
ABAM: An Attribute-Based Access Matrix Model

Xinwen Zhang
Department of Information and Software Engineering

George Mason University

xzhang6@gmu.edu

Yingjiu Li
School of Information Systems

Singapore Management University

yjli@smu.edu.sg

Divya Nalla
School of Information Systems

Singapore Management University

divyanalla@smu.edu.sg

August 9, 2005

Abstract

In traditional access control models like mandatory access control (MAC), discretionary access con-
trol (DAC), and role-based access control (RBAC), authorization decisions are determined according to
the identities of subjects and objects, which are authenticated by a system completely. Recent access con-
trol practices, such as digital rights management (DRM), trust management, and usage control, require
flexible authorization policies. In such systems, a subject may be only partially authenticated according
to one or more attributes. Authorization policies are specified with subject and object attribute values. In
this paper we propose an attribute-based access matrix model, named ABAM, which extends the original
access matrix model. We show that ABAM enhances the expressive power of the access matrix model
by supporting attribute-based authorizations and dynamic permission propagations. Specifically, ABAM
is comprehensive enough to encompass traditional access control models as well as some usage control
features. As expressive power and safety are two fundamental but conflictive objectives of an access con-
trol model, we study the safety property of ABAM and conclude that the safety problem is decidable for
a restricted case where attribute relationship graph allows no cycles containing creating-attribute tuples.
The restricted case is shown to sustain good expressive power to model practical systems.

1 Introduction

Protection systems aim at protecting various resources from damage or unauthorized access, and allowing
multiple users to share the same resources. A model should be defined in such a way that it is capable of
expressing practical systems, most of which are dynamic. In a dynamic system, a state change can be caused
by some external actions, or operations from subjects inside the system (including system administrators).
In an access control system, a state is specified by a set of subjects, objects, and access control configurations
which determine authorization relations between the subjects and objects. Traditionally, an state change can
be happened by an administrative operation. Modern access control systems is more dynamic that an access
operation of a subject can change the system state.

Instead of totally authenticated subject identities in traditional access control models, recent practices
like DRM, trust management, and usage control, consider partial authenticated subjects, which are specified
by one or more attributes, such as role names, credit balances, locations, ages, etc. Partial authentication
means that a system only requires the authentication of one or more attributes of a subject. For example, a

1

bookstore offering a discount to students of a state university only requires a student’ membership while not
the complete identity of the student. An object can also be specified by attributes such as type, directory,
etc. A system state is specified not only by the access rights that subjects have on objects, but also their
attribute values. An authorization decision is determined by predicates over subject and/or object attributes.
For example, a subject can download a music file only when his/her credit is more than a constant value. In
a dynamic system, as the result of an authorization, subject and/or object attribute values can be updated,
and a system state changes to a new state, which may imply new permission propagations.

Access matrix is a simple but useful model first formalized by Harrison, Russo, and Ullman (HRU) [8].
In HRU, an object is represented by a column and a subject is represented by a row and a column. A right
in a cell specifies that the subject of the row has the right on the object of the column. An access matrix
model is specified by a set of subjects, a set of objects, an initial access matrix, and a fixed set of commands.
A command takes a set of object (include subject) parameters as input and updates the matrix by adding
or removing rights in cells, or creating or destroying objects, based on checking the presence of rights in a
number of cells. A system state changes through execution of commands. Traditional access matrix is built
on identities of subjects and objects.

In this paper we propose ABAM, an attribute-based access matrix model, by combining the simple
access matrix model, as well as attributes-based authorizations which are motivated by recently presented
access control systems. The main features of ABAM that differ from HRU include the specification of
system states, the structure of access matrix, primitive operations, and command definitions. We show that
ABAM has more expressive power than HRU, and can simulate some other extended models from HRU.

In any protection system, it is desirable to show that a particular situation is safe. Safety problem is the
one to determine whether or not a given subject can eventually obtain an access privilege to a given object,
in any state reachable from the initial state of the system. If there is an algorithm that is able to correctly
decide this, then the safety problem is said to be decidable, where the algorithm could be in NP-complete
or polynomial class. The strong feature of HRU is its expressive power. It could model many protection
systems with various policies, while the safety of HRU is undecidable in general. The original work by
Harrison, Ruzzo, and Ullman showed some situations for which the safety of HRU is decidable. But the
expressive power of these situations was much less than that of the general HRU. In this paper we show
that with some reasonable restrictions, ABAM is safety decidable, while maintaining expressive power for
practical systems.

The rest of the paper is organized as follows. Section 2 presents some background and related work.
Section 3 gives a formalized specification of ABAM. The expressive power of ABAM is illustrated in Sec-
tion 4 by simulating many other access control models and expressing policies for various applications. In
Section 5 we study the safety problem of ABAM with some restrictions on the model. Some related issues
are discussed in Section 6. Section 7 summarizes this paper.

2 Background and Related Work

In this section we present some background knowledge on the research of expressive power and safety
analysis in protection systems, as well as some recently proposed attribute-based authorization approaches.
The difference between these related work and our approach is discussed.

2.1 Expressive Power and Safety Analysis

The first attempts at modeling protection systems [6, 7, 4, 14] were abstract formulations of the reference
monitors and protected objects of particular protection systems. Other informal models have also been

2

proposed [11, 3, 18] to express a variety of protection policies.

HRU is the first formalized model of access control mechanisms in computing systems. The HRU
defines a configuration of a protection system to consist of a set of current subjects and objects, and an
access matrix. The matrix has a row for each subject and a column for each object. Subjects are also
considered to be objects and hence have a row and a column in an access matrix. The cell [a, b] in an access
matrix contains the rights that authorize subject ‘a’ to perform operations on object ‘b’. The present rights
in cells can enable adding or removing rights in a cell, or creating or destroying objects, which results in a
change of the protection state. A protection system is changed by means of commands.

