
ACaaS: Access Control as a Service for IaaS Cloud

Ruoyu Wu∗, Xinwen Zhang†, Gail-Joon Ahn∗, Hadi Sharifi∗ and Haiyong Xie†‡
∗Arizona State University, Tempe, AZ 85287, USA

Email: {ruoyu.wu, gahn, hsharif1}@asu.edu
†Huawei Research Center, Santa Clara, CA 95050, USA

Email: {xinwen.zhang, haiyong.xie}@huawei.com
‡University of Science and Technology of China, Hefei, China

Abstract— Organizations and enterprises have been outsourc-
ing their computation, storage, and workflows to Infrastructure-
as-a-Service (IaaS) based cloud platforms. The heterogeneity and
high diversity of IaaS cloud environment demand a compre-
hensive and fine-grained access control mechanism, in order
to meet dynamic, extensible, and highly configurable security
requirements of these cloud consumers. However, existing security
mechanisms provided by IaaS cloud providers do not satisfy these
requirements. To address such an emergent demand, we propose
a new cloud service called access control as a service (ACaaS), a
service-oriented architecture in cloud to support multiple access
control models, with the spirit of pluggable access control modules
in modern operating systems. As a proof-of-concept reference
prototype, we design and implement ACaaSRBAC to provide
role-based access control (RBAC) for Amazon Web Services
(AWS), where cloud customers can easily integrate the service
into enterprise applications in order to extend RBAC policy
enforcement in AWS.

Keywords—security, access control, cloud computing

I. INTRODUCTION

Although cloud computing brings many benefits, security
issues have impacted its wide adoption for enterprises and or-
ganizations. In this paper, we focus on addressing access con-
trol issues in public Infrastructure-as-a-Service (IaaS) cloud.
There are several challenges for controlling resource accesses
in such a cloud environment, compared with the problem in
legacy systems within an organization. First, a multi-tenant
computing environment in clouds demands strong isolation
between virtualized resource usages among multi-tenants on
the same physical resources, while in a legacy enterprise
environment, the single domain owns all computing resources.
Secondly, since cloud computing is a service-oriented comput-
ing model, the access control mechanism of a cloud provider
should be configurable in very flexible way such that it satisfies
many different customers’ organizational security policies,
such as role-based access control for enterprises and multi-
level security for government agencies. Current public cloud
provider lacks such an important flexibility. For example, Ama-
zon Web Services (AWS), the leading IaaS provider, only sup-
ports identity-based authorization for cloud customers with its
Identity and Access Management Services (IAM) [2]. Thirdly
and most importantly, completely delegating access control
to a cloud provider–including policy management, storage,
and security enforcement–requires strong trust relationship and
implementation dependency between a cloud customer and
the cloud provider. With the separation of computing resource
ownership and usage, we believe separating security policies
and their enforcement reduces these dependencies.

In light of service-oriented computing model, we propose a
new cloud service for access control called access control as a
service (ACaaS). The core idea of ACaaS is to outsource access
control policy management and storage to service providers,
which provides value-added functions for organizations with
security expertise. A cloud customer (e.g., an enterprise or its
security administrators) specifies and manages security policies
and configurations with interfaces provided by ACaaS service
providers. These high level security policies are then converted
to low level and enforceable policies for individual cloud
providers. The separation of this service-oriented security
management and customized enforcement in different cloud
providers not only reduces the trust management cost of
cloud providers for enterprise customers, but also offers great
flexibility for cloud customers to develop their own security
policies based on organizational or commercial requirements,
without worrying about their enforcement mechanisms in a
concrete cloud environment. Furthermore, ACaaS enables a
cloud customer to choose different cloud providers for security
reason without a permanent lock-in.

We propose a modular architecture for ACaaS for public
IaaS cloud, where variant security modules can be plugged in
for different cloud customers, e.g., to support role-based access
control (RBAC) policies, multi-level security policies, Chinese
Wall security policy, and so on. Also, our architecture flexibly
supports many public cloud infrastructures with web services
based APIs. As a case study and reference implementation,
we design and implement ACaaSRBAC for AWS, an ACaaS
module that configures RBAC policies and converts to AWS
IAM policies such that the access requests to AWS resources
from a customer’s user (e.g., the employees of an enterprise
that uses AWS as cloud platform) are controlled based on the
enterprise’s security policies. Specifically, in this paper:

• We propose a new modular architecture for access
control called access control as a service (ACaaS)
in cloud computing environments, which configures
and manages multiple access control policy models
for variant cloud customers’ security requirements,
and converts to enforceable security policies in public
cloud providers. That is, ACaaS enables securely and
efficiently outsourcing access control management of
an organization in clouds (Section II);

• We identify the limitations of the existing ac-
cess control mechanism of AWS IAM and design
ACaaSRBAC , a reference ACaaS architecture that
supports RBAC policies to address those limitations
(Section II, III);



Fig. 1: ACaaS vs. security modules in operating system.

