
I lllll llllllll Ill lllll lllll lllll lllll lllll 111111111111111111111111111111111

c12) United States Patent
Krishnan et al.

(54) AUTHORIZATION POLICY FOR
GROUP-CENTRIC SECURE INFORMATION
SHARING

(76) Inventors: Ram Krishnan, San Antonio, TX (US);
Ravinderpal S. Sandhu, Helotes, TX
(US)

(*) Notice: Subject to any disclaimer, the term ofthis
patent is extended or adjusted under 35
U.S.C. 154(b) by 903 days.

(21) Appl. No.: 14/241,252

(22) PCT Filed: Aug. 27, 2012

(86) PCT No.: PCT /US2012/052501

§ 371 (c)(l),
(2), (4) Date: Sep. 5, 2014

(87) PCT Pub. No.: W02013/033012

PCT Pub. Date: Mar. 7, 2013

(65)

(60)

(51)

(52)

(58)

Prior Publication Data

US 2015/0020147 Al Jan. 15, 2015

Related U.S. Application Data

Provisional application No. 61/527,816, filed on Aug.
26, 2011.

Int. Cl.
H04L 29106
G06F 21162

U.S. Cl.

(2006.01)
(2013.01)

CPC H04L 631104 (2013.01); G06F 2116218
(2013.01); H04L 63120 (2013.01)

Field of Classification Search
CPC H04L 63/08; H04L 63/10; H04L 63/102;

H04L 63/104; H04L 63/20; G06F
21/6218

See application file for complete search history.

SJ(u.g)
SA(o,g)
Authz(u,o,g)

US010116664B2

(IO) Patent No.: US 10,116,664 B2
Oct. 30, 2018 (45) Date of Patent:

(56) References Cited

U.S. PATENT DOCUMENTS

2009/0319529 Al* 12/2009 Bartlett G06F 21/6209

OTHER PUBLICATIONS

"Ram Narayan Krishnan, Group-Centric Secure Information Shar

ing Models, Fall Semester 2009, Publisher: George Mason Univer
sity, pp. 20-21, 26-28,64-66 and 93-95" (Year: 2009).*
"Amit Mahale, Group Centric Informat ion Sharing using Hierar
chical Models, Jun. 29, 2011, Publisher: UMBC, pp. 10-12" (Year:
2011).*
"Flavio Lerda, Distributed-Memory Model Checking with SPIN,
Aug. 27, 1999, Springer, Berlin, Heidelberg, p. 6" (Year: 1999).*

* cited by examiner

Primary Examiner - Hadi S Armouche
Assistant Examiner - Shaqueal D Wade
(74) Attorney, Agent, or Firm - Jackson Walker LLP

(57) ABSTRACT

In the present specification, a methodology for incremental
security policy specification at varying levels of abstraction
is disclosed. The method maintains strict equivalence with
respect to authorization state and is based on the group
centric secure information sharing (g-SIS) domain, which is
known in the art. A g-SIS authorization policy is specified
statelessly, in that it focuses solely on specifying the precise
conditions under which authorization can hold in the system
while only considering the history of actions that have
occurred. The policy supports join, leave, add, and remove
operations, which may have either strict or liberal semantics.
The stateful application policy is then specified using linear
temporal logic. The stateful specification is authorization
equivalent to the stateless specification, and may enforce
well-formedness constraints.

7 Claims, 4 Drawing Sheets

state,

SL(u,g)
-iAuthz(u.o,g)

Part (i) Stateless Trace)-·
phase,

SJReq(u,g)
SAReq(o,g)
isAuthz{u,o,g)

phase,

~~=~~~~(~.~~!:;~:~:~) table(u,g) ~~~~~.g)
authzSF(u,o,g) I 01 lu join strict I

tab o,

0110 add strict

Authz

~
Part (ii) Stateful Trace

userEvent(u,g,leave, 1,strlct)
authzSF(u.o,g)

state
1

0110 add strict

Authz

U.S. Patent Oct. 30, 2018 Sheet 1 of 4 US 10,116,664 B2

~ ~ ti) ti)

r r
< < .J .J ti) t/J

~

r •
~ r ~ ~ c<
<{ ~ ...J

~ :::> :::>
2 2
0::: 0:::
0 0
LL LL.