It has been proved that the safety of HRU is undecidable in general, and decidable in a restricted case of
a mono-operational (commands with a single operation) protection system [8]. But this decidable model is
too restricted to model protection systems in general. It has been proved that safety is decidable for mono-
conditional (commands with a single condition) monotonic protection systems [9] (monotonic systems are
those in which there are no delete or destroy operations). It has also been proved that safety of mono-
conditional systems with create, enter, and delete (but without destroy) commands, is decidable.

A number of protection models were developed to provide stronger safety. Lipton and Snyder [16]
introduced the take-grant model with linear time algorithms for safety. It was deliberately designed to be of
limited expressive power, so that it would not exhibit the undecidable safety of HRU. Sandhu’s schematic
protection model (SPM) [19] was developed to fill the gap in expressive power between take-grant and
HRU, while sustaining efficient safety analysis. SPM was later extended to Extended SPM (ESPM) [1] to
allow multiple parents for a child. ESPM is formally equivalent to monotonic HRU in expressive power,
and retains the safety properties of SPM [2].

Sandhu also proposed a typed access matrix (TAM) model [20] which has stronger safety properties and
broad expressive power than HRU. The concept of strong typing is introduced in TAM to achieve stronger
security. To study the safety properties of TAM, the monotonic case of TAM was considered. Monotonic
TAM (MTAM) consists of only the monotonic primitive operations (the remove and destroy operations are
not present). MTAM is an acyclic MTAM when it is assumed that an object cannot create another object of
the same type, and that there are only a finite number of generations (since there are finite number of types
in the model). The safety of MTAM is undecidable in general, but is decidable (NP-hard) in the acyclic case.
Specifically, a simplified version of acyclic MTAM (acyclic case of ternary MTAM) is defined, for which,
the safety has polynomial complexity. The TAM has a variety of decidable safety cases, but most of which
are limited to monotonic systems.

Safety problem has been proven to be decidable mostly for strongly constrained systems (like monotonic
systems). Recently, the dynamic typed access matrix model (DTAM) was proposed [23] which allows the
type of an object to change dynamically. It has been proved that the safety problem is decidable for non-
monotonic protection systems in DTAM. To show this, a type-relationship (TR) graph is introduced. The
safety problem for non-monotonic systems becomes decidable if the TR-graph of the systems has no cycle
with respect to parent-child relationship between objects. We follow the same approach to study the safety
problem in ABAM.

2.2 Attribute-based Authorization

Many attribute-based authorization systems have been proposed recently. Al-Kahtani and Sandhu [12] pro-
posed an attribute-based user-role assignment model for RBAC. Traditionally a user is manually assigned
to appropriate roles by a security administrator. RB-RBAC (Rule-Based RBAC) provides the mechanism
to dynamically assign users to roles based on a finite set of authorization rules which are defined on user
attributes. User attributes are provided along with the authentication information or can be fetched from
databases. These rules take into consideration the attributes users own and any constraints set forth by the

3

enterprise security policies. The model also allows dynamic revocation of assigned roles based on conditions
specified in attributes.

Li et al. [15] present a role-based trust management (RT) as attribute-based authorization framework.
The authorization decisions are based on the chains of digitally signed attribute credentials through which
credential issuers assert their judgments about the attributes of entities, such as users and organizations. A
central issue is that the data contained in credentials is often sensitive and must be protected. In other words,
the credentials that must be presented to obtain access are themselves subject to access control. Wang et al.
[24] propose an attribute-based authorization framework, which is extended from the flexible authorization
framework (FAF) [10]. While these approaches focus on the individual policies of a system, we aim to
an attribute-based access model by extending the simple and efficient access matrix. Access matrix model
has been studied well in the literature and widely used in existing systems. This makes our approach very
practical and easy to implement.

Park and Sandhu [17] propose the usage control model (UCON) consisting of a family of models built
around the decision factors authorizations, obligations, and conditions, where authorizations are determined
by a set of predicates based on subject and/or object attributes. In addition to these three decision factors,
UCON has two important properties called decision continuity and attribute mutability. The continuity
property describes the continuous enforcement of authorizations, obligations, and conditions by evaluating
usage requirements throughout an access, while mutability captures the attribute value changes as side-
effects of subject’s actions.

The ABAM proposed in this paper captures the features of attribute-based authorizations and mutability
specified in UCON. The difference between ABAM and UCON is that in ABAM, multiple subjects and
objects along with their attributes are considered in a decision, while for UCON, a policy refers to a specific
pair of (subject, object). More specifically, in the UCON model, a usage decision is made based on an
individual pair of subject and object; whereas in our model, conditions are checked involving multiple
subjects and objects to perform certain usage decisions.

3 A Formal Model of ABAM

ABAM is defined in terms of access control matrix and commands following the traditions of defining HRU,
TAM and other access control models. Subjects, objects, attributes, access rights, access matrix, primitive
operations, and commands are the basic components constituting the new model.

3.1 Subjects, Objects, and Access Rights

Definition 1 All the entities to be protected in a system (passive entities) are called objects (O). The set of
all active entities (for example processes and users) that can invoke some access requests or execute some
permissions on an object are called subjects (S).

A subject can be accessed by another subject. For example, a process can be initiated or killed by another
process. Hence subjects can also be considered as objects. Following the general concept in traditional
access control models, we consider the set of subjects in ABAM to be a subset of the set of objects. The
objects that are not subjects are pure objects. Sometimes we refer to a subject or an object as an entity when
the distinction is immaterial.

Each object in ABAM is specified by a unique identity recognized by the system. Note that an identity
here is not an “identity” in traditional access control models which is totally authenticated by a system and
used for authorizations, but a simple name or ID assigned by the system when an object is created, and
cannot be changed after creation.

4

Definition 2 Access rights (R) are the kinds of access that subjects can execute on objects (e.g., read, write,
execute).