• We implement a prototype system, and provide web-
based an administrative tool and web services APIs
for third party applications’ integration (Section IV).

II. ACAAS FOR CLOUDS

A. Overview

Securely maintaining valuable digital assets in clouds is
critical for both cloud service providers and customers. The
diversity of cloud services across a wide range of organi-
zations and domains requires various security requirements.
Accordingly, a comprehensive and adaptive access control
mechanism needs to be in place to support various security
policy models for the diverse security needs. However, current
cloud computing platforms such as AWS, Windows Azure,
Google App Engine, and Eucalyptus all fail to meet such
identified needs. Towards this, we propose the concept of
access control as a service (ACaaS) with the spirit of pluggable
access control modules in modern operating systems. As
shown in Figure 1, we draw an analogy between comput-
ing, storage, network, and other resources provided by IaaS
providers and hardware resources in physical machines such
as CPU, disk, and network stack. Cloud provider offerings can
be mapped to operating system services such as process man-
agement, memory management, scheduling, I/O operations,
and networking. For instance, process management conducts
basic tasks including starting and suspending processes, CPU
allocation, and scheduling for multiple processes. Similarly,
computing services in a cloud handle booting and terminating
virtual machines instances, allocating resources, and schedul-
ing computing tasks and workflows. For security purposes,
authorization modules and policies in traditional operating
systems (e.g., Linux) can be dynamically loaded (e.g., SELinux
modules), and every access to underlying resources from pro-
cesses and applications is then be controlled. Similarly, ACaaS
can load different access control modules and support various
security policy models for different cloud customers, such
as mandatory access control (MAC) [11], the Chinese Wall
security policy (CW) [3], and role based access control [12].
This plug & play fashion enables parallel evolution of cloud
customer’s own policy specifications and a cloud provider’s
security enforcement mechanisms.

B. AWS Access Control Service and Its Limitations

To motivate the design and development of ACaaS, we
analyze the access control mechanism in Amazon AWS cloud
platform - a service called Identity and Access Management

Fig. 2: Example AWS IAM policy.

(IAM) [2] which enables an organization to securely control
users’ access to the AWS services and resources subscribed
by the organization. IAM defines security policies with a set
of pre-defined components which consists of following com-
ponents: Users, Groups, Actions, Objects, Permissions, Con-
straints, User-Group-Assignment (UGA), Permission-User-
Assignment (PUA), and Permission-Group-Assignment (PGA).
Permissions are defined in the form of Actions on Objects
under certain Constraints.

Based on the above-mentioned IAM components, an IAM
policy statement can be formally defined as a 4-tuple P
= (user, permission, constraint, effect),
where effect can be Allow or Deny. An IAM policy
can contain several IAM policy statements. For example,
an IAM policy in JSON format with two policy statements
is shown in Figure 2. The user or group that the policy is
attached to is not explicitly shown in the policy statements,
who can be any user or group within the root AWS account
with ID 123456789012. The root AWS account user can
explicitly assign this policy to his users or groups. This policy
authorizes users to perform the following tasks: (i) Create
and list the access keys for any user in the AWS account,
starting on July 1, 2010; and (ii) Create and delete Amazon
SimpleDB domains in the 123456789012 AWS account for
any region.

AWS IAM enables cloud customers to manage users and
user permissions to secure their resources in clouds. However,
we identify several limitations of IAM for enterprise cloud
customers as follows:

1) IAM directly assigns permissions to users. With
increasing outsourcing computing infrastructures to
IaaS, the number of users and permissions can be
quite dynamic and in a very large scale. The man-
agement cost for the mapping between users and
permissions can be extremely high.