<C
.J

>
<C ..,

.J ti)
~ .J

.J .J
r r
< <
.J ~ (/J (/J

r r ..,
.J

> <C .., .J
ti)

state
0

interval
1

state
1

1

Phase 1 ! Ph~se 2

1

..

2.1 2.2

Capture action + authz requests
(table 2)

Process action requests
(tables 2 & 3)

:FIG. 2

Process authz requests
(tables 2 & 4)

e •
00
•
~
~
~
~ = ~

0
(')

:-+-
(.H

'"o
N
0
QO

1J1

=('D
('D
N

0
.i;...

d
rJl

"'"" '"=
"'"" "'"" 0--,

°" 0--,
~

= N

state,, state1

I I -..
SJ(u,g) ---- --------- --------- I -----

SA(o,g) SL(u,g)
Authz(u,o,g) -iAuthz(u,o,g)

~mapping
interval,,

Part {i) Stateless Trace

state
111

inte1Val,

a-mapping

st.ate
1

phase, I _?hase2 I phase, J phase2 I
SJReq(u,g) userEvent(u,g,joln,O,strict) SLReq(u,g) userEvent(u,g,leave, 1,strict)
SAReq(o,g) objectEvent(o,g,add,O,strict) table(u,g) isAuthz(u,o,g) authzSF(u,o,g)
isAuthz(u,o,g) authzSF(u,o,g) I 0llu join strict I

table(o,g)

I 0110 add strict I
Authz

~
Part (ii) Stateful Trace

:fI(;. 3

table(u,g)

0llu join strict
1 llu leave strict

table(o,g)

[-011~-~dd--strict]

Authz I •• m Hm m m•• Hm•• 1

e •
00
•
~
~
~
~ = ~

0
(')

~
(.H

'"o
N
0
QO

1J1

=('D
('D
(.H

0
.i;...

d
r.r;_

"'"" '"=
"'"" "'"" 0--,

°" 0--,
~

= N

U.S. Patent Oct. 30, 2018 Sheet 4 of 4 US 10,116,664 B2

NETWORK
INTERFACE

430

PROCESSOR MEMORY --410 420

STORAGE
440

SECURED
OBJECTS

442

BUS
470

OUTPUT
450

AUTHORIZATION SYSTEM
~

J'I(j. 4

AUTHORIZED
USER
480

AUTH.
ENGINE

422

INPUT
460

UNAUTHORIZED
USER
482

US 10,116,664 B2
1

AUTHORIZATION POLICY FOR
GROUP-CENTRIC SECURE INFORMATION

SHARING

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims priority to U.S. Provisional Appli
cation 61/527,816, entitled "Stateful Pi-System Security
Specification." The foregoing is incorporated herein by
reference.

BACKGROUND OF THE INVENTION

This specification relates to the field of group-centric
secure information policies, and more particularly to imple
mentation of a stateful group-centric secure information
policy based on a stateless specification.

2
tion policies. This specification discloses a method of bridg
ing the specification of an authorization policy on the one
and and enforcement of an authorization-equivalent policy
on the other hand. The group-centric secure information
sharing (g-SIS) model is used as a platform. Ing-SIS, users
and objects are brought together in a group to promote
sharing and collaboration. Users may join and leave and
objects may be added and removed from the group. The join,
leave, add and remove operations may have different autho-

lO rization semantics.

A formal set of core properties that are required of all
g-SIS specifications are defined herein, given the basic
group operations of join, leave, add and remove. Further, a

15 specification, called the it-system, is disclosed and proved to
satisfy the core g-SIS properties.