3.2 Attributes and Attribute Tuples

Definition 3 Each entity has a set of attributes. Each attribute is a variable of a specific data type, which
is dependent on what the attribute is, and determines a domain from which a value can be assigned to the
attribute in any state.

An attribute value of an entity is denoted asent.a whereent is the entity name (i.e., the entity’s identity)
anda is the attribute name, andent.a ∈ dom(a), wheredom(a) is the value domain ofa, andnull /∈
dom(a). Hereafter, we assume that an entity name without any attribute specified denotes its identity.
Without loss of generality we assume that in a system each entity has the same set of attributes, denoted
asAT . An attribute with value ofnull indicates that the entity does not have the attribute, or the attribute
value has not be assigned after creation. For example, an administrator (s1) in an organization has an
administrative role (e.g.,ar1), thens1.ad role = ar1. While a normal employee (s2) does not have this
attribute, thens2.ad role = null.

Definition 4 For an entityent, an attribute value tuple(or simplyattribute tuple) is a functionATTent :
AT → dom(AT) ∪ {null} that assigns a value to each attribute of the entity.

The attribute tuple of an entity specifies its state in a system. Changing the attribute value(s) of an
entity changes its attribute tuple. For example, consider an objecto. In a particular state of the system,
the object has the attribute tupleATTo = (a1 = v1, a2 = v2, . . . , an = vn), wheren = |AT | and
vi ∈ dom(ai) ∪ {null} for 1 ≤ i ≤ n. Updating an attribute ofai from valuevi to v′i means that the
attribute tuple changes fromATTo to ATT ′o = (a1 = v1, a2 = v2, . . . , ai = v′i, . . . , an = vn), where
v′i ∈ dom(ai).

3.3 Attribute Predicates

An attribute predicate is a polynomially computable boolean-valued function built from attributes and con-
stants with appropriate operation and relation symbols. We can distinguish different types of predicates in
ABAM, such as unary predicates and binary predicates. A unary predicate is built from one attribute variable
and constants, e.g.,Alice.credit ≥ $100.00, file1.classification = ‘supersecure′. A binary predicate
is built from two different attribute variables, e.g.,dominate(Alice.cleareance, file1.classification),
Alice.credit ≥ ebook.value, (Alice, r) ∈ file1.acl, wherefile1.acl is objectfile1’s access control list.
Note that the two attributes in a binary predicate can be from a single entity, or two different entities. In
real systems, we can define more general predicates built on any number of subject attributes and/or object
attributes. This significantly improves the flexibility and expressive power of ABAM.

3.4 Access Matrix

Definition 5 Anaccess matrixis a matrix with a row for each subject with its attribute tuple, and a column
for each object with its attribute tuple.

The set of all subjects along with their attribute tuples are used to represent the rows in an access
matrix, and the set of all objects with their attribute tuples represent the columns. An element in cell[s, o],
representing the rows and columno, stores the set of all access rights thats can exercise overo.

Figure 1 shows an access matrix for subjectsS = {s1, s2} and objectsO = {o1, o2}.

5

 s1: ATTs1 s2: ATTs2 o1: ATTo1 o2: ATTo2

 {parent} {read, write} s1: ATTs1
s2: ATTs2 {read}

Figure 1: An access matrix

3.5 Protection State

Definition 6 A protection state(or simplystate) of an ABAM system is specified by

• a set of subjectsS,

• a set of objectsO,

• a set of subject attribute tuplesATTS = {ATTs}, where eachATTs is the attribute tuple of subject
s ∈ S,

• a set of object attribute tuplesATTO = {ATTo}, where eachATTo is the attribute tuple of object
o ∈ O, and

• an access matrixM with a row for every subject with its attribute tuple, and a column for every object
with its attribute tuple.

3.6 Primitive Operations

A primitive operation is an operation that can change the state of a system. The basic primitive operations
can be defined as follows.

Definition 7 Theprimitive operations(or simplyoperations) in ABAM are defined as in the Table 1, where
t = (S, O,ATTS , ATTO,M) andt′ = (S′, O′, ATT ′S , ATT ′O, M ′) are the states before and after a single
primitive operation.

The first six operations are similar to those in HRU, except that in each creation (subject or object),
the created entity is assigned with null-valued attributes. Generally these attribute values can be changed
with following update operation(s) in a command. For each creation, an unique identity is assigned to the
new entity. For simplicity we assume the identity of a destroyed entity cannot be reused by the system. An
update operation changes an attribute value to a new value, thus change the attribute tuple of the object.
The new value can be a constant, or a polynomially computable function of the old value or other attribute
values. In ABAM, a system state transform is not only reflected by the permission distributions in a matrix,
but also attribute updates due to authorization decisions. An update, in turn, can cause other permission
propagations in the new system state. This enhances the expressive power of ABAM beyond HRU as shown
in the next section.

3.7 Commands

A command in ABAM consists of a condition and a sequence of primitive operations. The condition of a
command in HRU checks the presence of some rights in the access matrix, whereas in ABAM, along with
right presence, some predicates based on the attributes of subjects and objects can also be evaluated.

A command in ABAM is defined as follows.

