
Design and Implementation of Access Control as a Service
for IaaS Cloud

Ruoyu Wu
Arizona State University
Email: ruoyu.wu@asu.edu

Xinwen Zhang
Huawei Research Center

Email: xinwen.zhang@huawei.com

Gail-Joon Ahn
Arizona State University
Email: gahn@asu.edu

Hadi Sharifi
Arizona State University
Email: hsharif1@asu.edu

Haiyong Xie
USTC & Huawei Research Center

Email: haiyong.xie@ustc.edu

ABSTRACT

Organizations and enterprises have been outsourc-
ing their computation, storage, and workflows to
Infrastructure-as-a-Service (IaaS) based cloud plat-
forms. The heterogeneity and high diversity of IaaS
cloud environment demand a comprehensive and fine-
grained access control mechanism, in order to meet
dynamic, extensible, and highly configurable secu-
rity requirements of these cloud consumers. How-
ever, existing security mechanisms provided by IaaS
cloud providers do not satisfy these requirements.
To address such an emergent demand, we propose a
new cloud service called access control as a service
(ACaaS), a service-oriented architecture in cloud to
support multiple access control models, with the
spirit of pluggable access control modules in modern
operating systems. As a proof-of-concept reference
prototype, we design and implement ACaaSRBAC to
provide role-based access control (RBAC) for Ama-
zon Web Services (AWS), where cloud customers can
easily integrate the service into enterprise applica-
tions in order to extend RBAC policy enforcement in
AWS. We describe challenges and lessons in imple-
menting ACaaSRBAC , demonstrate how this service
can be seamlessly integrated with enterprise cloud
applications, and discuss evaluation results.

I INTRODUCTION

Although cloud computing brings many benefits, se-
curity issues have impacted its wide adoption for
enterprises and organizations. In this paper, we
focus on addressing access control issues in public
Infrastructure-as-a-Service (IaaS) cloud. There are
several challenges for controlling resource accesses in
such a cloud environment, compared with the prob-
lem in legacy systems within an organization. First,
a multi-tenant computing environment in clouds de-
mands strong isolation between virtualized resource
usages among multi-tenants on the same physical re-
sources, while in a legacy enterprise environment, the

single domain owns all computing resources. Sec-
ondly, since cloud computing is a service-oriented
computing model, the access control mechanism of a
cloud provider should be configurable in very flexible
way such that it satisfies many different customers’
organizational security policies, such as role-based
access control for enterprises and multi-level secu-
rity for government agencies. Current public cloud
provider lacks such an important flexibility. For ex-
ample, Amazon Web Services (AWS), the leading
IaaS provider, only supports identity-based autho-
rization for cloud customers with its Identity and Ac-
cess Management Services (IAM) [2]. Thirdly, com-
pletely delegating access control to a cloud provider–
including policy management, storage, and security
enforcement–requires strong trust relationship and
implementation dependency between a cloud cus-
tomer and the cloud provider. With the separation of
computing resource ownership and usage, we believe
separating security policies and their enforcement re-
duces these dependencies.

In light of service-oriented computing model, we pro-
pose a new cloud service for access control called ac-
cess control as a service (ACaaS). The core idea of
ACaaS is to outsource access control policy manage-
ment and storage to service providers, which provides
value-added functions for organizations with security
expertise. A cloud customer (e.g., an enterprise or
its security administrators) specifies and manages se-
curity policies and configurations with interfaces pro-
vided by ACaaS service providers. These high level
security policies are then converted to low level and
enforceable policies for individual cloud providers.
The separation of this service-oriented security man-
agement and customized enforcement in different
cloud providers not only reduces the trust manage-
ment cost of cloud providers for enterprise customers,
but also offers great flexibility for cloud customers to
develop their own security policies based on organi-
zational requirements, without worrying about their
enforcement mechanisms in a concrete cloud environ-
ment. Furthermore, ACaaS enables a cloud customer

Page 1 of 16
c⃝ASE 2013

to choose different cloud providers for security reason
without a permanent lock-in.

We propose a modular architecture for ACaaS for
public IaaS cloud, where variant security modules can
be plugged in for different cloud customers, e.g., to
support role-based access control (RBAC) policies,
multi-level security policies, Chinese Wall security
policy, and so on. Also, our architecture flexibly sup-
ports many public cloud infrastructures with web ser-
vices based APIs. As a case study and reference im-
plementation, we design and implement ACaaSRBAC

for AWS, an ACaaS module that configures RBAC
policies and converts to AWS IAM policies such that
the access requests to AWS resources from a cus-
tomer’s user (e.g., the employees of an enterprise that
uses AWS) are controlled based on the enterprise’s se-
curity policies. Specifically, in this paper:

• We propose a new modular architecture for
access control called access control as a ser-
vice (ACaaS) in cloud computing environments,
which configures and manages multiple access
control policy models for variant cloud cus-
tomers’ security requirements, and converts to
enforceable security policies in public cloud
providers. That is, ACaaS enables securely and
efficiently outsourcing access control manage-
ment of an organization in clouds (Section II);

• We identify the limitations of the existing ac-
cess control mechanism of AWS IAM and de-
sign ACaaSRBAC , a reference ACaaS architec-
ture that supports RBAC policies to address
those limitations. We articulate the design
challenges as well as formalize a corresponding
ACaaSRBAC model for AWS (Section II, III,
and IV);

• We implement a prototype system, and provide
web-based administrative tool and web services
APIs for third party applications’ integration.
We demonstrate the practicality, efficiency, and
scalability of our system through a case study
and performance evaluation (Section V).

II ACaaS FOR CLOUDS

In this section, we first present two motivating sce-
narios. We then discuss the overview of ACaaS for
cloud computing followed by its motivations for AWS
customers.

1 MOTIVATING SCENARIOS

IT sandbox in clouds IT sandbox is an isolated
computing environment which can be used for soft-
ware development, security testing, pre-production
testbeds, training and IT labs, among others. In
many organizations, IT sandbox environments are
provisioned for dynamic workloads but not well com-
patible with capital intensive in-house data center re-
sources. Therefore, cloud computing environments
have been considered for addressing such a limita-
tion. Various types of sandboxes can be created to
meet different project needs in software development
life cycle, such as development sandbox, integra-
tion sandbox, demo sandbox, testing sandbox, and
production sandbox. Those sandboxes are dynami-
cally created and terminated using scalable cloud re-
sources. For instance, a development sandbox is cre-
ated with pre-configured tools (e.g., IDEs, SSH, and
SVN) and it consumes cloud services (e.g., EC2, S3,
and RDS) for computing and storage. There are var-
ious functional roles in each project such as project
manager, developer, tester, and security administra-
tor. Users with different roles have different access
privileges on sandbox resources. In such a dynamic
environment, it is critical to ensure that cloud re-
sources associated with a certain sandbox can be ac-
cessed only by authorized users with a low adminis-
trative cost.