Group-centric secure information sharing schema are
known in the prior art. Such schema are known to be 20

relatively abstract in construction.

The it-system specification is defined statelessly using
first-order linear temporal logic (FOTL). (FOTL differs from
the familiar propositional linear temporal logic by incorpo
rating predicates with parameters, constants, variables, and
quantifiers.) The it-system is not directly enforceable in the
way it is specified because it does not define the data
structures that need to be maintained in order to make

The Bell-LaPadula model is also known in the art, and
provides a lattice structure of security labels and simple
security and star-properties to enforce one-directional infor
mation flow in the lattice. This is a stateful specification in 25

that it describes data structures and rules that are enforce-

authorization decisions. Instead, the FOTL characterization
of the it-system simply specifies the sequence of actions that
need to have occurred in the past in order for authorization
to hold at any given state. For example, a stateless specifi
cation may specify that a user may access an object in a

able. The non-interference specification is stateless and
makes reference only to input-output behavior of a secure
system.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of stateless traces in s stateless
security policy.

30 group in a particular state if and only if the user had joined
the group as a member in the past, the object has been added
to the group (whereby the object is said to be "in" the group)
in the and both the user and object are current members of
or in the group (that is, the user has not left and the object

FIG. 2 is a time-domain diagram of operations in a
stateful security policy implementation.

FIG. 3 is a diagrammatic representation of mapping
between a stateless security specification and an authoriza
tion-equivalent stateful security specification.

35 has not been removed). The characterization in FOTL does
not specify how to enforce that policy. A stateful specifica
tion, on the other hand, specifies the data structures that need
to be maintained in the system so that they can be inspected
in each state and authorization decisions can be made.

FIG. 4 is a block diagram of a hardware implementation 40

of an authorization system.

SUMMARY OF THE INVENTION

This specification discloses a method of developing a
stateful specification for the it-system and demonstrates that
the stateful specification is authorization equivalent to the
stateless it-system specification. That is, a user will be

45 authorized to access an object in a group in the stateful
it-system specification if and only if it is also the case in the
stateless it-system specification.

In one aspect, a methodology for incremental security
policy specification at varying levels of abstraction is dis
closed. The method maintains strict equivalence with
respect to authorization state and is based on the group
centric secure information sharing (g-SIS) domain, which is
known in the art. A g-SIS authorization policy is specified
statelessly, in that it focuses solely on specifying the precise
conditions under which authorization can hold in the system
while only considering the history of actions that have
occurred. The policy supports join, leave, add, and remove
operations, which may have either strict or liberal semantics. 55

The stateful application policy is then specified using linear
temporal logic. The stateful specification is authorization
equivalent to the stateless specification, and may enforce
well-formedness constraints.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

1. Introduction

A known issue in access control implementations is the
consistency of specification and enforcement of authoriza-

50

The separation of stateless and stateful specifications has
a number of important virtues. A security policy researcher
developing the stateless specification is not distracted by the
data structures that need to be designed and maintained.
Instead, she can focus purely on the precise characterization
of the conditions under which authorization should hold in
her system. Formal specification using FOTL also allows
one to conduct rigorous formal analysis using automated
techniques such as model checking, which is known in the
art.

Once the stateless specification is developed, one can then
60 focus on the data structure design and mechanisms needed

to enforce the stateless policy. While the stateless specifi
cation may be too abstract for a non-expert in the field, the
stateful specification is relatively concrete and understand
able, and can be implemented by relatively competent

65 programmers. The techniques disclosed herein include algo
rithmic specification of stateful it-system and induction for
proofs.

US 10,116,664 B2

Future/
Past

Future

3
TABLE 1

Intuitive swnmary of temporal operators

Operator

0

D

Read as

Next

Henceforth

Explanation

(Op) means that the formula p holds
in the next state.