6

Operations Conditions New States

enterr into [s, o] s ∈ S S′ = S, O′ = O
o ∈ O M ′[s, o] = M [s, o] ∪ {r}
r ∈ R ∀s′ ∈ S′, o′ ∈ O′, M ′[s′, o′] = M [s′, o′] for s′ 6= s ando′ 6= o

∀a ∈ AT, o′ ∈ O′, ATT ′o′(a) = ATTo′(a)

deleter from [s, o] s ∈ S S′ = S, O′ = O
o ∈ O M ′[s, o] = M [s, o]− {r}
r ∈ R ∀s′ ∈ S′, o′ ∈ O′, M ′[s′, o′] = M [s′, o′] for s′ 6= s ando′ 6= o

∀a ∈ AT, o′ ∈ O′, ATT ′o′(a) = ATTo′(a)

create subjects′ s′ /∈ S S′ = S ∪ {s′}, O′ = O ∪ {s′}
∀s ∈ S, o ∈ O, M ′[s, o] = M [s, o]
∀o ∈ O, M ′[s′, o] = ø
∀s ∈ S, M ′[s, s′] = ø
∀a ∈ AT, o ∈ O, ATT ′o(a) = ATTo(a)
∀a ∈ AT, ATT ′s′(a) = null

destroy subjects s ∈ S S′ = S − {s′}, O′ = O − {s′}
∀s′ ∈ S′, o′ ∈ O′, M ′[s′, o′] = M [s′, o′]
∀a ∈ AT, o′ ∈ O′, ATT ′o′(a) = ATTo′(a)

create objecto′ o′ /∈ O S′ = S, O′ = O ∪ {o′}
∀s ∈ S, o ∈ O, M ′[s, o] = M [s, o]
∀s ∈ S, M ′[s, o′] = ø
∀a ∈ AT, o ∈ O, ATT ′o(a) = ATTo(a)
∀a ∈ AT, ATT ′o′(a) = null

destroy objecto o ∈ O S′ = S, O′ = O − {o′}
∀s′ ∈ S′, o′ ∈ O′, M ′[s′, o′] = M [s′, o′]
∀a ∈ AT, o′ ∈ O′, ATT ′o′(a) = ATTo′(a)

update attributeo.ai = v′i o ∈ O S′ = S, O′ = O
v′i ∈ dom(ai) ∀s′ ∈ S′, o′ ∈ O′, M ′[s′, o′] = M [s′, o′]

∀a ∈ AT anda 6= ai, ∀o′ ∈ O′, ATT ′o′(a) = ATTo′(a)
ATT ′o(ai) = v′i

Table 1: Primitive operations

Commandα(X1, X2, . . . , Xk)
if r1 ∈ [Xs1, Xo1] ∧ r2 ∈ [Xs2, Xo2] ∧ . . . rm ∈ [Xsm, Xom]∧
p1 ∧ p2 ∧ . . . pm

then
op1; op2; . . .; opn

end

Here,α is the name of the command,X1, X2, . . . , Xk are object parameters;r1, r2, . . ., rm are generic
rights;s1, s2, . . ., sm ando1, o2, . . ., om are integers between 1 andk; p1, p2, . . ., pn are predicates built
over the attributes of the parameters.op1, op2, . . . , opn are primitive operations; Theif part of the command
is called the condition ofα. If a command has no condition, it is an unconditional command, otherwise, it
is a conditional command. If a command has at least one “create subject” or “create object” operation, then
this command is a creating command, otherwise it is non-creating. A command is invoked by substituting
actual objects as parameters. The operations are executed sequentially if the condition of the command and
the conditions of each primitive operations are true.

Without loss of generality, we assume that in a single command, there is at most one update operation
for single attribute of an object, since multiple updates on the same attribute can be integrated into one.
Also, we can assume that all non-update operations appear before all update operations in a command, since
this sequence does not change the final state after the execution of a command.

7

Note that a disjunctive form of condition can also be easily modelled by having one command for
each component. Also, negated predicates are not required explicitly, since we always can define a normal
predicate for a negated one.

3.8 ABAM Model

After introducing the basic components, we complete this section with the definition of ABAM authorization
scheme and system.

Definition 8 An ABAMauthorization scheme(or simplyscheme) is a 4-tuple(R,AT, P, C), whereR a
fixed set of generic rights,AT is a fixed set of attribute names,P is a fixed set of attribute predicates, and
C is a fixed set of commands.

Definition 9 An ABAMsystemis specified by an ABAM authorization scheme and an initial state (an initial
set of subjects and their attribute tuples, an initial st of objects and their attribute tuples, and an initial access
matrix).

In an ABAM system, commands can only be executed serially, and each execution is atomic. That is,
either the condition of a command is satisfied and all primitive operations are performed successfully, or no
change happens on the current state.

4 Expressive Power of ABAM

With the extensions on the conditions and primitive operations beyond HRU, ABAM can express not only
traditional models, but also modern access control systems. In this section, first we use the new model to
express HRU and TAM model, then we study the compliance of the new model to the basic usage control
framework proposed by Park and Sandhu [17], and then we present a real life example to illustrate the
flexibility of authorization with ABAM.

4.1 Modelling HRU

Consider an ABAM command as follow.

Commandα(X1, X2, . . . , Xk)
if r1 ∈ [Xs1, Xo1] ∧ r2 ∈ [Xs2, Xo2] ∧ . . . rm ∈ [Xsm, Xom]∧
p1 ∧ p2 ∧ . . . pm

then
op1; op2; . . .; opn

up1; . . .; upm;
end

whereup1, . . . , upm are all update primitive operations, andop1, . . . , opm are all non-update primitive
operations. If all predicates are trivially true in any state, then the update operations can be ignored since
they do not affect the conditions of any commands. Therefore this can be considered as an HRU command
as the follow.

Commandα(X1, X2, . . . , Xk)
if r1 ∈ [Xs1, Xo1] ∧ r2 ∈ [Xs2, Xo2] ∧ . . . rm ∈ [Xsm, Xom]
then

8

op1; op2; . . .; opn

end

Thus, an HRU scheme can be constructed by ignoring the updates operations and predicates in the
ABAM scheme. From the same initial state, the reachable states of a system with these two schemes are the
same. Since this HRU scheme is general, then any HRU can be simulated with a restricted form of ABAM
and HRU can be considered as a special case of ABAM. This implies that ABAM is at least as expressive as
HRU. Actually, as it is shown shortly, ABAM is more expressive than HRU by simulating TAM and other
models. This reduction also implies that the safety problem of a general ABAM is undecidable.