Government cloud platform According to a re-
cent study by KPMG International [1], 28 % of overall
IT expenditures in government agencies would be in
clouds by the end of 2012. US NIST has designed its
cloud computing program to support accelerated US
government adoption. Along with this broad shift,
security concerns are the most significant barriers to
the adoption of cloud computing by government sec-
tors. Many government agencies must comply with
regulatory statutes, such as the Health Insurance
Portability and Accountability Act (HIPAA) [10],
the Sarbanes-Oxley Act of 2002 (SOX) [20], and
the Federal Information Security Management Act
(FISMA) [9] in US. Security and regulatory compli-
ance needs vary in terms of different levels of govern-
ment sectors such as federal, state, and local govern-
ments and different administrative dimensions such
as academia, civil, and military. Therefore, diverse
security requirements should be accommodated in
the government cloud platform, while a single cloud
provider usually lacks the capability to support all of
these requirements.

Page 2 of 16
c⃝ASE 2013

Figure 1: ACaaS vs. security modules in operating system.

2 OVERVIEW

Securely maintaining valuable digital assets in clouds
is critical for both cloud service providers and cus-
tomers. The diversity of cloud services across a wide
range of organizations and domains requires various
security requirements. Accordingly, a comprehensive
and adaptive access control mechanism needs to be
in place to support various security policy models for
the diverse security needs. However, current cloud
computing platforms such as AWS, Windows Azure,
Google App Engine, and Eucalyptus all fail to meet
such identified needs. Towards this, we propose the
concept of access control as a service (ACaaS) with
the spirit of pluggable access control modules in mod-
ern operating systems. As shown in Figure 1, we
draw an analogy between computing, storage, net-
work, and other resources provided by IaaS providers
and hardware resources in physical machines such as
CPU, disk, and network stack. Cloud provider of-
ferings can be mapped to operating system services
such as process management, memory management,
scheduling, I/O operations, and networking. For in-
stance, process management conducts basic tasks in-
cluding starting and suspending processes, CPU allo-
cation, and scheduling for multiple processes. Sim-
ilarly, computing services in a cloud handle boot-
ing and terminating virtual machines instances, al-
locating resources, and scheduling computing tasks
and workflows. For security purposes, authorization
modules and policies in traditional operating sys-
tems (e.g., Linux) can be dynamically loaded (e.g.,
SELinux modules), and every access to underlying
resources from processes and applications is then be
controlled. Similarly, ACaaS can load different access
control modules and support various security policy

models for different cloud customers, such as manda-
tory access control (MAC) [15], the Chinese Wall se-
curity policy (CW) [3], and role based access con-
trol [17]. This plug & play fashion enables paral-
lel evolution of cloud customer’s own policy specifi-
cations and a cloud provider’s security enforcement
mechanisms.

Figure 2: Security model of AWS IAM.

3 AWS ACCESS CONTROL SERVICE
AND ITS LIMITATIONS

To motivate the design and development of ACaaS,
we analyze the access control mechanism in Amazon
AWS cloud platform. AWS is a leading cloud
platform with a suite of IaaS services, such as elastic
compute cloud (EC2), simple storage service (S3) and
elastic block store (EBS), SQL and NoSQL database
(SimpleDB and DynamoDB), simple workflow service
(SWF), and content distribution services (Cloud-
Front). Among various services AWS provides, we
particularly analyze its access control service called
Identity and Access Management (IAM) [2] which
enables an organization to securely control users’
access to the AWS services and resources subscribed

Page 3 of 16
c⃝ASE 2013

by the organization. IAM defines security policies
with a set of pre-defined components. Figure 2 shows
an abstract representation of IAM which consists
of following components: Users, Groups, Actions,
Objects, Permissions, Constraints, User-Group-
Assignment (UGA), Permission-User-Assignment
(PUA), and Permission-Group-Assignment (PGA).
Permissions are defined in the form of Actions
on Objects under certain Constraints. Note that
since some AWS action APIs are not necessarily
bounded with objects such as CreateKeyPair, which
is an action API of EC2 service to create key pair
for instances, permissions can also contain only
actions in that case. Objects are identified using
Amazon resource name (ARN). Constraints are
imposed on permissions in the form of key-value
pairs. Each key-value pair can be one of following
types including String, Numeric, Date and Time,
Boolean, and IP address. For example, the state-
ment ‘‘DateLessThan":{‘‘aws:CurrentTime":
‘‘2012-06-01T00:00:00Z"} uses the Date and

Time type DateLessThan constraint with the
aws:CurrentTime key to specify that the request
must be received before June 1, 2012. Permissions
can be directly assigned to users or groups. Users
explicitly own permissions assigned to groups they
belong to.

Figure 3: Example AWS IAM policy.

Based on the above-mentioned model components,
an IAM policy statement can be formally defined
as a 4-tuple P = (user, permission, constraint,

effect), where effect can be Allow or Deny. An
IAM policy can contain several IAM policy state-
ments. For example, an IAM policy in JSON format
with two policy statements is shown in Figure 3. The
user or group that the policy is attached to is not ex-
plicitly shown in the policy statements, who can be
any user or group within the root AWS account with
ID 123456789012. The root AWS account user can
explicitly assign this policy to his users or groups.
This policy authorizes users to perform the following
tasks: (i) Create and list the access keys for any user
in the AWS account, starting on July 1, 2010; and

(ii) Create and delete Amazon SimpleDB domains in
the 123456789012 AWS account for any region.

AWS IAM enables cloud customers to manage users
and user permissions to secure their resources in
clouds. However, we identify several limitations of
IAM for enterprise cloud customers as follows:

1. IAM directly assigns permissions to users.
With increasing outsourcing computing infras-
tructures to IaaS, the number of users and per-
missions can be quite dynamic and in a very
large scale. The management cost for the map-
ping between users and permissions can be ex-
tremely high.

2. IAM supports groups to categorize users and let
users explicitly obtain permissions assigned to
groups they belong to. However, groups are or-
ganized in a flat structure, which cannot reflect
the hierarchical structures of organizations. For
example, a global sales department of a multi-
national company should have all the permis-
sions of its regional sales departments. Besides,
if an IAM policy is removed from a group, the
permission associated with the policy is revoked
as well, which is not necessary in many cases.

3. IAM allows to specify static constraints on per-
missions. However, it lacks a systematic sup-
port for many other important constraints such
as separation of duty (SoD), a well-known prin-
ciple for preventing the potential fraud. SoD
divides the responsibility of a critical task into
different people. When many financial and gov-
ernmental systems are shifting into cloud plat-
forms, SoD issues become even more critical. If
permissions with conflict-of-interest issues are
assigned to the same user, many valuable as-
sets in clouds can be jeopardized.

4. Session management is missing in IAM such
that all permissions of users are effective all the
times, which conflicts with the principle of least
privilege. Users should be able to manage their
sessions for performing tasks. Besides, without
session management, dynamic SoD cannot be
enforced.

5. IAM does not distinguish administrators and
regular users clearly. The root user with the
AWS account has both administrative and reg-
ular permissions, which also conflicts with the
principle of least privilege. Ideally, permissions
associated with an AWS account should be split
into multiple units.

