
An Attribute-Based Access Matrix Model

Xinwen Zhang
Lab for Information Security Technology

George Mason University
xzhang6@gmu.edu

Yingjiu Li
School of Information Systems

Singapore Management University
yjli@smu.edu.sg

Divya Nalla
School of Information Systems

Singapore Management University
divyanalla@smu.edu.sg

ABSTRACT
In traditional access control models like MAC, DAC, and RBAC,
authorization decisions are determined according to identities of
subjects and objects, which are authenticated by a system com-
pletely. Modern access control practices, such as DRM, trust man-
agement, and usage control, require flexible authorization policies.
In such systems, a subject may be only partially authenticated ac-
cording to one or more attributes. In this paper we propose an
attribute-based access matrix model, named ABAM, which extends
the access matrix model. We show that ABAM enhances the ex-
pressive power of the access matrix model by supporting attribute-
based authorizations. Specifically, ABAM is comprehensive enough
to encompass traditional access control models as well as some
usage control concepts and specifications. On the other side, ex-
pressive power and safety are two fundamental but conflictive ob-
jectives in an access control model. We study the safety property
of ABAM and conclude that the safety problem is decidable for a
restricted case where attribute relationships allow no cycles. The
restricted case is shown to be reasonable enough to model practical
systems.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Access con-
trols; K.6.5 [Management of Computing and Information Sys-
tems]: Security and Protection—Unauthorized access

General Terms
Security

Keywords
access control, access matrix model, safety analysis, decidability

1. INTRODUCTION
Protection systems aim at protecting various resources from dam-

age or unauthorized access, and allowing multiple users to share the
same resources. A model should be defined in such a way that it

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’05March 13-17, 2005, Santa Fe, New Mexico, USA
Copyright 2005 ACM 1-58113-964-0/05/0003 ...$5.00.

is capable of expressing practical systems, most of which are dy-
namic. In a dynamic system, the state is changed to a new state
by some external actions, or operations from subjects inside the
system (including the system administrator). For an access control
system, a state is specified by a set of subjects, objects, and access
control configurations which determine the authorization relation
for subjects on objects. Traditionally, an state change can be hap-
pened by an administrative operation. Modern access control sys-
tems are more dynamic that an access operation of a subject can
change the system state.

Access control matrix is a simple but useful model first formal-
ized by Harrison, Russo, and Ullman (HRU model) [2]. In HRU,
an object is represented by a column and a subject is represented
by a row and a column. A right in a cell specifies that the subject of
the row has the right on the object of the column. An access control
matrix is specified by a set of subjects, a set of objects, and a fixed
set of commands. A command takes a set of object parameters as
input and updates the matrix by adding or removing right(s) in a
cell, or creating or destroying an object based on checking pres-
ence of rights in a number of cells. A system state changes through
execution of commands. The strong feature of the HRU model is
its expressive power. It could model most of the protection systems
in use at that time when it was proposed and many years thereafter.
However, the safety of the HRU model is undecidable in general.
The safety problem is the one to determine whether or not a given
subject can eventually obtain an access privilege to a given object;
if there is an algorithm that is able to correctly decide this, then the
safety problem is said to be decidable.

In this paper we propose ABAM, an attribute-based access ma-
trix model, by combining the simple access matrix model, as well
as attributes-based authorization which is motivated by recently
presented access control systems such as DRM and trust manage-
ment. In such systems, an authorization decision is determined
by predicates over subject or object attributes. For example, a
web user (subject) can download a music file (object) only when
his/her credit (attribute) is more than a constant value. We show
that ABAM has more expressive power than HRU, and its safety is
decidable with some reasonable restrictions.

The rest of the paper is organized as follows. Section 2 presents
some background and related work. Section 3 gives a formalized
specification of ABAM model. In Section 4, we study the safety
problem of ABAM model. Section 5 summarizes this paper.