4.2 Modelling TAM

Consider an ABAM system with the following restrictions:

• each entity has only one attributetype;

• in each creating command, when an entity is created, itstype attribute is assigned with a constant
with an update operation;

• there are no other update operations in any command;

• a unary predicate is defined as:type = c wherec ∈ dom(type);

• each command has the following form:

Commandα(X1, X2, . . . , Xk)
if r1 ∈ [Xs1, Xo1] ∧ r2 ∈ [Xs2, Xo2] ∧ . . . rm ∈ [Xsm, Xom]
(X1.type = t1) ∧ (X2.type = t2) ∧ . . . ∧ (Xk.type = tk)
then
op1; op2; . . .; opn

end

wheret1, . . . , tk ∈ dom(type), and ifXi is created inα, then(Xi.type = ti) is not included in the
condition part.

In this model, since each entity’s type is fixed when it is created, each command can be transformed into
the following one.

Commandα(X1 : t1, X2 : t2, . . . , Xk : tk)
if r1 ∈ [Xs1, Xo1] ∧ r2 ∈ [Xs2, Xo2] ∧ . . . rm ∈ [Xsm, Xom]
then
op1; op2; . . .; opn

end

That is, this ABAM scheme can be regarded as a general TAM scheme. Therefore, we can say that
ABAM is at least as expressive as TAM. Similarly, the dynamic typed access matrix model (DTAM) pre-
sented by Soshi [23] can be simulated with ABAM based on an assumption that the type attribute of each
entity can be updated, butdom(type) is a fixed set. This means, ABAM is at least as expressive as DTAM,
and more expressive than TAM.

9

4.3 Modelling UCON pre-Authorization Models

Park and Sandhu [17] introduced a family of core models in UCON according to the point of enforcing
usage control policies and attribute updates. Pre-authorization models are those where an access control is
enforced before a subject starting to use an object and the control decision is determined by the subject and/or
object attribute values. According to the updates performed before, during, and after an usage process,
there are several pre-authorization core-models, calledpreA1, preA2, andpreA3, respectively. The model
without update is calledpreA0. A authorization policy takes one subject and one object as parameters, and
grants an access request by evaluating a set of attribute predicates based on the subject and/or the object.
Therefore, logically,preA0, preA1, andpreA3 can be simulated with ABAM. Specifically, for apreA0

policy regarding to a subjects’s access to an objeto with right r, if the authorization decision is determined
by predicatesp1, . . . , pi based ons and/oro, then the following ABAM command can simulate this policy.

Commandpolicy1(s, o)
if p1 ∧ p2 ∧ . . . ∧ pi

then
enterr into [s, o]
remover from [s, o]
end

In UCON, an access is considered as a process. Predicates are evaluated before an access inpreA0, and if
all of them are true, the access is approved. After the usage process, the right is revoked by the system. In
ABAM, this is simulated by entering the right at the beginning of the command body, and removing it at the
end. This mechanism is also implied in HRU [8].

For preA1 andpreA3, we simulate them by adding update operations before the entering operation or
after the removing operation in a command, as shown below.

Commandpolicy2(s, o)
if p1 ∧ p2 ∧ . . . ∧ pi

then
up1; up2; . . .; upn;
enterr into [s, o]
op1; op2; . . .; opk

remover from [s, o]
upn+1; upn+2; . . .; upn+m;
end

whereup1, . . ., upn+m are update operations on attributes ofs or o.

MAC, DAC, RBAC, and some extended versions of these models are simulated with UCONpreA0

in [17, 25]. We conclude that ABAM can express these traditional access control models since these pre-
authorization models are restricted forms of ABAM.

ForpreA2 model, since an authorization decision is checked repeatedly during an access, which is called
decision continuality, ABAM does not support this feature. We discuss this in Section 6.

4.4 An attribute-based Delegation Example

We show a simple delegation example with an ABAM scheme. Suppose in an organization, there are
multiple departments doing various projects and holding confidential information (files) of each project.

10

The access to these confidential files is based on the security level (role) of the members in a group. For the
purpose of flexible management, an access right can be delegated by a subject to another subject according
to some policies. In this system, each subject is specified by attributedept id as its department ID and
role as its security level, and each object has one attributeac = {(r,Mr, Nr)}, wherer is a right,Mr

is the maximum number of subjects that can have rightr on this object at the same time, andNr is the
number of subjects that have rightr on the object in the current state. For example, an object attribute
o.ac = {(r,∞, 10), (w, 1, 1), (v, 3, 1)}means that at any state unlimited number of subjects can “read” this
object, but at most one can “write” and three can “review”. This attribute also specifies that in the current
state there are ten subjects have the right of “read”, one has “write”, and one has “review”. We define a set of
functions for each generic right to return the numbers of subjects in each attribute value, e.g.,Mv(o.ac) = 3,
Nv(o.ac) = 1.

Consider the following two delegation policies.

1. A subjects1 can delegate rightv of an objecto to another subjects2 in the same department whenever
s2’s role is senior tos1’s role.

2. A subjects1 can delegate rightv of objecto to another subjects2 in a different department only when
boths1 ands2’s roles are “manager”.s1 loses the right on the object after delegation.

These policies can be expressed by the following commands in an ABAM scheme.