Page 4 of 16
c⃝ASE 2013

AWS recently released a new IAM role feature,
which enables an EC2 instance running with a prede-
fined IAM role to securely access other AWS service
APIs [5]. However, this feature is still too prelimi-
nary and coarse-grained to address these limitations.
First, it only supports assigning IAM roles to an EC2
instance level but not to user level. Hence, all appli-
cations running in an EC2 instance assume the same
set of permissions. This violates the least privilege
principle, since it is very general that different ap-
plications in an EC2 instance run on behalf of dif-
ferent users to have different permissions. Second,
an IAM role does not support session management
such that an EC2 instance can only run with a single
IAM role. Without re-launching the EC2 instance, it
is impossible to switch between different IAM roles
during the runtime. Furthermore, EC2 role does not
support other important RBAC features such as role
hierarchy and delegation. Fundamentally, we claim
that the EC2 role is more similar to the traditional
concept of “group” in access control and there is no
RBAC model formulated in AWS.

III OVERVIEW OF ACaaSRBAC FOR AWS

In this section, we present the overview of
ACaaSRBAC , a reference architecture of ACaaS that
supports RBAC for Amazon AWS cloud platform.
We first give an introduction of RBAC, then ar-
ticulate challenges on supporting RBAC for AWS
cloud platform, followed by presenting a formal
ACaaSRBAC model for AWS. There are several rea-
sons that we choose to support RBAC for AWS cloud
platform. First, RBAC has been widely adopted in
enterprise applications. When those applications are
moving to clouds, RBAC should be naturally sup-
ported in cloud environments. According to a recent
cloud market overview [21], RBAC is one of the key
criteria to evaluate cloud computing solutions. Sec-
ond, RBAC is a very generic access control model,
and we believe tackling RBAC in clouds requires to
address many challenges that will be identically ad-
dressed for supporting other access control models
with ACaaS. Third, prior research and implementa-
tions [8, 18] have demonstrated that RBAC can ad-
dress all the identified limitations of AWS IAM ser-
vice.

1 ROLE-BASED ACCESS CONTROL

RBAC has been a widely accepted as an alterna-
tive to traditional mandatory access control (MAC)

and discretionary access control (DAC) [18], and is
an enabling technology for managing and enforcing
security in large-scale and enterprise-wide systems.
Among many RBAC models proposed in the past
decades, NIST has defined a standard RBAC model,
which has been widely accepted and implemented.
The base model presents the central notion that per-
missions are associated with roles, users are assigned
to appropriate roles, and users acquire permissions
by being members of roles. Users can be easily reas-
signed to from one role to another as needed. Sim-
ilarly, roles can have new permissions granted and
existing permissions revoked as an organization ac-
quires new applications and systems. Users establish
sessions during which they may activate a subset of
the roles they belong to. Each session maps one user
to possibly many roles and each user can establish
zero or multiple sessions. NIST RBAC also intro-
duces role hierarchies which are natural means for
structuring roles to reflect an organization’s lines of
authority and responsibility. Senior roles explicitly
inherit permissions of their junior roles. Constraints
are defined for laying out higher level organizational
policies such as SoD.

2 CHALLENGES OF SUPPORTING
RBAC FOR AWS

In order to provide RBAC as a service for AWS cloud
platform, there are several critical challenges:

Challenge 1: Efficient role hierarchy management.
In cloud computing environments, due to dynamic
business needs and scalable resource provisioning, the
number of roles in an organization could be very large
and fluctuated frequently. Accordingly, role hierar-
chies in the organization could be complex and need
to be updated. It is crucial to have an efficient way to
manage role hierarchies in terms of both maintenance
and update/change management.

Challenge 2: Session management. Session man-
agement should be supported to track users’ inter-
actions and meet the least privilege principle. Users
should be able to activate or deactivate their roles
for performing certain tasks in their sessions. With
the nature of highly distributed service-oriented com-
puting infrastructure, ACaaSRBAC has to seamlessly
support session management without compromising
the security property of RBAC.

Challenge 3: SoD support and management of priv-
ileged account. SoD constraints should be speci-
fied by administrators and each cloud should be able

Page 5 of 16
c⃝ASE 2013

to enforce those constraints for avoiding permission
abuse and unexpected fraud. The super user of an
AWS account has all privileges upon cloud resources,
which should be split into different units or roles in
ACaaSRBAC .

Challenge 4: System integration and minimal over-
head. To leverage the pluggable capabilities provided
by ACaaS, ACaaSRBAC services should be easily in-
tegrated with customers’ applications. Besides, this
integration should introduce acceptable performance
and network traffic overheads between customers’ ap-
plications and AWS cloud platform.

Our design of ACaaSRBAC addresses all these chal-
lenges with a service-oriented RBAC for AWS cloud
resources, which is detailedly explained in next sec-
tion. In the rest of this section we define a formal
model for ACaaSRBAC .

3 ACaaSRBAC MODEL FOR AWS

Beyond the existing RBAC96 [17] and NIST RBAC
models [8], ACaaSRBAC integrates the group concept
of IAM into RBAC. Furthermore, ACaaSRBAC intro-
duces the concept of administrative scope towards a
very comprehensive administration model. In this
section, we formally define the core model and ad-
ministration model, while postpone their security as-
sessment and safety analysis [13] to our future work.

3.1 CORE MODEL

Similar to NIST RBAC standard, our core
ACaaSRBAC distinguishes regular users and admin-
istrative users. Beyond this, our model introduces
the concept of group so that we can manage user sets
and relatively static permission sets to capture the
user group in AWS IAM. Group can be a good coun-
terpart to role for better managing user sets and rel-
atively static permission sets. Correspondingly, our
administrative model supports managing user groups.

Definition 1. [Core Model] We define the compo-
nents of ACaaSRBAC core model as follows:

• U, AU, G, R, AR, P, AP, S are sets of reg-
ular users, administrative users, groups, roles,
administrative roles, user permissions, adminis-
trative permissions, and sessions, respectively.

• UR ⊆ U × R is many-to-many regular user to
role assignment relation.

• PR ⊆ P × R is many-to-many user permission

to role assignment relation.

• RH ⊆ R × R is a partially ordered role hierar-
chy. ri ≥ rj means a role ri is senior to a role
rj and inherits the permissions of rj .

• UG ⊆ U × G is many-to-many regular user to
group assignment relation.

• PG ⊆ P × G is many-to-many user permission
to group assignment relation. Users explicitly
own permissions assigned to groups they belong
to and those permissions are activated by de-
fault.

• AUAR ⊆ AU × AR is many-to-many admin-
istrative user to administrative role assignment
relation.

• APAR ⊆ AP × AR is many-to-many admin-
istrative permission to administrative role as-
signment relation.

• Sessions: U → 2S is a function that maps a
regular user to a set of sessions.

• Roles: S → 2R is a function that maps a session
to a set of roles.

• Permissions: S → 2P is a function that derived
from PR ∪ PG mapping each session to a set
of user permissions.

3.2 ROLE-BASED ADMINISTRATION
MODEL

Based on the components in the core model, we define
a role-based administration model for ACaaSRBAC ,
which consists of four components: administra-
tive resources, administrative actions, administrative
scopes, and administrative policies.

Definition 2. [Administrative Resource] The set
of administrative resources RESA ⊆ U ∪ G ∪ P ∪ R.