2) IAM supports groups to categorize users and let users
explicitly obtain permissions assigned to groups they
belong to. However, groups are organized in a flat
structure, which cannot reflect the hierarchical struc-
tures of organizations. For example, a global sales
department of a multinational company should have
all the permissions of its regional sales departments.
Besides, if an IAM policy is removed from a group,
the permission associated with the policy is revoked
as well, which is not necessary in many cases.

3) IAM allows to specify static constraints on permis-
sions. However, it lacks a systematic support for
many other important constraints such as separation
of duty (SoD), a well-known principle for preventing



the potential fraud. SoD divides the responsibility
of a critical task into different people. When many
financial and governmental systems are shifting into
cloud platforms, SoD issues become even more criti-
cal. If permissions with conflict-of-interest issues are
assigned to the same user, many valuable assets in
clouds can be jeopardized.

4) Session management is missing in IAM such that
all permissions of users are effective all the times,
which conflicts with the principle of least privilege.
Users should be able to manage their sessions for per-
forming tasks. Besides, without session management,
dynamic SoD cannot be enforced.

5) IAM does not distinguish administrators and regular
users clearly. The root user with the AWS account has
both administrative and regular permissions, which
also conflicts with the principle of least privilege.
Ideally, permissions associated with an AWS account
should be split into multiple units.

AWS recently released a new IAM role feature, which
enables an EC2 instance running with a predefined IAM role
to securely access other AWS service APIs [1]. However, this
feature is still too preliminary and coarse-grained to address
these limitations. First, it only supports assigning IAM roles
to an EC2 instance level but not to user level. Hence, all
applications running in an EC2 instance assume the same set
of permissions. This violates the least privilege principle, since
it is very general that different applications in an EC2 instance
run on behalf of different users to have different permissions.
Second, an IAM role does not support session management
such that an EC2 instance can only run with a single IAM
role. Without re-launching the EC2 instance, it is impossible
to switch between different IAM roles during the runtime.
Furthermore, EC2 role does not support other important RBAC
features such as role hierarchy and delegation. Fundamentally,
we claim that the EC2 role is more similar to the traditional
concept of “group” in access control and there is no RBAC
model formulated in AWS.

III. DESIGN OF ACAASRBAC FOR AWS

In this section, we present the design of ACaaSRBAC ,
a reference architecture of ACaaS that supports RBAC for
Amazon AWS cloud platform. There are several reasons that
we choose to support RBAC for AWS cloud platform. First,
RBAC has been widely adopted in enterprise applications.
When those applications are moving to clouds, RBAC should
be naturally supported in cloud environments. According to a
recent cloud market overview [13], RBAC is one of the key
criteria to evaluate cloud computing solutions. Second, RBAC
is a very generic access control model, and we believe tackling
RBAC in clouds requires to address many challenges that will
be identically addressed for supporting other access control
models with ACaaS.

A. Challenges of Supporting RBAC for AWS

In order to provide RBAC as a service for AWS cloud
platform, there are several critical challenges:

Challenge 1: Efficient role hierarchy management. In cloud
computing environments, due to dynamic business needs and

Fig. 3: ACaaSRBAC system architecture for AWS.

scalable resource provisioning, the number of roles in an
organization could be very large and fluctuated frequently.
Accordingly, role hierarchies in the organization could be
complex and need to be updated. It is crucial to have an
efficient way to manage role hierarchies in terms of both
maintenance and update/change management.

Challenge 2: Session management. Session management
should be supported to track users’ interactions and meet
the least privilege principle. Users should be able to activate
or deactivate their roles for performing certain tasks in their
sessions. With the nature of highly distributed service-oriented
computing infrastructure, ACaaSRBAC has to seamlessly sup-
port session management without compromising the security
property of RBAC.

Challenge 3: SoD support and management of privileged
account. SoD constraints should be specified by administrators
and each cloud should be able to enforce those constraints
for avoiding permission abuse and unexpected fraud. The
super user of an AWS account has all privileges upon cloud
resources, which should be split into different units or roles in
ACaaSRBAC .

Challenge 4: System integration and minimal overhead.
To leverage the pluggable capabilities provided by ACaaS,
ACaaSRBAC services should be easily integrated with cus-
tomers’ applications. Besides, this integration should introduce
acceptable performance and network traffic overheads between
customers’ applications and AWS cloud platform.