4
2.2.1. Constraint A
An object cannot be Added and Removed and a user

cannot Join and Leave at the same time. 1

1Note that here and below we introduce names of the form i:1 for each of the
formulas for later reference. The equality introduces shorthand for the
respective formulas.

i:0~D(~ (Add/\Remove)/\~(Join/\Leave))

2.2.2. Constraints B

w Unless

(Op) means that the formula p will
continuously hold in all future states
starting from the current state.
It says that p holds either until the
next occurrence of q or if q never
occurs, it holds throughout.

10 For any given user or object, two types of operations

Past • Once

s Since

(+p) means that formula p held at
least once in the past.
(p S q) means that q happened in the
past and p held continuously from
the position following the last
occurrence of q to the present.

15

cannot occur at the same time.

i: 1 ~'ef;JD((i"))~~(join;/\join))/\'efiJD((i"))~~
(leave;/\leave))/\

'efiJD((i"))~~(add;/\add))/\'efiJD((i"))~~(re

move/\remove;))

2. Foundational Concepts

2.1. Overview of g-SIS

For example, a user cannot join with 2 different semantics
20 in the same state. Multiple occurrences of the same event in

a given state (i.e. when i equals j above) are treated as a
single occurrence of that event in FOTL.

2.2.3. Constraint C
If a user u joins a group, u cannot join again unless u first

25 leaves the group. Similar rules apply for other operations.

In g-SIS, users may join, leave and re-join the group as
members. Similarly, objects may be added, removed and
re-added as being "in" the group. Authorization may hold in
any state depending on the relative membership status of the
user and object in question. The group operations join, leave,
add and remove can be of different types with various
authorization semantics. The following shorthand denotes 30

different semantics of group operations:

i:2~D(Join~O(~Join W Leave))/\D(Leave~O
(~Leave W Join))/\

D(Add~O(~Add W Remove))/\O(Remove~O
(~Remove W Add))

2.2.4. Constraint D
Join(u,g)=Goin1(u,g)Vjoin2 (u,g)V ... V joinm(u,g))
Leave(u,g)=(leave1 (u,g)Vleave2 (u,g)V ... V leaven(u,

g))
Add(o,g)=(add1(0,g)Vadd2 (0,g)V ... V addp(o,g))
Remove(o,g)=(remove1 (o,g)Vremove2 (o,g)V . . . V

removeq(o,g))

A Leave event cannot occur before Join. Similarly for
35 objects.

i:3~D(Leave~ + Join)/\D(Remove~ +Add)

In any given trace, an object needs to be added before a
For instance, join1 (u,g) could represent a species of join

operation that is different in authorization semantics from
that of species join2 (u,g). Join(u,g) denotes that a generic
join operation has occurred for u in g.

40 remove operation may occur in any state.

3. The Stateless it-System G-SIS Specification Definition 1 (State in Stateless Specification). A state in the
stateless specification is an interpretation that maps each
predicate in the language to a relation over appropriate
earners.

The it-system specification supports two types of seman-
45 tics for join, leave, add and remove operations namely: strict

and liberal. The predicates in the g-SIS language include action
predicates such as Join, Leave, Add and Remove and an
authorization predicate Authz. These predicates are specified
over appropriate sorts (types). The semantic values over
which a variable ranges depend on the variable's sort and are 50

drawn from a set that is called the carrier of that sort. In this

A strict join (SJ) allows the joining user to access only
those objects added on or after the state in which the user
joins (called the "join state"). A liberal join (LJ), in addition,
allows the joining user to access objects added to the group
prior to the join state.

specification, standard upper-case roman characters such as
U (user sort) are used to denote sorts and calligraphic letters
such as U (user carrier) to denote the corresponding ear
ners.

On strict leave (SL), the user loses access to all objects in
the group. On liberal leave (LL), the user retains access to
all objects that were authorized in the state when the user left

55 (called the "leave state").
Definition 2 (Stateless Trace). A trace in the stateless speci
fication is an infinite sequence of states.