Definition 3. [Administrative Action] The set of
administrative actions ACTA = {Create, Delete, As-
sign, Revoke}, where action Create and Delete cor-
respond to administrative resources including U, R,
G and P, and action Assign and Revoke correspond
to relations among UR, UG, PR, and RH.

An administrative action can be performed on ad-
ministrative resources by an administrative user. For
instances, Create(u) creates a regular user u ∈ U ,
and Assign(u, r) assigns a regular user u ∈ U to a
role r ∈ R, which further introduces a regular user to
role assignment relation, i.e., (u, r) ∈ UR.

Extended from existing Range notion in the AR-
BAC97 model [16], which is only defined on roles

Page 6 of 16
c⃝ASE 2013

Figure 4: ACaaSRBAC for AWS.

to control user-role assignment, we introduce the
concept of administrative scope to accommodate the
user and group concepts in current AWS IAM pol-
icy. Specifically, an administrative scope is a prop-
erty of an administrative role, which can be specified
on particular users, groups, permissions, and roles.
An administrative user can perform administrative
actions on administrative resources within the scopes
associated with her administrative roles.

Definition 4. [Administrative Scope] SCO ⊆ 2U

× 2G × 2P × 2R is the set of administrative scopes
SCO in ACaaSRBAC .

• Get U: SCO → 2U is a function that maps an
administrative scope to a set of regular users
specified in that scope.

• Get G: SCO → 2G is a function that maps an
administrative scope to a set of groups specified
in that scope.

• Get P: SCO → 2P is a function that maps
an administrative scope to a set of permissions
specified in that scope.

• Get R: SCO → 2R is a function that maps an
administrative scope to a set of roles specified
in that scope.

• Get RESA: SCO → 2RESA is a function
that maps an administrative scope to a set
of administrative resource; Get RESA(sco) =
Get U(sco) ∪ Get G(sco) ∪ Get P(sco) ∪
Get R(sco).

• Scopes: AR → 2SCO is a function that maps
an administrative role to a set of administra-
tive scopes.

• Scope U: AR → 2U is a function that maps

an administrative role to a set of regular users;
Scope U(ar) =

∪
sco∈Scopes(ar) Get U(sco).

• Scope G: AR → 2G is a function that maps
an administrative role to a set of groups;
Scope G(ar) =

∪
sco∈Scopes(ar) Get G(sco).

• Scope P: AR → 2P is a function that maps an
administrative role to a set of user permissions;
Scope P(ar) =

∪
sco∈Scopes(ar) Get P(sco).

• Scope R: AR → 2R is a function that maps
an administrative role to a set of roles;
Scope R(ar) =

∪
sco∈Scopes(ar) {r | ∀r‘ ∈

Get R(sco), r‘ ≥ r}.

Table 1 shows administrative actions of an adminis-
trative user of a role ar ∈ AR, and its pre- and post-
conditions. To authorize administrative actions, we
introduce a formal definition of administrative poli-
cies as follows:

Definition 5. [Administrative Policy] An admin-
istrative policy is a 4-tuple pa = <ar, act, resa, sco>,
where ar ∈ AR, act ∈ ACTA, resa ⊆ Get RESA(sco),
and sco ∈ Scopes(ar), which authorizes an adminis-
trative user with the administrative role ar to per-
form the administrative action act on a set of ad-
ministrative resources resa within the administrative
scope sco corresponding to ar.

IV SYSTEM DESIGN

1 OVERVIEW

Figure 5 shows the system architecture of
ACaaSRBAC . In current AWS platform, enterprise

Page 7 of 16
c⃝ASE 2013

Table 1: Administrative Actions

Action Preconditions Postconditions
Create(u) N/A u ∈ U, u ∈ Scope U(ar)
Delete(u) u ∈ Scope U(ar) u /∈ U, u /∈ Scope U(ar)
Create(g) N/A g ∈ G, g ∈ Scope G(ar)
Delete(g) g ∈ Scope G(ar) g /∈ G, g /∈ Scope G(ar)
Create(p) N/A p ∈ P, p ∈ Scope P(ar)
Delete(p) p ∈ Scope P(ar) p /∈ P, p /∈ Scope P(ar)
Create(r) N/A r ∈ R, r ∈ Scope R(ar)
Delete(r) r ∈ Scope R(ar) r /∈ R, r /∈ Scope R(ar)

Assign(ri, rj) ri, rj ∈ Scope R(ar) (ri, rj) ∈ RH
Revoke(ri, rj) ri, rj ∈ Scope R(ar) (ri, rj) /∈ RH
Assign(u, g) u ∈ Scope U(ar), g ∈ Scope G(ar) (u, g) ∈ UG
Revoke(u, g) u ∈ Scope U(ar), g ∈ Scope G(ar) (u, g) /∈ UG
Assign(u, r) u ∈ Scope U(ar), r ∈ Scope R(ar) (u, r) ∈ UR
Revoke(u, r) u ∈ Scope U(ar), r ∈ Scope R(ar) (u, r) /∈ UR
Assign(p, r) p ∈ Scope P(ar), r ∈ Scope R(ar) (p, r) ∈ PR
Revoke(p, r) p ∈ Scope P(ar), r ∈ Scope R(ar) (p, r) /∈ PR
Assign(p, g) p ∈ Scope P(ar), g ∈ Scope G(ar) (p, g) ∈ PG
Revoke(p, g) p ∈ Scope P(ar), g ∈ Scope G(ar) (p, g) /∈ PG

applications are able to access cloud resources on
behalf of enterprise users, where the AWS IAM en-
forces security policies defined by enterprise adminis-
trators. ACaaSRBAC introduces RBAC as a service
(RaaS), which is an RBAC module designed based
on NIST RBAC standard [8] and can be hosted by
AWS or any third party service provider. This mod-
ule supports and enforces RBAC configurations by
leveraging Amazon IAM service for enterprise ad-
ministrators. It also provides session capability for
enterprise users, e.g., a user or an application can
activate and deactivate roles within a single session
when accessing resources in AWS 1.

Figure 5: ACaaSRBAC system architecture for AWS.

RaaS provides browser interfaces for enterprise ad-
ministrators and users to configure RBAC policies.
In our prototype (cf. Section V), RBAC policies are

implemented as a relational database which stores the
relationships according to our ACaaSRBAC model in-
troduced in Section III. RaaS also provides web ser-
vices APIs such that operations can be integrated
into administrative tools or applications from the en-
terprise side. The results of these configurations are
IAM policies that are pushed back to AWS, so that
any further access from enterprise applications will be
controlled by these policies. Since IAM does not sup-
port RBAC, RaaS transforms all role-based policies
of a user into AWS permission based policies which
can be understandable and enforceable by IAM. The
transformation process is to generate direct relation-
ships between users and permissions by removing the
role notion between them in the role-based policies.
For an enterprise that already has AWS resources in
active use, RaaS provisions the information of users,
groups, permissions, objects, and actions from AWS
via IAM APIs.

