMAC): A Primitive for Applying
Role-Based Access Controls in Collaborative
Environments. Proceedings of the Second ACM
workshop on Role-based Access Control, Fairfax,
VA, USA, 1997.

Zhang, Z., Zhang, X., & Sandhu, R. (2006).
ROBAC: Scalable Role and Organization Based
Access Control Models. Proceedings of Collabo-
rateCom-2006/TrustCol-2006, Atlanta, Georgia,
USA, November 2006.

KEY TERMS

Administrative RBAC: Refers to approaches
of controlling administrative tasks in RBAC. It
usually provides ways to control the following

major administrative tasks: assigning users to roles
(user to role assignment), assigning permissions to
roles (permission to role assignment), and adjust-
ing role hierarchy (role to role assignment).

Administrative ROBAC: Refers to approach-
es of controlling administrative tasks in ROBAC.
It usually provides ways to control the following
major administrative tasks: assigning users to
role-organization pairs, assigning permissions to
roles, managing roles and role hierarchy, manag-
ing organizations and organization hierarchy, and
managing role and organization association.

Application Compartment (ACom): An
ACom of an application is a subset of a ROBAC
where only the users, permissions, roles, and
organizations applicable to the application are
included.

Permissible Administrative Organization
Set (PAOSET): A paoset of an organization
is a set of organizations in which the greatest
administrative role (gar) in the organization can
modify the organization hierarchy.

Permissible Administrative Role Set (PAR-
SET): A parset of an administrative role is a set
of regular roles in which the administrative role
can modify the regular role hierarchy.

Permission Prerequisite Condition (PPC):
A condition a permission needs to be met before
the permission can be assigned to roles.

Role-Based Access Control (RBAC): A
method to restrict user’s access to system re-
sources based on the user’s roles. In RBAC, roles
are defined based on job functions, permissions
are associated with roles, and users are made
members of appropriate roles, thereby acquiring
the roles’ permissions.

Role and Organization Based Access
Control (ROBAC): An extension of RBAC. In
ROBAC, access is based on user’s roles and the
indirect association between users and system
resources via organizations.

 117

Towards a Scalable Role and Organization Based Access Control Model

User Prerequisite Condition (UPC): A con-
dition a user needs to be met before the user can
be assigned to roles or role-organization pairs.