B. System Design

Our design of ACaaSRBAC addresses all identified
challenges III-A with a service-oriented RBAC for AWS
cloud resources. Figure 3 shows the system architecture of
ACaaSRBAC . In current AWS platform, enterprise applications
are able to access cloud resources on behalf of enterprise users,
where the AWS IAM enforces security policies defined by
enterprise administrators. ACaaSRBAC introduces RBAC as a
service (RaaS), which is an RBAC module designed based on
NIST RBAC standard [7] and can be hosted by AWS or any
third party service provider. This module supports and enforces
RBAC configurations by leveraging Amazon IAM service for
enterprise administrators. It also provides session capability
for enterprise users, e.g., a user or an application can activate
and deactivate roles within a single session when accessing
resources in AWS 1.

1We note that an RBAC session here is usually different from that in AWS
services, e.g., a DynamoDB session, although they can be co-related in an
implementation.



RaaS provides browser interfaces for enterprise adminis-
trators and users to configure RBAC policies. In our prototype
(cf. Section IV), RBAC policies are implemented as relational
database entries. RaaS also provides web services APIs such
that operations can be integrated into administrative tools or
applications from the enterprise side. The results of these
configurations are IAM policies that are pushed back to AWS,
so that any further access from enterprise applications will
be controlled by these policies. Since IAM does not support
RBAC, RaaS transforms all role-based policies of a user into
AWS permission based policies which can be understandable
and enforceable by IAM. The transformation process is to
generate direct relationships between users and permissions
by removing the role notion between them in the role-based
policies. For an enterprise that already has AWS resources in
active use, RaaS provisions the information of users, groups,
permissions, objects, and actions from AWS via IAM APIs.

RaaS contains eight sub-modules: Organization, User,
Group, Role, Permission, Session, Constraint and Policy, each
of which is exposed as web services. The Organization sub-
module manages (e.g., list, register, and delete) organizations
to support the multi-tenant feature of ACaaSRBAC . The Group
sub-module manages user groups of a single organization for
administrative users, where the user information is provisioned
from the organization’s AWS account. The Permission sub-
module manages the permissions of ACaaSRBAC . There are
two types of permissions: user permissions (P) which are
inherited from existing AWS permissions, and administrative
permissions (AP), which are effective for RaaS only. The
Permission sub-module maintains both P and AP, and manages
their assignment relations with roles. We elaborate the design
of sub-modules in the rest of this section.

1) User and Permission: This sub-module provides man-
agement on regular users (U), administrative users (AU), and
permissions (P), and provides interfaces and APIs to create,
delete, activate, and deactivate U, AU, and P, and manage their
group memberships and role memberships. In RaaS design,
both regular users and permissions are provisioned from AWS
directly, with the credentials of the AWS account, which is
usually the user who can create other users and policies in
IAM. Therefore, RaaS does not store any information for U
and P.

Administrative users can be further categorized into two
types: root administrative users and regular administrative
users. Root administrative users are able to add and delete
regular administrative users, and manage their permissions.
Regular administrative users are able to perform certain admin-
istrative actions (ACTA) on administrative resources (RESA)
based on their administrative role memberships. By default, a
root administrative user is the AWS user that owns the IAM
account. With the interfaces provided by RaaS, this user can
further create regular administrative users and roles, and their
administrative scopes. By controlling the user-role assignments
to regular users and administrative users, RaaS can support
flexible policies such as splitting privileged accounts, and
separation of duty constraints.

2) Role: This sub-module creates and deletes roles (R) and
administrative roles (AR), and most importantly, it manages
role hierarchies (RH). RaaS distinguishes R and AR such that
mandatory security policies can be enforced, e.g., by only

Algorithm 1: ComputeActivatePermissions(u, ra) → P

Input: A user u wants to activate a role ra
Output: A permission set P, of which corresponding IAM policies need to be

enforced
1 P, Pall ← ⊘;
2 ris ← getImmediateSeniorRole(ra);
3 if hasRole(u, ris) = TRUE AND active(u, ris) = TRUE then
4 return ⊘;
5 else
6 ComputeP(u, ra);
7 foreach p ∈ Permissions(ra) do
8 if p /∈ Pall then
9 add p into P;

10 end
11 end
12 return P;
13 end
14 ComputeP(User u, Role ra)
15 begin
16 R ← getSiblingRoles(ra)

∪
getImmediateJuniorRoles(ra);

17 if R = ⊘ then return;
18 else foreach r ∈ R do
19 if active(u, r) = TRUE then
20 foreach p ∈ Permissions(r) do
21 if p /∈ Pall then
22 add p into Pall;
23 end
24 end
25 else
26 ComputeP(u, r);
27 end
28 end
29 end

assigning necessary regular roles to regular users. For least
privilege purposes, RaaS may introduce many primitive regular
roles, each of which is assigned with atomic permissions. This
usually introduces large number of regular roles in a system,
where role hierarchy becomes necessary.