According to ACaaSRBAC model, RaaS contains
eight sub-modules: Organization, User, Group, Role,
Permission, Session, Constraint and Policy, each of
which is exposed as web services. The Organiza-
tion sub-module manages (e.g., list, register, and
delete) organizations to support the multi-tenant fea-
ture of ACaaSRBAC . The Group sub-module man-
ages user groups of a single organization for admin-
istrative users, where the user information is provi-

1We note that an RBAC session here is usually different from that in AWS services, e.g., a DynamoDB session, although
they can be co-related in an implementation.

Page 8 of 16
c⃝ASE 2013

sioned from the organization’s AWS account. The
Permission sub-module manages the permissions of
ACaaSRBAC . There are two types of permissions:
user permissions (P) which are inherited from exist-
ing AWS permissions, and administrative permissions
(AP), which are effective for RaaS only. The Per-
mission sub-module maintains both P and AP, and
manages their assignment relations with roles. We
elaborate the design of sub-modules in the rest of
this section.

2 USER AND PERMISSION

This sub-module provides management on regular
users (U), administrative users (AU), and permis-
sions (P), and provides interfaces and APIs to cre-
ate, delete, activate, and deactivate U, AU, and P,
and manage their group memberships and role mem-
berships. In RaaS design, both regular users and per-
missions are provisioned from AWS directly, with the
credentials of the AWS account, which is usually the
user who can create other users and policies in IAM.
Therefore, RaaS does not store any information for
U and P.

Administrative users can be further categorized into
two types: root administrative users and regular ad-
ministrative users. Root administrative users are
able to add and delete regular administrative users,
and manage their permissions. Regular administra-
tive users are able to perform certain administrative
actions (ACTA) on administrative resources (RESA)
based on their administrative role memberships. By
default, a root administrative user is the AWS user
that owns the IAM account. With the interfaces pro-
vided by RaaS, this user can further create regular
administrative users and roles, and their administra-
tive scopes. By controlling the user-role assignments
to regular users and administrative users, RaaS can
support flexible policies such as splitting privileged
accounts, and separation of duty constraints.

3 ROLE

This sub-module creates and deletes roles (R) and
administrative roles (AR), and most importantly, it
manages role hierarchies (RH). RaaS distinguishes R
and AR such that mandatory security policies can
be enforced, e.g., by only assigning necessary regular
roles to regular users. For least privilege purposes,
RaaS may introduce many primitive regular roles,
each of which is assigned with atomic permissions.
This usually introduces large number of regular roles

in a system, where role hierarchy becomes necessary.

Towards efficient role-related operations, we adopt
the Nested Set Model [12] for role hierarchy in our
implementation, which assigns left and right values
to represent a scope of each role in a role hierarchy.
If the scope of a role is inside the scope of another
role, it means the former role is junior to the latter
role. Figure 6(a) shows an example of role hierarchy,
where left and right values are assigned to each role
in the role hierarchy as well as the Nested Set Model
representation of the role hierarchy. A big advantage
of Nested Set Model for managing role hierarchies is
that only one entry for each role needs to be main-
tained in the database. This avoids storing a lot of
redundant role relationship information to maintain
role hierarchies. It is also easy to update role hierar-
chies by updating associated roles’ left and right val-
ues. One limitation of our current design is that, the
Nested Set Model only supports to represent limited
role hierarchies in a simple tree structure, i.e., one
of two role hierarchies based on NIST RBAC stan-
dard [8]. As our future work, we would extend our
implementation towards more general role hierarchy
management.

4 SESSION

This module provides session management includ-
ing role activation and deactivation for regular users.
Usually, a user can be assigned with several roles at
the same time. In a session, to meet the least privilege
principle, only some of those roles which are needed
to perform a certain task should be activated. After
finishing this task, relevant activated roles can be de-
activated. When activating a role, permissions asso-
ciated with that role should be effective by enforcing
corresponding Amazon IAM policies such that users
are able to access cloud resources with needed per-
missions.

An intuitive way for deactivating a role and activat-
ing another role is to remove all permissions of the
original role for the user in IAM, and then create
new permissions and policies, and push all new poli-
cies to IAM. This is the approach we adopt if these
two roles have no overlapped permissions. With the
existence of role hierarchy, it may not be necessary
to generate and enforce Amazon IAM policies for all
permissions of the new role since some permissions
may have already been effective, e.g., these two roles
have common inherited permissions from role hierar-
chy. For an example shown in Figure 6(b), suppose

Page 9 of 16
c⃝ASE 2013

(a) Role Hierarchy in Nested Set Model. (b) Role Activation and Deactivation

Figure 6: Role hierarchy and usage in ACaaSRBAC system implementation.

only role r2 and r4 are activated and role r1 needs to
be activated. In this case, it is necessary to generate
and enforce Amazon IAM policies only for permission
p2, p4, and p6, since r1 has already been effective due
to the activated role r2 and r4.

To improve the efficiency of role activation and min-
imize the communication overheads between RaaS
module and AWS cloud platform, we implement an
efficient role activation algorithm to compute a mini-
mum permission set when activating a role, as shown
in Algorithm 1. This algorithm works as follows: if a
user u owns an immediate senior and activated role to
role ra which needs to be activated, an empty permis-
sion set is returned and no policy needs to be gener-
ated and enforced by Amazon IAM. Otherwise, For
each sibling role and immediate junior role to role
ra, their senior-most and activated junior roles are
identified recursively and a corresponding permission
set Pall is constructed. Then for each permission as-
sociated with the role ra, if it does not belong to
Pall, then it will be added to the returned permis-
sion set. On the other hand, when deactivating roles,
the deactivation should not affect functionalities of
other activated roles when they have overlapped per-
missions. For example, suppose only role r2 and r4
in Figure 6(b) are activated and role r2 needs to be
deactivated. To avoid affecting the functionality of
role r4, only permission p8 and p10 should be inef-
fective in AWS by enforcing corresponding Amazon
IAM policies. Permission p9 remains effective since
role r4 owns permission p9.

Correspondingly, we implement a role deactivation
algorithm, as shown in Algorithm 2. The algorithm
works as follows: if any senior role to a role rd which

needs to be deactivated is activated, an empty per-
mission set is returned and no policy needs to be gen-
erated and enforced by Amazon IAM. Otherwise if
role rd does not have any activated sibling roles, a
permission set containing all permissions associated
with the role rd is returned. Otherwise, a permission
set Pall containing all permissions associated with
activated sibling roles of the role rd is constructed.
Then for each permission associated with the role rd,
if it does not belong to Pall, it is added into the re-
turned permission set.

5 CONSTRAINT

This sub-module provides constraints management
services including creating, deleting, updating static
constraints as well as separation of duty constraints.
Static constraints are specified on permissions in ex-
isting Amazon IAM constraints format discussed in
Section 3 and enforced by IAM. Only when the static
constraints are satisfied, users are able to perform
corresponding permissions. When creating an SoD
constraint, a set of potential conflicting roles and a
cardinality value need to be specified. The cardinal-
ity value is a threshold of the total role occurrence in
the potential conflicting role set. When it is reached,
IAM security policy of the user will be updated and
any corresponding request will be denied. SoD con-
straints are enforced by Constraint sub-module itself
when administrative users assign users to roles, or
users activate their roles. Those static constraints
are then converted into IAM policies and pushed into
AWS.