The formulas specified in FIG. 1 disclose stateless traces.
2.2. Well-Formed Traces
The following formulas treat the authorization a user has 60

to access an object independently of actions involving other
users and objects. It is often convenient to omit the param
eters in all of the predicates. Quantifiers are also omitted as
they can be easily inferred from the context Goin and leave
are user operations, add and remove are object operations). 65

Four constraints are disclosed to ensure that a trace is well
formed, as follows:

Similarly, for objects, on strict add (SA), the added object
may be accessed only by users who have joined at or prior
to the state in which the object is added to the group (called
the "add state"). Liberal add (LA) does not have such a
constraint.

On strict remove (SR), the object cannot be accessed by
any user. On liberal remove (LR), the object may be
accessed by users who were authorized to access the object
in the state where the object was removed (called the
"remove state").

Given that different users may join and leave with differ
ent semantics and different objects may be added and

US 10,116,664 B2
5

removed with different semantics, the it-system specifies the
precise conditions under which authorization for a user to
access an object in a group may hold in the system.
Definition 3 (Stateless it-system). The stateless it-system
specification, itstateless· accepts traces satisfied by the fol
lowing formula:

V u.V o.V g.D(Authz(u, o, g, read) A1 V A2) A r1
Osjs3

where,

'-1~cc~sL/\~SR)S ((SAVLA)/\((~LL/\~SL)

S (SJVLJ))))

'-2~((~sL/\~SR)S (LJ/\((~sR/\~LR)S LA)))

and the i:/s are the well-formedness constraints.

Given a specific user and an object, formula A1 (FIG. 1)
handles the scenario where an add operation occurs after a

main(){

10

15

6
ment. Those having skill in the art will readily appreciate

that the identical methods can be used to specify write

authorization.

4. Stateful it-System

The stateless specification is highly abstract and specified

using FOTL. The stateful specification, in contrast, is con

crete and may be implemented by a reasonably competent

programmer.

The stateful specification is "reasonably" authorization

equivalent to the stateless specification. "Reasonable"

authorization equivalence is achieved because, while theo

retically identical, practical distributed systems face real

world issues such as network delay and caching, which will

lead to authorization inconsistencies

TABLE 2

Stateful Specification (Request Handling)

II Phase 1 and 2 time periods below are allocated such that phase 1 occurs before
II phase 2 and tasks in perTick step below conclude before the tick interval elapses.
perTick: During each tick interval i {

Phase 1:{ II Steps 1.1, 1.2 and 1.3 may execute concurrently.
1.1. For each user, accept the first request received and
store that information in variable userReq(u,g).

}

11 the request received could be one of:
II SJReq(u,g), LJReq(u,g), SLReq(u,g) and LLReq(u,g).
1.2. For each object, accept the first request received and
store that information in variable objectReq(o,g).
11 the request received could be one of:
II SAReq(o,g), LAReq(o,g), SRReq(o,g) and LRReq(o,g).*I
1.3. Accept all the authorization requests:

if (isAuthz(u,o,g)) authzReq~authzReq U isAuthz(u,o,g)
II isAuthz(u,o,g) represents authorization request for user u to access object o.

Phase 2:{ II Steps 2.1 and 2.2 must be sequential. However, the processing of
II captured requests in step 2.1 may be done concurrently.
2.1. For each captured request, invoke the corresponding fllilction in
table 3 with the appropriate parameters.
II far example, ifuserReq(u,g) is SJReq(u,g), invoke userEvent(u,g,join,i,strict).
2.2. Process each authorization request:

for each (isAuthz(u,o,g) E authzReq)
authzResult(u,o,g)~authzSF(u,o,g);

Reset all variables appropriately.

50

join operation and formula A2 (FIG. 2) handles the scenario

where an add operation occurs before a join operation.