Towards efficient role-related operations, we adopt the
Nested Set Model [9] for role hierarchy in our implementation,
which assigns left and right values to represent a scope of each
role in a role hierarchy. If the scope of a role is inside the scope
of another role, it means the former role is junior to the latter
role. A big advantage of Nested Set Model for managing role
hierarchies is that only one entry for each role needs to be
maintained in the database. This avoids storing a lot of redun-
dant role relationship information to maintain role hierarchies.
It is also easy to update role hierarchies by updating associated
roles’ left and right values. One limitation of our current design
is that, the Nested Set Model only supports to represent limited
role hierarchies in a simple tree structure, i.e., one of two
role hierarchies based on NIST RBAC standard [7]. As our
future work, we would extend our implementation towards
more general role hierarchy management.

3) Session: This module provides session management
including role activation and deactivation for regular users.
Usually, a user can be assigned with several roles at the same
time. In a session, to meet the least privilege principle, only
some of those roles which are needed to perform a certain
task should be activated. After finishing this task, relevant
activated roles can be deactivated. When activating a role,
permissions associated with that role should be effective by
enforcing corresponding Amazon IAM policies such that users
are able to access cloud resources with needed permissions.

An intuitive way for deactivating a role and activating
another role is to remove all permissions of the original role



for the user in IAM, and then create new permissions and
policies, and push all new policies to IAM. This is the approach
we adopt if these two roles have no overlapped permissions.
With the existence of role hierarchy, it may not be necessary to
generate and enforce Amazon IAM policies for all permissions
of the new role since some permissions may have already
been effective, e.g., these two roles have common inherited
permissions from role hierarchy.

To improve the efficiency of role activation and minimize
the communication overheads between RaaS module and AWS
cloud platform, we implement an efficient role activation
algorithm to compute a minimum permission set when ac-
tivating a role, as shown in Algorithm 1. This algorithm
works as follows: if a user u owns an immediate senior and
activated role to role ra which needs to be activated, an
empty permission set is returned and no policy needs to be
generated and enforced by Amazon IAM. Otherwise, For each
sibling role and immediate junior role to role ra, their senior-
most and activated junior roles are identified recursively and a
corresponding permission set Pall is constructed. Then for each
permission associated with the role ra, if it does not belong
to Pall, then it will be added to the returned permission set.
On the other hand, when deactivating roles, the deactivation
should not affect functionalities of other activated roles when
they have overlapped permissions.

Correspondingly, we implement a role deactivation algo-
rithm, as shown in Algorithm 2. The algorithm works as
follows: if any senior role to a role rd which needs to be
deactivated is activated, an empty permission set is returned
and no policy needs to be generated and enforced by Amazon
IAM. Otherwise if role rd does not have any activated sibling
roles, a permission set containing all permissions associated
with the role rd is returned. Otherwise, a permission set Pall

containing all permissions associated with activated sibling
roles of the role rd is constructed. Then for each permission
associated with the role rd, if it does not belong to Pall, it is
added into the returned permission set.

4) Constraint: This sub-module provides constraints man-
agement services including creating, deleting, updating static
constraints as well as separation of duty constraints. Static
constraints are specified on permissions in existing Amazon
IAM constraints format discussed in Section II-B and enforced
by IAM. Only when the static constraints are satisfied, users
are able to perform corresponding permissions. When creating
an SoD constraint, a set of potential conflicting roles and a
cardinality value need to be specified. The cardinality value
is a threshold of the total role occurrence in the potential
conflicting role set. When it is reached, IAM security policy of
the user will be updated and any corresponding request will
be denied. SoD constraints are enforced by Constraint sub-
module itself when administrative users assign users to roles,
or users activate their roles. Those static constraints are then
converted into IAM policies and pushed into AWS.

Dynamic separation of duty (DSoD) constraints are usually
enforced during runtime, e.g., conflicting roles cannot be
activated in a single session. Similar constraints can be defined
and checked by the session module.