Dynamic separation of duty (DSoD) constraints are

Page 10 of 16
c⃝ASE 2013

Algorithm 1: ComputeActivatePermissions(u, ra) → P

Input: A user u wants to activate a role ra
Output: A permission set P, of which corresponding IAM

policies need to be enforced
1 P ← ⊘;
2 Pall ← ⊘;
3 ris ← getImmediateSeniorRole(ra);
4 if hasRole(u, ris) = TRUE AND active(u, ris) = TRUE

then
5 return ⊘;
6 else
7 ComputeP(u, ra);
8 foreach p ∈ Permissions(ra) do
9 if p /∈ Pall then

10 add p into P ;
11 end

12 end
13 return P ;

14 end
15 ComputeP(User u, Role ra)
16 begin
17 R ← getSiblingRoles(ra)

∪
getImmediateJuniorRoles(ra);

18 if R = ⊘ then return;
19 else foreach r ∈ R do
20 if active(u, r) = TRUE then
21 foreach p ∈ Permissions(r) do
22 if p /∈ Pall then
23 add p into Pall;
24 end

25 end

26 else
27 ComputeP(u, r);
28 end

29 end

30 end

Algorithm 2: ComputeDeactivatePermissions(u, rd) →

P

Input: A user u wants to deactivate a role rd
Output: A permission set P, of which corresponding IAM

policies need to be enforced
1 P ← ⊘;
2 Pall ← ⊘;
3 Rsenior ← getSeniorRoles(rd);
4 if Rsenior ̸= ⊘ then
5 foreach r ∈ Rsenior do
6 if active(u, r) = TRUE then
7 return ⊘;
8 end

9 end

10 end
11 Rsibling ← getActivatedSiblingRoles(rd);
12 if Rsibling = ⊘ then
13 return Permissions(rd);
14 else
15 foreach r ∈ Rsibling do
16 if active(u, r) = TRUE then
17 foreach p ∈ Permissions(r) do
18 if p /∈ Pall then
19 add p into Pall;
20 end

21 end

22 end

23 end
24 foreach p ∈ Permissions(rd) do
25 if p /∈ Pall then
26 add p into P ;
27 end

28 end
29 return P ;

30 end

usually enforced during runtime, e.g., conflicting roles
cannot be activated in a single session. Similar con-
straints can be defined and checked by the session
module.

6 POLICY

This sub-module provides Amazon IAM policy gener-
ation and pushing services to ensure RBAC configu-
rations of an enterprise can be reflected in AWS cloud
platform. For example, when a user activates or deac-
tivates roles, corresponding Amazon IAM policies are
generated and pushed to the Amazon IAM policy en-
gine for the enforcement. More specifically, for each
permission in the permission set computed by Algo-
rithm 1 or Algorithm 2, a corresponding IAM policy
is constructed and sent to IAM for the enforcement.
Policy transformation and deployment are also trig-
gered by other administration actions that change the
regular permissions of a user.

We note that our policy transformation is both com-
plete and sound. That is, each state of the RaaS
(the ACaaSRBAC relationships stored in its local
database) can be translated to a set of IAM policies,

e.g., each regular user has an IAM policy. This is
due to the fact that both the users and permissions
are provisioned from AWS directly. For each RaaS
state, the net result of its configuration is a set of
permissions that are authorized for a user, after re-
volving the constraints such as SoD and DSoD. Sim-
ilarly, each translation corresponds to a valid IAM
policy since the permissions are defined with valid
resource names and actions defined by AWS.

7 CONCURRENCY CONTROL

As shown in Figure 5, for performance and compati-
bility considerations, a AWS user or application can
access AWS resources by directly calling AWS inter-
faces or APIs, while RaaS pushes IAM policies with
another channel. Therefore, there are chances that
a user’s session of using AWS resources is ongoing,
while any of required permissions is revoked, i.e., due
to some administrative operations in RaaS by an ad-
ministrator. This concurrency control issue has been
discussed in [26] in context of XACML, where a lock
manager is proposed to revoke active permission or
delay the administrative operation. In our design, we
take the conservative approach of delaying the revok-

Page 11 of 16
c⃝ASE 2013

ing operation, since our RaaS cannot actively revoke
an ongoing access session in AWS, due to the fact
that it runs out of AWS platform.

V IMPLEMENTATION & EVALUATION

Based on our design, we have implemented a proto-
type system to provide RBAC services in AWS cloud
platform through a web browser interface as well as
web services. The core services of the system are
implemented in Java based on AWS SDK 1.3.0 and
exposed as SOAP-based web services using GlassFish
Metro 2.2. A web-based management interface is de-
veloped by using JavaServer Pages (JSP) and MySQL
Community Server 5.1. Both administrative users
and normal users can log into the interface with their
usernames and passwords. Administration tools can
interact with the system by calling the SOAP-based
web services APIs where the body of messages are
signed with pre-shared secret keys.

All entities of the major components in ACaaSRBAC

model (cf. Section 3) are stored in tables of a rela-
tional database, which jointly represents the state of
the RaaS system. The name spaces of permissions,
which are built on resources in AWS, are provisioned
through AWS APIs. An administrative operation re-
sults in calling one or more AWS APIs, e.g., to create
a user, a group, a permission, or add or remove an
IAM policy in the root user’s AWS account.

We evaluated our ACaaSRBAC system in terms of
two metrics: efficiency and scalability. Specifically,
a scenario-based case study is presented to illustrate
how services provided by ACaaSRBAC can be uti-
lized by existing cloud applications. We then show
the performance overheads and network traffic over-
heads measured on role activation and deactivation
services.

1 SCENARIO DESCRIPTION

IT sandboxes are isolated computing environments
which can be used for software development and test.
Consider a company called VirtualSoft which devel-
ops software systems using IT sandboxes and adopts
RBAC for managing the access to its sandboxes’ re-
sources. Due to increasing customers’ needs and cost
efficiency, VirtualSoft decides to migrate its sandbox
environments from its on-premise data center to AWS
cloud platform. However, AWS cloud platform does
not support RBAC for its authorization mechanism.
To bridge this gap, VirtualSoft leverages services pro-

vided by ACaaSRBAC system for RBAC enforcement
on AWS cloud platform. Consider two ongoing col-
laborative projects – Project 1 and Project 2, using
two development sandbox environments – DSE1 and
DSE2, respectively. These two sandboxes are built on
two Amazon EC2 M1 large instances CI1 and CI2 for
computing and two Amazon RDS instances SI1 and
SI2 for database services, respectively. They share
another Amazon M1 medium instance CI3 which runs
Perforce for source code version control, and an Ama-
zon S3 bucket B1 for storing collaborative documents
and slides. The role hierarchies of both projects are
shown in Figure 7: Project 1 has four roles of PL1,
DEV1, QA1, and SE1, and Project 2 has two roles of
PL2 and DEV2. Each role is associated with certain
permissions for accessing various sandbox resources
built on AWS cloud. For instance, developers work-
ing on Project 1 are assigned to the role Dev1, which
enables them to access any resource under DSE1 con-
sisting of CI1, SI1, CI3, and B1. Similarly, Project
2 developers who are assigned to the role Dev2 are
able to access any resource under DSE2 consisting
of CI2, SI2, CI3, and B1. Each permission is fur-
ther corresponding to an IAM policy generated by
the ACaaSRBAC Policy module (cf. Section 6). Tak-
ing an example shown in Figure 7, two IAM policies
Policy 1 and Policy 2 are respectively in correspon-
dence with two permissions p1 and p2 of the role
Dev1. Policy 1 is to enable the access to the Amazon
S3 bucket B1, and Policy 2 is to enable the access
the Amazon EC2 instance CI1. Those two policies
are pushed to Amazon IAM service for enforcement
when a user activates the role Dev1.