(Here, because of the semantics of the strict add and strict

with the idealized stateless specification. Such systems are
in practice only approximate to the stateless specification.
One such approximation is the notion of stale-safety (known

join, there is no need to check for their occurrence in formula 55 in the art) that bounds acceptable delay between the time at
which an action (such as reading an object) was known to be
authorized and the time at which that action is actually
performed.

"-2)·
The stateless specification above is consistent with the

semantics of strict and liberal operations discussed earlier. In

addition, a set of core security properties are specified that 60
As the first transition from an abstract specification

towards an implementable specification, the stateful speci
fication is centralized in the sense that authorization deci
sions are made based on data structures maintained in a
specific repository for each user and object. There may be
different repositories for different users and objects that may

are required of any g-SIS specification. The stateless Ir

system specification discussed above satisfies those core

properties.

Although g-SIS stateless specification supports both read

and write operations this disclosure discusses a stateless

specification for read authorization as an exemplary embodi-

65 be distributed on the whole. Specifically, there is no concern
about replication of data structures of a user or an object and
maintenance

US 10,116,664 B2
7

TABLE 3

Stateful Specification (enforcing well-formedness constraints.)

8
4.1. Stateful it-System Design

int userEvent(User u, Group g, uEvent e, interval t, uSemantics s){

1. Check that the current uEvent e is not the same as the
uEvent value in the previous tuple in table(u,g). If so, return 0.

II This ensures, for example, that a join event is not followed
II immediately by another join.

In the stateful it-system, the data structures for making
authorization decisions are simple relations for users and
objects in the group. These are referred to informally as
tables. For instance, the data structure for a user u in a group
g, table(u,g), contains a history of that user's joins and
leaves in the group. (The group parameter g is specified for
being precise. This is ignored for the remainder of this

}

2. Also check, in case the table is empty, then e is not an SL or LL.
If so, return 0. 10 disclosure, which focuses only on one group at any time.)

The format of each tuple in table(u,g) is: <time-stamp, event,
semantics>. Here event is either

II This ensures that the first user event entry in table(u,g) is not leave.

TABLE 3-continued

TABLE 4

Stateful Specification (Authorization Decision)

int authzSF(User u, Object o, Group g){
step 1: Fetch tables table(u,g) and table(o,g). If either table is empty, return 0.

Merge sort table(u,g) and table(o,g) in ascending order of timestamp.
In case of same timestarnp, follow precedence rules apply:

(i) Add and Join same timestamp: Add follows Join
(ii) Join and Remove same timestamp: Join follows Remove
(iii) Add and Leave same timestamp: Add follows Leave
(iv) Remove and Leave same timestamp: any order

Let n be the total number of entries in the merged table.
step 2: for i~l ton{

case event[iHoin{
step 2a: (i) Step down the table looking for an add event. If a leave event is encountered

prior to add event, continue step 2 for loop. If no add event found, return 0.

}

(ii) From the point the add event was found in the table, step down all the way
to index n ensuring no SL or SR is encmmtered.
If SL found, continue step 2. If SR found, continue step 2a from current index.
(iii) return 1 ;

case event[i]~add && eventType[i]~liberal{
step 2b: (i) Step down the table looking for an LJ event. If a remove event is encountered

prior to LJ event, continue step 2 for loop. If no LJ event found, return 0.

step 3: return O;
}

(ii) From the point the LJ event was found in the table, step down all the way
to index n ensuring no SL or SR is encmmtered.
If SR found, continue step 2. If SL found, continue step 2b from current index.
(iii) return 1 ;

join or leave, semantics is either strict or liberal and time
stamp specifies the time at which this event occurred as per

Stateful Specification (enforcing well-formedness constraints.)