2. BACKGROUND AND RELATED WORK

2.1 Expressive Power and Safety Analysis
Since the proposal of HRU, a number of protection models were

developed to provide stronger safety. Lipton and Snyder [4] intro-

duced the take-grant model with linear time algorithms for safety.
It was deliberately designed to be of limited expressive power, so
that it would not exhibit the undecidable safety of HRU. Sandhu’s
schematic protection model (SPM) [6] was developed to fill the gap
in expressive power between take-grant and HRU, while sustaining
the efficient safety analysis. Sandhu also proposed a typed access
matrix (TAM) model [7] which has stronger safety properties and
broad expressive power. The concept of strong typing is introduced
in HRU to achieve stronger security. To study the safety properties
of TAM, the monotonic case of TAM was considered. Monotonic
TAM (MTAM) consists of only the monotonic primitive operations
(the remove and destroy operations are not present). MTAM is an
acyclic MTAM when it is assumed that an object cannot create an-
other object of the same type, and that there are only a finite number
of generations (since there are finite number of types in the model).
The safety of MTAM is undecidable in general, but is decidable
(NP-hard) in the acyclic case. Specifically, a simplified version
of acyclic MTAM (acyclic case of ternary MTAM) is defined, for
which, the safety has polynomial complexity. The TAM has a va-
riety of decidable safety cases, but most of which are limited to
monotonic systems.

Safety problem has been proven to be decidable mostly for strongly
constrained systems (like monotonic systems). Recently, the dy-
namic typed access matrix model (DTAM) was proposed [8] which
allows the type of an object in TAM to change dynamically. It has
been proved that the safety problem is decidable for non-monotonic
protection systems in DTAM. To show this, a type-relationship
(TR) graph is introduced; the safety problem for non-monotonic
systems becomes decidable if the TR-graphs of the systems have no
cycle with respect to parent-child relationship between objects. We
follow the same approach to study the safety problem in ABAM.

2.2 Attribute-based Authorization
Many attribute-based authorization models have been proposed

recently. Al-Kahtani and Sandhu [1] proposed an attribute-based
user-role assignment model for RBAC. Traditionally a user is man-
ually assigned to appropriate roles by a security administrator. RB-
RBAC (Rule-Based RBAC) provides the mechanism to dynami-
cally assign users to roles based on a finite set of authorization
rules which are defined on user attributes. Li et al. [3] presented a
role-based trust management (RT) as attribute-based authorization
framework. The authorization decisions are based on chains of dig-
itally signed attribute credentials through which credential issuers
assert their judgments about the attributes of entities, such as users
and organizations.

In our work, ABAM applies the simple structure of HRU model,
and extends the primitive operations and commands for attribute
update. HRU has been studied well in the literature and widely used
in existing systems. We show that ABAM can express traditional
access control models, as well as many modern applications.

2.3 Usage Control
The specification of the usage control model (UCONABC) pro-

posed by Park and Sandhu [5] consists of a family of models built
around the decision factors authorizations (A), obligations (B), and
conditions (C). The decision factors are based on the access rights,
and the attributes of the subjects and objects involved. Authoriza-
tions evaluate subject attributes, object attributes, and requested
rights together with a set of authorization rules for usage deci-
sion. Obligations are functional predicates that verify mandatory
requirements a subject has to perform before or during a usage ex-
ercise. Conditions are environmental or system oriented decision
factors. Evaluation of conditions cannot update any subject or ob-

ject attributes. The conditions are system dependent values which
need to be updated by the system. The ABAM model proposed
in this paper captures the features of attribute-based authorization
and mutability specified in UCON. The difference between ABAM
and UCON is that in ABAM, multiple subjects and objects along
with their attributes are considered in the decision process, while
for UCON, a policy refers to a specific pair of (subject, object).
More specifically, in theUCONABC model, the usage decision
(to allow subjects to use certain objects) is made based on an indi-
vidual pair of subject and object; whereas in our model, multiple
conditions are checked involving multiple subjects and objects to
perform certain usage decisions.