2 EXPERIMENT ENVIRONMENT AND
RESULTS

In our experiment, ACaaSRBAC is hosted in a desk-
top machine with Intel Core2 Duo CPU 3.00 GHz
4 GB RAM running Ubuntu 11.10. Assume Alice
is a member of the role Dev1 working on Project 1
and Bob is a member of the role Dev2 working on
Project 2. In order to accomplish a collaborative task
across projects, Alice needs to be assigned to the role
Dev2 to access the resources of DSE2. We measure
the Dev2 role activation for Bob when he logs in the
sandbox system and the Dev2 role activation for Alice
when she is assigned to the role Dev2 in terms of per-
formance overhead (T) and network traffic overhead
(NT).

Table 2 shows corresponding average results based
on 10 measurements. Performance overhead can be

Page 12 of 16
c⃝ASE 2013

Figure 7: A Sandbox scenario for software test in AWS with ACaaSRBAC .

divided into two sub parts: policy generation (PG)
time and policy transmission and enforcement (PTE)
time. The PTE introduced by AWS platform takes
up above 95% of total overhead. Note that the same
Dev2 role is activated for Alice and Bob. However,
both performance overhead and network traffic over-
head for Alice are much less than that for Bob. This
is because the role activation service efficiently iden-
tifies the permission overlap between the role Dev1

and Dev2 – both have the permissions to access CI3
and B1 – to minimize the communication cost be-
tween ACaaSRBAC and Amazon IAM as discussed in
Section IV.

To evaluate the scalability of ACaaSRBAC , we create
multiple threads and measure average performance
overhead and total network traffic overhead while in-
creasing the numbers of simultaneous role activation
and deactivation requests from different users. Some
of the users are the members of role Dev1 and some
are members of role Dev2. Figures 8(a) and 8(b)
respectively show the average performance overhead
per request including PG overhead and PTE over-
head, as the number of role activation and deactiva-
tion requests increases from 10 to 50. We observe
that the average performance overhead for a role ac-
tivation request increases smoothly as the number
of simultaneous requests is increased. The PG over-
head takes up a smaller portion of a role activation
request overhead than the PTE overhead does, un-
til the number of role activation requests reaches to
50. The PTE overhead contributes the most por-
tion of the role deactivation request overhead. Fig-
ure 8(c) shows the total network traffic overhead as
the number of role activation and deactivation re-
quests increases from 10 to 50. The network traffic

overhead for role activation requests is slightly larger
than that of role deactivation requests as the number
of requests increases. When the number of role acti-
vation requests is 10, the total network traffic over-
head is around 150 kb. When the number of role
activation requests increases to 50, the total network
traffic overhead is just above 700 kb, which we believe
is still manageable. To further enhance the efficiency
and scalability of our implementation, our role activa-
tion service is extended to support activating multiple
roles as a batch operation. Figure 8(d) shows the av-
erage performance overhead on activating one, two,
and three roles per request while increasing the num-
ber of role activation requests simultaneously from
10 to 50. The average performance overhead on ac-
tivating two roles as a batch operation per request is
lower than two times of that on activating one role
per request at the same number of requests. Similar
findings can be observed when comparing the average
performance overhead of three roles batch activation
requests with that of one role.

VI RELATED WORK

There are several authorization and access control so-
lutions in cloud computing. Calero et al. [4] propose
an authorization model that supports multi-tenancy,
role-based access control, path-based object hierar-
chies, and federation. Hu et al. [11] introduce se-
mantic web technologies to distributed role-based ac-
cess control method and propose a new Semantic Ac-
cess Control Policy Language (SACPL) for describ-
ing access control policies in cloud computing envi-
ronments. Access Control Oriented Ontology Sys-
tem (ACOOS) is designed as the semantic basis of

Page 13 of 16
c⃝ASE 2013

(a) Activation Time (b) Deactivation Time

(c) Network Traffic (d) Batch Activation Time

Figure 8: Overheads of activating and deactivating roles.

SACPL. In [19], Santos et al. propose the design of
a trusted cloud computing platform (TCCP). TCCP
provides the abstraction of a closed-box execution en-
vironment for a customer’s VM, guaranteeing that
no cloud provider’s privileged administrator can in-
spect or tamper with its content. However, this ap-
proach requires the correctness of large and com-
plex codebases, such as hypervisor, device drivers,
or entire kernels. Cloud computing may face a sce-
nario that an attacker shares the same physical re-
sources with other tenants. Sharing resources could
lead to information leakage due to known or unknown
covert channels. Zhu et al. [28] design CloudPolice,
a distributed access control mechanism implemented
in hypervisors, to meet the access control needs of

multi-tenancy, network-independence, and scalability
in cloud computing environment. Their access con-
trol solution is designed from network perspective,
which may fail to prevent diverse unauthorized ac-
cesses in applications. We note that these approaches
attempt to address specific issues in access control,
but do not consider a comprehensive approach that
supports various policy models and can be embodied
as service modules in clouds.

Another line of research work deal with access con-
trol issues by leveraging cryptographic techniques in
cloud computing environments. Echeverria et al. [6]
presented an effective solution for de-coupling ac-
cess control from services that provide content by

Page 14 of 16
c⃝ASE 2013

Table 2: Access Control Overheads

T(ms) PG(ms) PTE(ms) NT(kb)
Dev2 Activation for Bob 1898.9 91.6 1807.2 15.95
Dev2 Activation for Alice 1200.2 47.4 1152.4 14.652

leveraging attribute based encryption (ABE). Yu et
al. [27] combine attribute-based encryption, proxy re-
encryption, and lazy re-encryption to delegate most
of the computation tasks involved in user revocation
to untrusted cloud service providers. Tassanaviboon
and Gong [22] propose a new authorization scheme
that combats untrusted cloud servers by adopting
CP-ABE, ElGamal like masks, proxy re-encryption,
and lazy re-encryption to achieve user-centric and
end-to-end security. Wan et al. [23] introduce the
HASBE scheme which incorporates a hierarchical
structure of system users by applying a delegation
algorithm to ASBE. CloudSeal [25] uses proxy re-
encryption and broadcast revocation algorithms for
flexible content access control in cloud. Even though
cryptographic approach is effective for some specific
requirements, they have no support for legacy secu-
rity policies in enterprises such as role-based access
control.