3. Enter <t,e,s> into table(u,g) and return 1.

int objectEvent(Object o, Group g, oEvent e, interval t, oSemantics s){
1. Check that the current oEvent e is not the same as the

45
a global clock. Thus a snapshot oftable(u,g) at any point in
time gives a chronological history of the user joining and
leaving (possibly many times) and whether they were of
strict or liberal type. Similarly, a tuple in an object data
structure, table(o,g), has the same format as the user table oEvent value in the previous tuple in table(o,g). If so, return 0.

II This ensures, for example, that an add event is not followed
11 immediately by another add.
2. Also check, in case the table is empty, then e is not an SR or LR.
If so, return 0.
II This ensures that the first object event entry in table (o,g) is not
remove.
3. Enter <t,e,s> into table(o,g) and return 1.

of its consistency. There is also no concern about distribut
ing parts of the data structure of a user or an object.
Authorization decisions for a specific user to access a
specific object are made based on their specific data struc
tures maintained at specific repositories.

The stateless specification does not admit traces of actions
that do not obey the well-formedness constraints. It there
fore intentionally does not specify how to handle ill-formed
traces. But at the stateful specification level of abstraction,
well-formedness needs to be addressed.

50 except event is either add or remove. In the exemplary
embodiment, the number of tuples in any table is not
bounded. This can be advantageous. For example, it facili
tates user data structures not being touched when an object
data structure needs to be updated (and vice-versa). Of

55 course, there are other data structure designs where they may
be bounded.

The stateful specification for the it-system is presented in
tables 2, 3 and 4. The authzSF function in table 4 returns 1
if a user u is authorized to access an object o, 0 otherwise.

60 It does so by inspecting the data structures: table(u,g) and
table(o,g). As mentioned earlier, the stateful it-system must
also specify how the requests to join, leave, add and remove
and requests to ascertain if users are authorized to read
objects are processed. Tables 2 and 3 specify one of many

65 possible ways to do this.
Each of these three components of the stateful it-system

is discussed in further detail below.

US 10,116,664 B2
9

4.2. Stateful it-System Specification
An overview of how the functions in the tables 2, 3 and

4 interact is given in FIG. 2.
The main function in table 2 receives and processes action

requests (requests to join, leave, add and remove) and
authorization requests during the time interval between any
two clock ticks. The function works in two phases during
each time interval. During phase 1, it receives the action and
authorization requests. It filters the action requests so that
only the first user request and the first object request are
captured. (Different strategies for capturing action requests
may be employed--e.g. it need not be the first request
received that is captured.) This ensures, for instance, that
only a join or a leave request of a specific type (strict or
liberal) is captured for any given user but not both.

However, all authorization requests are captured during
phase 1. When phase 1 completes, further new requests are
not admitted. During phase 2, first all action requests
received in phase 1 are processed using the user and object
event processing functions in table 3 and then all the
captured authorization requests are evaluated using authzSF
function in table 4. At the end of phase 2, the data structures
are up-to-date and authorization decisions are complete for
all the requests received in phase 1.

The function userEvent in table 3 processes the user
requests received by the function in table 2. The check
performed in step 1 ensures that user requests to repeatedly
join without an intermittent leave (and vice-versa) are
ignored. Similarly, step 2 ensures that the first entry in the
table does not begin with a leave operation. If all is well, a
new tuple is entered into the table and the function returns
1. The function returns 0 in all other cases. The objectEvent
function similarly processes object requests. Tables 2 and 3
together achieve well-formedness constraints of stateless
it-system specification.

10
case looks for a liberal add followed by a liberal join. The
remaining part of the case statements conduct checks to
ensure that there is no subsequent deauthorizing event such
as strict leave or remove following this point of authoriza
tion. If there is none, the algorithm returns 1 indicating that
the user is authorized. Otherwise it returns 0 after step 3.

4.3. Implementation Considerations
The stateful specification presented in tables 2, 3 and 4

can be comprehended and implemented by a competent
10 programmer as compared to the temporal logic based state

less specification. Since the stateless specification has been
analyzed and certain security properties have been proven
and has been shown to be authorization equivalent to the

15
stateful specification, the stateful specification also is guar
anteed to have those security properties.