Command can delegate1 review(s1, s2, o)
if v ∈ [s1, o] ∧ (s1.dept id = s2.dept id) ∧ dominate(s2.role, s1.role) ∧ (Nv(o.ac) <
Mv(o.ac))
then
enterv into [s2, o]
update attribute:o.ac = {. . . , (r,Mv(o.ac), Nv(o.ac) + 1), . . . , }
end

Command can delegate2 review(s1, s2, o)
if v ∈ [s1, o]∧(s1.dept id 6= s2.dept id)∧(s1.role = “manager”)∧(s2.role = “manager”)
then
enterv into [s2, o]
removev from [s1, o]
end

wheredominate(x, y) is a predicate which is true whenx’s role is higher thany’s in an organization.
In both the above commands, a subjects1 can delegate a “review” permission of an object to a subjects2

only if s1 has this right. The first command checks a predicate on the object’s attribute. Specifically, if the
number of subjects that have rightv on this object is less than the maximum number, the delegation can
happen, and the object’s attribute is updated. In the second command, a delegation grants the right to the
new subject, while revokes the right from the original subject.

These commands cannot be modelled by HRU or TAM, since attribute predicates are considered in
condition part. Also, they cannot be simulated with UCON because of the multiple objects involved in a
single command.

11

5 Safety Analysis of ABAM

Since safety property is a fundamental and closely related problem to expressive power in an access control
model, in this section we describe a restricted case of ABAM and study its safety property. It is shown that
the safety of this restricted case is decidable. The expressiveness of this case is also discussed.

For safety analysis, we assume that each attribute has a finite value domain, therefore the set of all
possible attribute tuples (say,A), which all of the subjects and objects in a system can assume, is finite. In a
particular state, each entity in the system assumes its attribute tuple fromA. Any change of a single attribute
tuple (i.e., replacing a tuple with another tuple inA) moves the system state from one to another.

5.1 Normalization of an ABAM Scheme

Before safety analysis, we transform each command in an ABAM scheme into a set ofnormalizedcom-
mands, with anormalizationprocess. Consider the following ABAM command.

Commandα(X1, X2, . . . , Xk)
if r1 ∈ [Xs1, Xo1] ∧ r2 ∈ [Xs2, Xo2] ∧ . . . rm ∈ [Xsm, Xom]∧
p1 ∧ p2 ∧ . . . pm

then
op1; . . . ; opn;
up11; . . . ; up1m1

. . .
upk1; . . . ;upkmk

end

whereupi1; . . . ; upimi are update actions for objectXi (1 ≤ i ≤ k), andop1, . . . , opn are non-update
actions. Note that if an object is destroyed inα, all of its updates can be ignored in the body.

The normalization process works like this. For any attribute tupleATT1, . . . , ATTk ∈ A of X1, . . . , Xk,
respectively, if all the predicatesp1, . . . , pi are true, then a normalized commandαn is generated with the
following format:

αn(X1 : ATT1, . . . , Xk : ATTk):
if r1 ∈ [Xs1, Xo1] ∧ r2 ∈ [Xs2, Xo2] ∧ . . . rm ∈ [Xsm, Xom]
then
op1; . . . ; opn;
update attribute tupleX1 : ATT1 → ATT ′1
. . .
update attribute tupleXk : ATTk → ATT ′k
end

whereATT ′1, . . . , ATT ′k are the attribute tuples ofX1, . . . , Xk after their corresponding update actions,
respectively. Ifα is a creating command andXi is created in the body, then we considerATTi(Xi.a) = null
for all a ∈ AT . Without loss of generality, ifXi is not updated inα, thenATT ′i = ATTi.

This process is repeated with every possible attribute tuple ofXi in A (1 ≤ i ≤ k). Since each object
has a finite number of attribute tuples, for single command this normalization process is guaranteed to
terminate, and a finite number of normalized commands are generated. The set of all normalized commands
in a scheme is denoted asCn, and the scheme with all normalized commands is callednormalized scheme.

12

It can be easily verified that for an ABAM system, every state that it can reach from the initial state
can be reached with the corresponding normalized scheme. Also, each reachable state with the normalized
scheme can be reached with the original scheme. Therefore, we can use the normalized commands for safety
analysis. From this we assume that an ABAM system always has normalized commands.

5.2 Acyclic ABAM Scheme

We first define the attribute-relation graph of a normalized ABAM scheme, based on which we define the
acyclic ABAM scheme.

Definition 10 For a creating normalized commandα(X1 : ATT1, X2 : ATT2, . . . , Xk : ATTk),

• ATT1, . . . , ATTk arecreating-parent attribute tuplesin α;

• if Xi is created inα, ATT ′i is a creating-child attribute tuplein α.

• if Xi is created inα for every1 ≤ i ≤ k, thenATT ′is is acreating-orphan attribute tuplesin α.

Definition 11 For a normalized commandα(X1 : ATT1, X2 : ATT2, . . . , Xk : ATTk), ATT ′i is said to
be anupdating-child attribute tuplein α, andATTi is said to be anupdating-parent attribute tuplein α for
every1 ≤ i ≤ k.

Definition 12 If the execution of a commandα(X1 : ATT1, X2 : ATT2, . . . , Xk : ATTk) creates new
objectXi, thenXi is said to be achild in α. Otherwise, it is aparentin α.

Definition 13 A descendant of an entityX is recursively defined as itself or a child of a descendant ofX.

Definition 14 Theattribute-relation (AR) graph(V, E) of an ABAM scheme(R, AT, P,C) is a directed
graph with the set of verticesV to be the set of all attribute tuples (the setA defined early in this section),
and the set of edgesE ⊆ V × V . A pair (v1, v2) ∈ E iff

• ∃α ∈ C, v1 is a creating-parent attribute tuple inα, andv2 is a creating-child attribute tuple inα; or

• ∃α ∈ C, v1 is an updating-parent attribute tuple inα, andv2 is an updating-child attribute tuple in
α.

From an AR graph, it can be seen that if there is a cycle with creating-parent attribute tuples, then an
entity in a state may create an infinite number of objects. Also, objects with orphan attribute tuples can be
created infinitely. The existence of cycles and orphan attribute tuples in the AR graph is critical to decide
whether the number of entities in a protection system are finite or not. Note that a self loop is regarded as a
special case of a cycle with length one.