3. A FORMAL MODEL OF ABAM
ABAM is defined in terms of access control matrix and com-

mands following the traditions of defining HRU, TAM and other ac-
cess control models. Subjects and attributes, objects and attributes,
access rights, access matrix, primitive operations and commands
are the basic components constituting the new model.

3.1 Subjects, Objects, and Access Rights

DEFINITION 1. All the entities to be protected in the system
(passive entities) are called objects. The set of all active entities
(for example processes and users) that can invoke some access re-
quests or execute some permissions on an object are called sub-
jects.

A subject can be accessed by another subject. For example, a
process can be initiated or killed by another process. Hence sub-
jects can also be considered as objects. Following the general con-
cepts in traditional access control models, we consider the set of
subjects in ABAM to be a subset of the set of objects. The ob-
jects that are not subjects are pure objects. Sometimes we refer to a
subject or an object as an entity when the distinction is immaterial.

We define an access matrix (defined later) with columns repre-
senting the subjects and objects in the system, and rows represent-
ing the set of all subjects. Each cell in the access matrix represents
the rights of the corresponding subject over the corresponding ob-
ject.

Each object in ABAM is specified by a unique identity recog-
nized by the system. Note that the identity here is not the “identity”
in traditional access control models which is totally authenticated
by the system, but a simple name or ID assigned by the system
when an object is created, and cannot be changed after the creation.

DEFINITION 2. Access rights are the kind of access that the
subjects can execute on objects (e.g., read, write, execute). LetR
represent a finite set of access rights.

3.2 Attributes and Attribute Tuples

DEFINITION 3. Each entity has a set of attributes. Each at-
tribute is a variable of a specific data type, which is dependent on
what the attribute is, and determines a domain from which a a value
can be assigned to the attribute.

DEFINITION 4. For entityo, ATT (o) is the set of attribute val-
ues which is represented by a tuple of values of each of the entity’s
attributes, called theattribute value tupleor simply theattribute
tuple.

For example, an administrator in an organization has an adminis-
trative role, while a normal user does not have this attribute. With-
out loss of generality, we assume that each entity has the same set

of attributes, which is the maximum set in the system. For an at-
tribute that an entity does not have, the value isnull in the attribute
tuple.

An attribute of an entity is denoted asent.att whereent is the
entity name (i.e., the entity’s identity) andatt is the attribute name.
Hereafter, we assume that an entity name without any attribute
specified denotes its identity.

The attribute value tuple of an entity specifies its state in the
system. Changing the attribute value(s) of an entity changes its
attribute value tuple. For example, consider an objecto with at-
tributes(a1, a2, . . . , an), wherea1, a2, . . . , an takes values from
domainsV1, V2, . . . , Vn respectively. In a particular state of the
system, the object has the attribute value tupleATT (o) = (a1 =
v1, a2 = v2, . . . , an = vn), where each ofvi ∈ Vi for 1 ≤
i ≤ n. Updating an attribute ofai from valuevi to v′i means that
the attribute tuple changes fromATT (o) to ATT (o)′ = (a1 =
v1, a2 = v2, . . . , ai = v′i, . . . , an = vn), wherev′i ∈ Vi, and
v′i 6= vi.

3.3 Attribute Predicates
A predicate is a boolean expression built from attributes and con-

stants with appropriate operation and relation symbols. We can
distinguish different types of predicates in ABAM, such as unary
predicates and binary predicates. A unary predicate is built from
one attribute variable and constants, e.g.,Alice.credit ≥ $100.00,
file1.classification = ‘supersecure′. A binary predicate is
built from two different attribute variables, e.g.,dominate(Alice.
cleareance, file1.classification), Alice.credit ≥ ebook.value,
(Alice, r) ∈ file1.acl, wherefile1.acl is objectfile1’s access
control list. Note that the two attributes in a binary predicate can be
from a single entity, or two different entities. In real systems and
applications, we can define more general predicates built on any
number of subject attributes and/or object attributes. This signifi-
cantly improves the flexibility and expressive power of ABAM.