5) Policy: This sub-module provides Amazon IAM policy
generation and pushing services to ensure RBAC configura-

Algorithm 2: ComputeDeactivatePermissions(u, rd) → P

Input: A user u wants to deactivate a role rd
Output: A permission set P, of which corresponding IAM policies need to be

enforced
1 P, Pall ← ⊘;
2 Rsenior ← getSeniorRoles(rd);
3 if Rsenior ̸= ⊘ then
4 foreach r ∈ Rsenior do
5 if active(u, r) = TRUE then
6 return ⊘;
7 end
8 end
9 end

10 Rsibling ← getActivatedSiblingRoles(rd);
11 if Rsibling = ⊘ then
12 return Permissions(rd);
13 else
14 foreach r ∈ Rsibling do
15 if active(u, r) = TRUE then
16 foreach p ∈ Permissions(r) do
17 if p /∈ Pall then
18 add p into Pall;
19 end
20 end
21 end
22 end
23 foreach p ∈ Permissions(rd) do
24 if p /∈ Pall then
25 add p into P;
26 end
27 end
28 return P;
29 end

tions of an enterprise can be reflected in AWS cloud platform.
For example, when a user activates or deactivates roles, cor-
responding Amazon IAM policies are generated and pushed
to the Amazon IAM policy engine for the enforcement. More
specifically, for each permission in the permission set com-
puted by Algorithm 1 or Algorithm 2, a corresponding IAM
policy is constructed and sent to IAM for the enforcement. Pol-
icy transformation and deployment are also triggered by other
administration actions that change the regular permissions of
a user.

We note that our policy transformation is both complete
and sound. That is, each state of the RaaS (the ACaaSRBAC

relationships stored in its local database) can be translated to a
set of IAM policies, e.g., each regular user has an IAM policy.
This is due to the fact that both the users and permissions
are provisioned from AWS directly. For each RaaS state, the
net result of its configuration is a set of permissions that are
authorized for a user, after revolving the constraints such as
SoD and DSoD. Similarly, each translation corresponds to a
valid IAM policy since the permissions are defined with valid
resource names and actions defined by AWS.

IV. IMPLEMENTATION

Based on our design, we have implemented a prototype
system to provide RBAC services in AWS cloud platform
through a web browser interface as well as web services. The
core services of the system are implemented in Java based
on AWS SDK 1.3.0 and exposed as SOAP-based web services
using GlassFish Metro 2.2. A web-based management interface
is developed by using JavaServer Pages (JSP) and MySQL
Community Server 5.1. Both administrative users and normal
users can log into the interface with their usernames and
passwords. Administration tools can interact with the system



by calling the SOAP-based web services APIs where the body
of messages are signed with pre-shared secret keys.

All entities of the major components in ACaaSRBAC

are stored in tables of a relational database, which jointly
represents the state of the RaaS system. The name spaces
of permissions, which are built on resources in AWS, are
provisioned through AWS APIs. An administrative operation
results in calling one or more AWS APIs, e.g., to create a user,
a group, a permission, or add or remove an IAM policy in the
root user’s AWS account.

In our future work, we will conduct case studies to illustrate
how services provided by ACaaSRBAC can be utilized by
existing cloud applications, and evaluated our ACaaSRBAC

system in terms metrics such as efficiency and scalability.

V. RELATED WORK

There are several authorization and access control solutions
in cloud computing. Calero et al. [4] propose an authorization
model that supports multi-tenancy, role-based access control,
path-based object hierarchies, and federation. Hu et al. [8]
introduce semantic web technologies to distributed role-based
access control method and propose a new Semantic Access
Control Policy Language (SACPL) for describing access con-
trol policies in cloud computing environments. We note that
these approaches attempt to address specific issues in access
control, but do not consider a comprehensive approach that
supports various policy models and can be embodied as service
modules in clouds.

Another line of research work deal with access con-
trol issues by leveraging cryptographic techniques in cloud
computing environments. Echeverria et al. [5] presented an
effective solution for de-coupling access control from services
that provide content by leveraging attribute based encryption
(ABE). CloudSeal [15] uses proxy re-encryption and broadcast
revocation algorithms for flexible content access control in
cloud. Even though cryptographic approach is effective for
some specific requirements, they have no support for legacy
security policies in enterprises such as role-based access con-
trol.