Lemma 1 Consider an AR graph that has no cycles containing creating-parent attribute tuples. Ifα(X1 :
ATT1, X2 : ATT2, . . . , Xk : ATTk) is a creating normalized command, thenATT ′i 6= ATTi. That is, all
the creating-parent attribute tuples in a creating commands have to be updated to different ones.

Proof: The lemma is proved by contradiction. Assume thatXi is a parent inα, and the body ofα has no
update attribute operations onXi (that is, theATT ′i = ATTi in the normalized command). Then,ATTi is
both a updating-parent attribute tuple and a updating-child attribute tuple with respect to update attributes in
(from Definition 11). AsATTi is a creating-parent attribute tuple (sinceXi is a parent), this means that there
is a cycle in the AR graph with a creating-parent attribute tuple. This is a contradiction to our assumption.
2

From the above lemma, it can be concluded that, if an AR graph has no cycles containing creating-
parent attribute tuples in a scheme, then the creating commands make irreversible changes on the attributes
of parent entities.

13

Definition 15 An ABAM scheme is said to beacyclic if and only if

1. there are no creating-orphan attribute tuples, and

2. the AR graph of the scheme has no cycle that contains creating-parent attribute tuples.

The definition of an acyclic protection system means that the set of all entities derived from an initial
state have distinct attribute tuples. No two entities derived from the initial state have the same attribute
tuples in any state of the system.

5.3 Safety Analysis of Acyclic ABAM Systems

This section gives a formal proof of the decidability of the safety problem for a restricted case of ABAM.

Theorem 1 The safety problem for an ABAM system is decidable if its scheme is acyclic.

Proof: To prove this, we first show that the number of entities in an arbitrary protection state of an acyclic
protection system has an upper bound. Since there are no orphan attribute tuples, every object is a descendant
of an entity in the initial state. Now, if we can prove that the number of descendants of an arbitrary entity
Xi in the system is finite, then the total number of entities in an arbitrary protection state is finite.

Let Nmax be the maximum number of create operations in a command in the authorization scheme. This
number is finite since the number of primitive operations in the body of any command is finite. Consider an
existing entityXi. If a creating commandα can be executed withXi as a parameter, the attribute tuple of
Xi is always a creating-parent attribute tuple inα. From Lemma 1,α must update at least one attribute of
Xi by replacingATTi with ATT ′i from setA, andATT ′i 6= ATTi.

Thus, if multiple creating commands are executed withXi as a parameter, the attribute tuple ofXi

is changed for each of the creating commands. The bound on the number of execution of these creating
commands depends on the number of times the attribute tuple ofXi can be changed. Since the total number
of attribute tuples is a finite number|A|, the maximum number of creating commands that can be executed
with Xi as a parameter is|A| − 1. Then the maximum number of direct children of during the lifetime of
the system isNmax × (|A| − 1). Also, the maximum number of generations of descendants ofXi is |A|,
since if it is greater than|A|, there must exist two entities with the same attribute tuple, which contradicts
the acyclic scheme property assumed. Thus, the total number of descendants of an arbitrary entities in the
system is finite, that is, the number of subjects and objects in an arbitrary protection state of the system has
an upper bound. This implies that the total number of distinct protection states of the system is also finite.
Hence we can check whether or not a particular subject has a certain right over a particular object in every
reachable state from the initial state. Thus, the safety problem is decidable. 2

5.4 Complexity of Safety Problem

Harrison, Ruzzo, and Ullman have shown that monotonic mono-operational HRU system without creations
has NP-complete safety analysis in the number of commands [8, 20]. This can be polynomially reduced to
an acyclic ABAM system without creating commands.

Theorem 2 The complexity of safety analysis for acyclic ABAM systems with finite domain of each attribute
is NP-hard in the number of commands in the scheme.

Proof: As we have shown in Section 4, HRU is a special case of ABAM. Thus, for a monotonic mono-
operational HRU scheme without creations, it can be polynomially reduced to an ABAM scheme, where

1. all attributes have finite domains,

14

2. all predicates are trivially true, and

3. no creating and destroying operations in all commands.

This is a restricted model of our decidable ABAM proven above since there are no creating-parent attribute
tuples in the scheme. Since monotonic mono-operational HRU is NP-complete in the number of commands,
we can conclude that this restricted ABAM is NP-hard. Therefore, an acyclic ABAM system with finite
attribute domain has NP-hard safety, since it subsumes this special case. 2

5.5 Expressiveness of Acyclic ABAM Models

We have considered a restricted case of ABAM for which the safety problem is decidable. In this restricted
case, (i) each attribute takes values from a finite domain, (ii) the protection system has no orphan attribute
tuples, and (iii) the AR-graph has no cycles that contain creating-parent attribute tuples. In other words, the
protection system is acyclic.

Since our decidable model allows non-monotonic operations in a system, this introduces more expressive
power than existing decidable HRU and TAM models where only monotonic operations are allowed. From
Section 4.2 we know that a restricted model of ABAM is equivalent to DTAM, then we can say that our
restricted model has at least the expressive power of acyclic DTAM. Apart from this, the restricted model
also inherits the features of the usage control model such as attribute mutability. Thus, we can say that the
restricted model is more expressive than these existing models.

6 Discussions

Our model inherits UCON’s attribute mutability feature and involves multiple subjects and objects in single
access control decision. In this sense our model is even more flexible then UCON in some pre-authorization
applications as shown in Section 4. On the other side, like other tradition access control models, ABAM
does not capture the decision continuity (ongoing authorizations) that is proposed in UCON [17]. Continuity
means that authorization decisions are continuously checked and enforced throughout an access process.
This property is useful for the control of relatively long-lived usage or for immediate revocation of usage
when some authorization conditions are not satisfied.