3.4 Access Matrix and Protection State

DEFINITION 5. An access matrixis a matrix with a row for
each subject with its attribute tuple, and a column for each object
with its attribute tuple.

The set of all subjects along with their attributes are used to rep-
resent the rows, and the set of all subjects and objects with their
attributes represent the columns. An element in the cell[s, o], rep-
resenting the rows and columno, stores the set of all access rights
thats can exercise overo.

Figure 1 shows an access matrix for two subjectsS = s1, s2 and
two objectsO = o1, o2. Each row is represented by a subject and
its attributes, and each column by an object with its attributes.

 s1: ATT(s1) s2: ATT(s2) o1: ATT(o1) o2: ATT(o2)

 {parent} {read, write} s1: ATT(s1)
s2: ATT(s2) {read}

Figure 1: An access matrix

The access matrix in HRU is a special case of the access matrix
defined here, where there is no attribute tuple associated with a row
or column.

DEFINITION 6. A protection state, or simplystateof an ABAM
system is specified by a set of subjectsS, a set of objectO, a set

of subject attribute tuplesATT = (ATT (s1), ATT (s2), . . .),
where eachATT (si) is the attribute tuple of subjectsi ∈ S, a
set of object attribute tuplesATT = (ATT (o1), ATT (o2), . . .),
where eachATT (oi) is the attribute tuple of objectoi ∈ O, and
an access matrixM with a row for every subject with its attribute
tuple, and a column for every object with its attribute tuple.

3.5 Primitive Operations
A primitive operation is an operation that can change the state of

a system. The basic primitive operations can be defined as follows.

1. Enterr into [s, o]: Enters generic rightr into cell[s, o] in the
access matrix.

2. Deleter from [s, o]: Deletes generic rightr from cell [s, o]
in the access matrix.

3. Create subjects with attribute tupleATT (s): Creates a new
subjects with attribute tuple. An identity attribute with a
unique value is created at the same time and assigned to the
subject by the system.

4. Destroy subjects: Removes subjects as well as its attribute
tuple from the system.

5. Create objecto with attribute tupleATT (o): Creates a new
objecto with attribute tupleATT (o). An identity attribute
with a unique value is created at the same time and assigned
to the object by the system.

6. Destroy objecto: Removes objecto as well as its attribute
tuple from the system.

7. Update attributeo.ai: ATT (o) → ATT (o)′: Updates the
attribute tupleATT (o) = (v1, v2, . . . , vi, . . . , vn) toATT (o)′

= (v1, v2, . . . , v
′
i, . . . , vn) for an objecto, wherevi, v

′
i ∈

Vai , andv′i 6= vi, Vai is the value domain ofo.ai .

From above definition, we can see that ABAM has a new prim-
itive operation (the update attribute operation) to change a system
state. This enhances the expressive power of ABAM beyond HRU
model as shown later.

3.6 Commands
A command in ABAM consists of condition and a sequence of

primitive operations. The condition in a command of HRU model
searches for existing rights in the access matrix, whereas in ABAM,
along with the right existing, some predicates on attributes of the
subjects and objects are also evaluated.

A command in ABAM is defined as follows.

Commandα(X1 : ATT (X1), X2 : ATT (X2), . . . , Xk :
ATT (Xk))
if r1 ∈ [Xs1, Xo1] ∧ r2 ∈ [Xs2, Xo2] ∧ . . . rm ∈
[Xsm, Xom]∧
p1 ∧ p2 ∧ . . . pn

then
op1; op2; . . . ; opn

end

Here,α is the name of the command,X1, X2, . . . , Xk are sub-
ject or object parameters;r1, r2, . . . , rm are generic rights;s1,
s2, . . . , sm ando1, o2, . . . , om are integers between 1 andk;
p1, p2, . . . , pn are predicates built over attribute tupleATT (X1),
ATT (X2), . . . , ATT (Xk). op1, op2, . . . , opn are primitive oper-
ations; Theif part of the command is called the condition ofα.