There are also industrial efforts on building RBAC sup-
port in cloud computing platforms. The latest AWS IAM
enables EC2 instances to run with predefined IAM roles
to securely access AWS service APIs [1]. However, it only
allows assigning IAM roles to EC2 instances not to users.
Hence, all applications running in an EC2 instance assume the
same permission set of the IAM role. XenServer [14] only
provides 6 pre-established roles with capabilities to modify
permissions on them but no functionality to add or delete
roles. OpenStack [10] realizes the role notion by using user
assigned tokens. Eucalyptus [6] integrates existing Microsoft
Active Directory or LDAP systems to capture the role notion
for managing the access over cloud resources. In our analysis,
all of above solutions fail to accommodate core RBAC func-
tions such as role hierarchy, session management, and role-
based administration and delegation; therefore, none of them
provides a comprehensive built-in RBAC model.

VI. CONCLUSION AND FUTURE WORK

We articulate the critical need of a comprehensive and
fine-grained access control mechanism to meet dynamic, con-
figurable, and extensible security requirements in public IaaS
cloud computing environments. To accommodate this need, we
propose a new modular architecture towards access control
as a service (ACaaS) for supporting multiple access control
models. As a reference implementation, we design and imple-
ment ACaaSRBAC , a service architecture that supports con-
figurations of RBAC as a service for Amazon Web Services.
For future work, we would evaluate our system with real-
world datasets. In addition, we would enhance our system
with flexible delegation mechanisms and accommodate revo-
cation requirements, and design a more generic architecture to
support other access control policies such as multi-level and
general mandatory access control policies.

ACKNOWLEDGEMENT

The work of Ruoyu Wu, Gail-Joon Ahn and Hadi Sharifi
was partially supported by the grants from National Science
Foundation and Department of Energy. The work of Haiyong
Xie was supported in part by NSFC Grant No. 61073192,
by 973 Program Grant No. 2011CB302905, by NCET Pro-
gram Grant No. NCET-09-0921, and by USTC Grant No.
WK0110000014.

REFERENCES

[1] Aws document, working with roles, http://docs.amazonwebservices.
com/IAM/latest/UserGuide/WorkingWithRoles.html.

[2] Aws identity and access management, http://docs.amazonwebservices.
com/IAM/latest/UserGuide/Welcome.html.

[3] D. Brewer and M. Nash. The chinese wall security policy. In Security
and Privacy, 1989. Proceedings., 1989 IEEE Symposium on, pages 206–
214. IEEE, 1989.

[4] J. Calero, N. Edwards, J. Kirschnick, L. Wilcock, and M. Wray. Toward
a multi-tenancy authorization system for cloud services. Security &
Privacy, IEEE, 8(6):48–55, 2010.

[5] V. Echeverria, L. Liebrock, and D. Shin. Permission management
system: Permission as a service in cloud computing. In Computer
Software and Applications Conference Workshops (COMPSACW), 2010
IEEE 34th Annual, pages 371–375. IEEE, 2010.

[6] Cloud Computing Software from Eucalyptus — Leader in Cloud
Software, 2012. http://www.eucalyptus.com/.

[7] D. Ferraiolo, R. Sandhu, S. Gavrila, D. Kuhn, and R. Chandramouli.
Proposed nist standard for role-based access control. ACM Transactions
on Information and System Security (TISSEC), 4(3):224–274, 2001.

[8] L. Hu, S. Ying, X. Jia, and K. Zhao. Towards an approach of semantic
access control for cloud computing. Cloud Computing, pages 145–156,
2009.

[9] M. J. Kamfonas. Recursive hierarchies. The Relational Journal, 1992.
[10] OpenStack Compute Administration, 2012.

http://docs.openstack.org/essex/openstack-compute/admin/content/.
[11] R. Sandhu. Lattice-based access control models. Computer, 26(11):9–

19, 1993.
[12] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-based access

control models. Computer, 29(2):38–47, 1996.
[13] J. Staten and L. E. Nelson. Market Overview: Private Cloud Solutions,

Q2 2011. Technical report, Forrester Research, Inc, 2011.
[14] Available Role Based Access Control Permissions for XenServer, 2012.

http://support.citrix.com/article/CTX126441.
[15] H. Xiong, X. Zhang, D. Yao, X. Wu, and Y. Wen. End-to-end content

protection in cloud-based storage and delivery services. In Proc. of ACM
Conference on Data and Application Security and Privacy (CODASPY),
2012.