There are also industrial efforts on building RBAC
support in cloud computing platforms. The latest
AWS IAM enables EC2 instances to run with pre-
defined IAM roles to securely access AWS service
APIs [5]. However, it only allows assigning IAM
roles to EC2 instances not to users. Hence, all ap-
plications running in an EC2 instance assume the
same permission set of the IAM role. XenServer [24]
only provides 6 pre-established roles with capabilities
to modify permissions on them but no functionality
to add or delete roles. OpenStack [14] realizes the
role notion by using user assigned tokens. Eucalyp-
tus [7] integrates existing Microsoft Active Directory
or LDAP systems to capture the role notion for man-
aging the access over cloud resources. In our analysis,
all of above solutions fail to accommodate core RBAC
functions such as role hierarchy, session management,
and role-based administration and delegation; there-
fore, none of them provides a comprehensive built-in
RBAC model.

VII CONCLUSION AND FUTURE WORK

We articulate the critical need of a comprehensive and
fine-grained access control mechanism to meet dy-
namic, configurable, and extensible security require-
ments in public IaaS cloud computing environments.

To accommodate this need, we propose a new mod-
ular architecture towards access control as a service
(ACaaS) for supporting multiple access control mod-
els. As a reference implementation, we design and im-
plement ACaaSRBAC , a service architecture that sup-
ports configurations of RBAC as a service for Ama-
zon Web Services. Our case study and system per-
formance evaluation demonstrate the practicality and
efficiency of our approach. For future work, we would
evaluate our system with real-world datasets. In ad-
dition, we would enhance our system with flexible
delegation mechanisms and accommodate revocation
requirements, and design a more generic architecture
to support other access control policies such as multi-
level and general mandatory access control policies.

ACKNOWLEDGEMENT

The work of Ruoyu Wu, Gail-Joon Ahn and Hadi
Sharifi was partially supported by the grants from
National Science Foundation and Department of En-
ergy. The work of Haiyong Xie was supported in
part by NSFC Grant No. 61073192, by 973 Pro-
gram Grant No. 2011CB302905, by NCET Program
Grant No. NCET-09-0921, and by USTC Grant No.
WK0110000014.

References

[1] Exploring the Cloud: A Global Study of Gov-
ernments’ Adoption of Cloud. Technical report,
KPMG International Cooperative, 2012.

[2] AWS Identity and Access Management (IAM).
http://docs.amazonwebservices.com/IAM/
latest/UserGuide.

[3] D. Brewer and M. Nash. The chinese wall se-
curity policy. In Security and Privacy, 1989.
Proceedings., 1989 IEEE Symposium on, pages
206–214. IEEE, 1989.

[4] J. Calero, N. Edwards, J. Kirschnick,
L. Wilcock, and M. Wray. Toward a multi-
tenancy authorization system for cloud services.
Security & Privacy, IEEE, 8(6):48–55, 2010.

Page 15 of 16
c⃝ASE 2013

[5] AWS Document, Working with Roles.
http://docs.aws.amazon.com/IAM/latest/
UserGuide/WorkingWithRoles.html.

[6] V. Echeverria, L. Liebrock, and D. Shin. Per-
mission management system: Permission as a
service in cloud computing. In Computer Soft-
ware and Applications Conference Workshops
(COMPSACW), 2010 IEEE 34th Annual, pages
371–375. IEEE, 2010.

[7] Cloud Computing Software from Eucalyp-
tus — Leader in Cloud Software, 2012.
http://www.eucalyptus.com/.

[8] D. Ferraiolo, R. Sandhu, S. Gavrila, D. Kuhn,
and R. Chandramouli. Proposed nist standard
for role-based access control. ACM Transactions
on Information and System Security (TISSEC),
4(3):224–274, 2001.

[9] Federal Information Security
Management Act (FISMA).
http://csrc.nist.gov/drivers/documents/FISMA-
final.pdf.

[10] U.S. Department of Health and Human
Services. The Health Insurance Portabil-
ity and Accountability Act (HIPAA), 2011.
http://www.hhs.gov/ocr/privacy/.

[11] L. Hu, S. Ying, X. Jia, and K. Zhao. Towards
an approach of semantic access control for cloud
computing. Cloud Computing, pages 145–156,
2009.

[12] M. J. Kamfonas. Recursive hierarchies. The Re-
lational Journal, 1992.

[13] N. Li and M. Tripunitara. Security analysis in
role-based access control. ACM Transactions
on Information and System Security (TISSEC),
9(4):391–420, 2006.

[14] OpenStack Compute Administration, 2012.
http://docs.openstack.org/essex/openstack-
compute/admin/content/.

[15] R. Sandhu. Lattice-based access control models.
Computer, 26(11):9–19, 1993.

[16] R. Sandhu, V. Bhamidipati, and Q. Munawer.
The arbac97 model for role-based administration
of roles. ACM Transactions on Information and
System Security (TISSEC), 2(1):105–135, 1999.

[17] R. Sandhu, E. Coyne, H. Feinstein, and
C. Youman. Role-based access control models.
Computer, 29(2):38–47, 1996.

[18] R. Sandhu and P. Samarati. Access control:
principle and practice. Communications Mag-
azine, IEEE, 32(9):40–48, 1994.

[19] N. Santos, K. Gummadi, and R. Rodrigues. To-
wards trusted cloud computing. In Proceedings
of the 2009 conference on Hot topics in cloud
computing, page 3. USENIX Association, 2009.

[20] The Sarbanes-Oxley Act of 2002(SOX).
http://sec.gov/about/laws/soa2002.pdf.

[21] J. Staten and L. E. Nelson. Market Overview:
Private Cloud Solutions, Q2 2011. Technical re-
port, Forrester Research, Inc, 2011.

[22] A. Tassanaviboon and G. Gong. Oauth and abe
based authorization in semi-trusted cloud com-
puting: aauth. In Proceedings of the second in-
ternational workshop on Data intensive comput-
ing in the clouds, pages 41–50. ACM, 2011.

[23] Z. Wan, J. Liu, and R. Deng. Hasbe: A hier-
archical attribute-based solution for flexible and
scalable access control in cloud computing. In-
formation Forensics and Security, IEEE Trans-
actions on, (99):1–1, 2011.

[24] Available Role Based Access Con-
trol Permissions for XenServer, 2012.
http://support.citrix.com/article/CTX126441.

[25] H. Xiong, X. Zhang, D. Yao, X. Wu, and Y. Wen.
End-to-end content protection in cloud-based
storage and delivery services. In Proc. of ACM
Conference on Data and Application Security
and Privacy (CODASPY), 2012.

[26] M. Xu, D. Wijesekera, and X. Zhang. Runtime
administration of rbac profile for xacml. IEEE
Transactions on Services Computing (TSC),
(4):286–299, 2011.

[27] S. Yu, C. Wang, K. Ren, and W. Lou. Achiev-
ing secure, scalable, and fine-grained data access
control in cloud computing. In INFOCOM, 2010
Proceedings IEEE, pages 1–9. IEEE, 2010.

[28] Y. Zhu, H. Hu, G. Ahn, D. Huang, and S. Wang.
Towards temporal access control in cloud com-
puting. In INFOCOM, IEEE, 2012.

Page 16 of 16
c⃝ASE 2013