If a command has no condition, it is an unconditional command,
otherwise, it is a conditional command. A command is invoked by
substituting actual subjects and objects. The operations are exe-
cuted sequentially if the condition is true.

It should be noted that a disjunctive form of conditions can also
be easily modeled by having one command for each component
condition. Also, negated predicates are not required explicitly, since
we always can define a normal predicate for a negated one.

3.7 ABAM Model
After introducing the basic components, we complete this sec-

tion with the definition of ABAM authorization scheme and sys-
tem.

DEFINITION 7. An ABAMauthorization scheme, or simplyscheme,
consists of a finite set of generic rightsR, a finite set of attribute
predicatesP , and a finite set of commandsC. An ABAMsystem
is specified by an ABAM authorization scheme and an initial state
(an initial set of subjects and attribute tuples, objects and attribute
tuples, and an initial access matrix).

In an ABAM system, commands can only be executed serially.
And each execution is atomic, that is, either the condition of a com-
mand is satisfied and all primitive operations are performed suc-
cessfully, or no change happens on the current state.

3.8 Expressive Power of ABAM
With the extension beyond HRU model, ABAM has the expres-

sive power not only for traditional models, but also for modern
access control systems. One can easily use the new model to ex-
press the HRU model (without considering the attributes) and TAM
model (allowing no update on the attributes where the attributes can
be considered as types). One can also use ABAM to simulate basic
usage control models which allow the update of attributes before or
after the access. Due to space limit, we will not elaborate on this.

4. SAFETY ANALYSIS OF ABAM
We describe a restricted case of ABAM model and study its

safety properties in this section. It is shown that the safety of this
restricted case is decidable. The expressiveness of this case is also
discussed. For safety analysis we assume that (i)every entity in the
system has a finite number of attributes, and (ii)each attribute takes
values from a finite value domain.

From the above assumptions it can be said that the set of all pos-
sible attribute tuples, which all of the subjects and objects in the
system can assume, is finite. LetA denote this set of all attribute
tuples. In a particular state, each entity in the system assumes its
attribute tuple fromA. Any change of a single attribute tuple (i.e.,
replacing a tuple with another tuple inA) moves system states from
one to another. It is reasonable enough to model many practical sys-
tems with these assumptions. The expressiveness of the restricted
model is explained later in this section.

4.1 Acyclic ABAM Scheme
We first define an attribute-relation graph, based on which we

define acyclic ABAM scheme.

DEFINITION 8. For a commandα (X1 : ATT (X1), X2 :
ATT (X2), . . . , Xk : ATT (Xk)), if its body has an operation
“create subject/objectxi with attribute tupleATT (xi)”, where
1 ≤ i ≤ k, then

• ATT (xi) is a creating-child attribute tuplein α;

• If ATT (xj) (1 ≤ j ≤ k) is not a creating-child attribute
tuple inα, thenATT (xj) is acreating-parent attribute tuple
in α;

• if everyATT (xj) (1 ≤ j ≤ k) is a creating-child attribute
tuple in α, then allATT (xj) (1 ≤ i ≤ k) are said to be
creating-orphan attribute tuplesin α.

DEFINITION 9. For a commandα(X1, X2, . . . , Xk), if the body
of α has an operation “update attribute ofxi.aj : ATT (xi) →
ATT (xi)

′” (1 ≤ i ≤ k, 1 ≤ j ≤ n, n is the number of attributes
for an entity), then,

• ATT (xi)
′ is said to be anupdating-child attribute tuplein

α, andATT (xi) is said to be anupdating-parent attribute
tuple in α;

• if the body ofα has no update attributes operation with re-
spect toxi, andATT (xi) is a creating-parent attribute tuple
in α, thenATT (xi) is bothupdating-parent attribute tuple
andupdating-child attribute tuplein α.

DEFINITION 10. A create commandis a command with a cre-
ate subject/object operation. Otherwise it is called anon-creating
command.