The reason that ABAM does not support ongoing authorizations is that the condition part and the prim-
itive operations are separated in a command structure (see section 3.7). The condition is checked once and
the operations are executed sequentially if the condition is true. A possible approach to enforce ongoing
authorizations in our model is to interleave conditions with primitive operations such that conditions of the
authorizations are always examined during the execution of a command. The conditions as well as cor-
responding primitive operations can be structured in a nested form in continuous authorizations such that
an authorization can be revoked at any time when a nested condition is not satisfied (e.g., as side-effects
of attribute updates or primitive operations). While interleaving of conditions and operations may provide
more expressive power, the safety property of such model is not yet clear. It remains an interesting topic for
future study.

7 Conclusions

The contribution of this paper is three-fold. First, we propose a new model of attribute-based access control.
Then, we study the expressive power of this new model. Finally, we analyze the safety property of this model

15

with a restricted case. The main difference between this and previous models is that attributes are introduced
into access control matrix, primitive operations, and commands. Traditional access control models such as
HRU, TAM and DTAM are shown to be special cases of our model. Besides these, the new model has some
features of usage control which makes it more general for modern information systems. The safety problem
of this new model is proven to be decidable for a restricted case where all attribute domains are finite, and
the attribute relationship graph allows no cycles containing creating-parent attribute tuples. It has also been
shown that the restricted case has broader expressive power than DTAM.

References

[1] P. E. Amman, and R. S. Sandhu. The Extended Schematic Protection Model. Technical Report, George
Mason University, 1990.

[2] P. E. Amman, and R. S. Sandhu. Safety Analysis for the Extended Schematic Protection Model. In
Proceedings of IEEE Symposium on Research in Security and Privacy, pp.87-97, 1991.

[3] G. R. Andrews. COPS - A Protection Mechanism for Computer Systems. PhD thesis and Tech. Report
74-07-12, Computer Science Program, University of Washington, Seattle, Washington, July 1974.

[4] D. E. Bell, and L. J. LaPadula. Secure Computer Systems, vol.I: Mathematical Foundations and vol.II:
A Mathematical Model. MITRE Corp. Tech. Rep. MTR-2547, 1973.

[5] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralised Trust Management. In Proceedings of IEEE
symposium on Security and Privacy, pp. 164-173, May 1996.

[6] J.B. Dennis, and E.C. Van Horn. Programming Semantics for Multiprogrammed Computations. In
Communications of the ACM, 9, 143-155, March 1966.

[7] G.S. Graham, and P.J. Denning. Protection - Principles and Practice. In AFIPS conference proceedings,
SJCC, Vol. 40, AFIPS Press, pp. 417-429, 1972.

[8] M. H. Harrison, W. L. Ruzzo, and J. D. Ullman. Protection in Operating Systems. Communications of
ACM 19(8) , pp. 461-471, 1976.

[9] M. H. Harrison, and W. L. Ruzzo. Monotonic Protection Systems. In DeMillo et al. (Editors), Founda-
tions of Secure Computations, Academic Press, pp.337-365, 1978.

[10] S. Jajodia, P. Samarati, and V. Subrahmanian, A Logical Language for Expressing Authorizations,
IEEE Symposium On Research in Security and Privacy, Oakland, California, 1997.

[11] A.K. Jones. Protection in Programmed Systems. PhD Thesis, Dept. of Computer Science, Carnegie-
Mellon University, Pittsburg, June 1973.

[12] Mohammad A. Al-Kahtani and Ravi Sandhu, A Model for Attribute-Based User-Role Assignment,
Annual Computer Security Applications Conference, 2002.

[13] M. Kaplan. IBM Cryptolopes, Superdistribution and Digital Rights Management, online, available at
http://www.research.ibm.com/people/k/kaplan/cryptolope-docs/crypap.html. 1996.

[14] B.W. Lampson. Protection. In Proceedings of Fifth Princeton symposium on Information Sciences and
Systems, Princeton University, pp. 437-443, March 1991.

16

[15] N. Li, W. H. Winsborough and J. C. Mitchell, Design of a role-based trust management framework, In
Proceedngs of the 2002 IEEE Symposium on Security and Privacy, pp 114-130, May 2002.

[16] R. J. Lipton, and L. Snyder. A Linear Time Algorithm for deciding Subject Security. Journal of ACM,
Vol. 24, No. 3, pp. 455-464, 1977.

[17] J. Park, and R. Sandhu. TheUCONABC Usage Control Model, ACM Transactions on Information
and Systems Security, Feb, 2004.

[18] G. J. Popek. Correctness in Access control. In Proceedings of National Computer Conference, pp.
236-241, 1974.

[19] R. S. Sandhu The Schematic Protection Model: Its Definition and Analysis for Acyclic Attenuating
Schemes. In Journal of ACM, Vol 35, No. 2, pp. 404-432, April 1988.

[20] R. S. Sandhu. The Typed Access Matrix Model. In Proceedings of the IEEE Symposium on Security
and Privacy, pp. 122-136, May 1992.

[21] Paul Schneck. Persistent Access Control to Prevent Piracy of Digital Information. In Proceedings of
the IEEE, vol.87, No.7, pp. 1239-1250, July 1999.

[22] Sibert et al. 1995. The Digibox: A Self-Protecting Container for Information Commerce. In Proceed-
ings of USENIX workshop on Electronic Commerce.

[23] M. Soshi, Safety Analysis of the Dynamic-Typed Access Matrix Model, 6th European Symposium on
Research in Computer Security, LNCS 1895, 2000.

[24] L. Wang, D. Wijesekera, and S. Jajodia , A logic-based framework for attribute based access control,
In Proceedings of the 2004 ACM workshop on Formal methods in security engineering, 2004.

[25] X. Zhang, J. Park, F. Parisi-Presicce, and R. Sandhu. A Logical Specification for Usage Control, To
appear in Proceedings of 9th ACM Symposium on Access Control Models and Technologies 2004.

17