DEFINITION 11. If the execution of a commandα (X1 : ATT (X1),
X2 : ATT (X2), . . . , Xk : ATT (Xk)) creates new subjects/objects,
thenxi (1 ≤ i ≤ k) is said to be aparentif ATT (xi) is a creating-
parent attribute tuple inα; otherwise, achild.

DEFINITION 12. A descendant of an entityx is recursively de-
fined as itself or a child of a descendant ofx.

From the command structure in ABAM, it can be seen that a
command allows conditional creation of an entity. That is, a subject
or object is created only when certain conditions are satisfied. Thus,
child of an entity is created conditionally, and hence, an entity has
conditional descendants.

DEFINITION 13. Attribute-relation (AR) graph(V, E) of an ABAM
system is a directed graph with the set of verticesV to be the set of
all attribute tuples (the setA defined early in this section), and the
set of edgesE ⊆ V × V . A pair (v1, v2) ∈ E iff

• ∃α ∈ C, v1 is a creating-parent attribute tuple inα, andv2

is a creating-child attribute tuple inα; or

• ∃α ∈ C, v1 is an updating-parent attribute tuple inα, and
v2 is an updating-child attribute tuple inα.

From an AR graph, it can be seen that, if there is a cycle, an
entity in a state can create an infinite number of subjects or objects.
Also, subjects or objects with orphan attribute tuples can be created
infinitely. The existence of cycles and orphan attribute tuples in the
AR graph is critical to decide whether the number of entities in a
protection system are finite or not. Note that a self loop is regarded
as a special case of a cycle with length one.

LEMMA 1. Consider an AR graph that has no cycles contain-
ing creating-parent attribute tuples. Given a creating commandα,
if ATT (x) is a creating-parent attribute tuple, thenα must update
attributes ofx to ATT (x)′ such thatATT (x)′ 6= ATT (x).

Proof Sketch: The lemma is proved by contradiction. Assume that
ATT (x) is a creating-parent attribute tuple inα, and the body ofα
has no update attributes operations onATT (x). Then,ATT (x) is
both a updating-parent attribute tuple and a updating-child attribute
tuple with respect to update attributes in (from Definition 9). This
means that there is a cycle in the AR graph with a creating-parent
attribute tuple. This is a contradiction to our assumption. 2

From the above lemma it can be concluded that creating com-
mands make irreversible changes on attributes of parent entities.

DEFINITION 14. An ABAM scheme is said to beacyclicif (i)the
system has no orphan attribute tuples, and (ii)the AR graph of the
system has no cycle that contains creating-parent attribute tuples
in creating commands. An ABAM system isacyclic if its scheme is
acyclic.

The definition of an acyclic protection system means that the set
of all entities derived from an initial state have distinct attribute
tuples. No two entities derived from the initial state have the same
attribute tuples in any state of the system.

4.2 Safety Analysis of Acyclic ABAM Systems
This section gives a formal proof of the decidability of the safety

problem for a restricted case of ABAM model.

THEOREM 1. The safety problem for an ABAM system is decid-
able if (i)the authorization scheme of the system has no creating-
orphan attribute tuples, and (ii)the AR graph of the system has no
cycles that contain creating-parent attribute tuples in creating com-
mands.

Proof Sketch: To prove this, we first show that the number of enti-
ties in an arbitrary protection state of an acyclic protection system
has an upper bound. Since there are no orphan attribute tuples, ev-
ery object is a descendant of an entity in the initial state. Now, if we
can prove that the number of descendants of an arbitrary entityx in
the system is finite, then the total number of entities in an arbitrary
protection state will be finite.

Let Nmax be the maximum number of create operations in a
command in the authorization scheme. This number is finite since
the number of primitive operations in the body of any command
is finite. Consider an existing entityx. If a creating commandα
can be executed withx as a parameter, the attribute tuple ofx is
always a creating-parent attribute tuple inα. From Lemma 1,α
must update at least one attribute ofx by replacingATT (x) with
ATT (x)′ from setA.

Thus, if multiple create commands are executed withx as a pa-
rameter, the attribute tuple ofx is changed for each of the create
commands. The bound on the number of execution of these create
commands depends on the number of times the attribute tuple ofx
can be changed. Since the total number of attribute tuples is a finite
number|A|, the maximum number of create commands that can
be executed withx as a parameter is|A| − 1. Then the maximum
number of direct children of during the lifetime of the system is
Nmax × (|A| − 1). Also, the maximum number of generations of
descendants ofx is |A|, since if it is greater than|A|, there must ex-
ist two entities with the same attribute tuple, which contradicts the
acyclic scheme property assumed. Thus, the total number of de-
scendants of an arbitrary entities in the system is finite, that is, the
number of subjects and objects in an arbitrary protection state of the
system has an upper bound. This implies that the total number of
distinct protection states of the system is also finite. Hence we can
check whether or not a particular subject has a certain right over
a particular object in every reachable state from the initial state.
Thus, the safety problem is decidable. 2

THEOREM 2. Safety problem for acyclic ABAM systems with
finite domain of each attribute is NP-hard.

Proof Sketch: Our decidable ABAM model can simulate a de-
cidable DTAM model introduced in [8]. Specifically, suppose in
ABAM, there is only one attributetype for each object, and its do-
main is a fixed set of type names. Then the attribute relation graph
is the type graph in DTAM. For DTAM systems without creating
commands and the type graph is acyclic, the safety problem is NP-
hard. Therefore we conclude that the safety problem in ABAM
with acyclic scheme and finite domains of attributes is NP-hard
since it subsumes this DTAM model. 2

This implies that our restricted model has at least the expressive
power of acyclic DTAM. In addition, the restricted model inher-
its the mutability feature (i.e., attribute update) from usage control
framework. Thus, one can say that the restricted model is more
expressive than the existing model.

5. CONCLUSIONS
The contribution of this paper is two-fold. First, we proposed a

new model of attribute-based access control with expressive power
greater than HRU. Second, we analyzed the safety properties of this
in a restricted case. The main difference between this model and
previous models is that attributes are introduced into access control
matrix, commands, and predicates. Traditional access control mod-
els such as HRU, TAM and DTAM are shown to be special cases of
our model. Apart from modelling HRU, TAM, and DTAM, the new
model has some features of the usage control model that is recently
proposed; thus, it is generic for modern access control applications
such as DRM and trust management. The safety problem of this
new model is proven to be decidable for a restricted case where
the set of attribute values is finite, and the attribute relationships
allow no cycles. It has also been shown that the restricted case has
broader expressive power than DTAM.

6. REFERENCES
[1] M. A. Al-Kahtani and R. Sandhu. A model for attribute-based

user-role assignment. InAnnual Computer Security
Applications Conference, 2002.

[2] M. H. Harrison, W. L. Ruzzo, and J. D. Ullman. Protection in
operating systems.Communications of the ACM,
19(8):461–471, 1976.

[3] N. Li, W. H. Winsborough, and J. C. Mitchell. Design of a
role-based trust management framework. InIEEE Symposium
on Security and Privacy, pages 114–130, 2002.

[4] R. J. Lipton and L. Snyder. A linear time algorithm for
deciding subject security.Journal of ACM, 24(3):455–464,
1977.

[5] J. Park and R. Sandhu. The uconabc usage control model.
ACM Transactions on Information and Systems Security,
2004.

[6] R. S. Sandhu. The schematic protection model: Its definition
and analysis for acyclic attenuating schemes.Journal of ACM,
35(2):404–432, 1988.

[7] R. S. Sandhu. The typed access matrix model. InIEEE
Symposium on Security and Privacy, pages 122–136, 1992.

[8] M. Soshi. Safety analysis of the dynamic-typed access matrix
model. InProc. 6th European Symposium on Research in
Computer Security, 2000.