The authzSF function in table 4 is not designed for
efficiency but for ease of presentation. Those having skill in
the art will recognize that it can be optimized using tech-

20 niques known in the art. The worst case time complexity of
this function is roughly 0 (n2

) where n is the sum of the
number of events in the user and object tables. This is
because for each of the n iterations of the outer for loop in
step 2, the loops in one of the inner case statements could run

25 through a maximum of n iterations.
This stateful specification has a few limitations. For

instance, both the user and object tables are unbounded.
Nevertheless, this is not a major issue in many practical
applications in which membership status of users and

30 objects do not change frequently. Also, due to nature of
phases 1 and 2 in table 2, all action requests need to be
received before they can be processed. Thus during phase 2
of interval, no requests will be accepted. The ordering of
tasks in two phases ensures that the requests received during

35 the time interval will affect the authorization values that hold
at the upcoming state. These constraints may be unaccept
able for certain application scenarios. Addressing such limi
tations of the stateful specification is within the abilities of
those having skill in the art. The current stateful specifica-

The function authzSF in table 4 returns 1 if a user u is
authorized to access an object o in group g, 0 otherwise. This
algorithm begins by taking the corresponding user and
object tables as input. If either table is empty (i.e., either the
user or the object has never been a member of the group), the
user is not authorized to read the object. By appending the
tuples to the respective tables as the events occur, table(u,g)
and table(o,g) are pre-sorted with respect to the time-stamp.
The function merge sorts these two tables based on the
time-stamp entries to obtain a table of events of u and o in
the chronological order of occurrence. In the event a user
and object entry in the respective tables have the same
time-stamp, precedence rules resolve the tie for sorting the
tuples consistent with temporal operator semantics in the
stateless it-system. If Add and Join occur at the same time,
Add follows Join. If Join and Remove occur at the same
time, Join follows Remove. If Add and Leave occur at the
same time, Add follows Leave. Finally, if Remove and
Leave occur at the same time, they can be merge sorted in
any order. Let the total number of entries in the merged table 55

be n.

40 tion design allows user and object data structures to be
maintained in a distributed manner so that if a user mem
bership status changes, it does not require updating data
structures of other users and objects in the system. Those
having skill in the art may design alternate stateful specifi-

45 cations for the same stateless specification with different
trade-offs. For instance, one can maintain a single data
structure that involves both users and objects. But changes
in any object's group membership status will entail updating
entries for all users in the system. This would have limita-

50 tions in distributing it.

5. Equivalence of Stateful and Stateless it-System
Specifications

This section shows that the stateful specification is autho
rization equivalent to the stateless specification. That is, in
all possible traces, a user will be authorized to access an
object at any given state in the stateful it-system if and only
if it is also the case in the stateless it-system.

The algorithm proceeds by iterating through each tuple in
this new merge sorted table. Event[i] fetches the specific
event (such as join or add) from the i'h entry in the merged
table and eventType[i] fetches the respective semantics 60

(such as strict or liberal) of that event from the same tuple.
Each of the two cases in the for loop looks for an overlap
ping period of authorizing membership between the user and
object, much like formulas A1 and A2 . The first case looks for

The stateful specification has a notion of traces similar to
the traces of the stateless specification.
Definition 4 (State in Stateful Specification). A state in the
stateful specification is a specific interpretation of every user
and object data structure maintained in the system at the end

a join event followed by an add event (see Formula A1 (FIG. 65 of every clock tick.
1)) and the second case looks for an add event followed by
a join event (see Formula A2 (FIG. 1)). As per A2 , the second

Definition 5 (Stateful Trace). A trace in the stateful speci
fication is an infinite sequence of states.

US 10,116,664 B2
11

Definition 6 (Stateful it-system). The stateful r-system speci
fication, itstatefuz, is given in table 2 which consists of
functions from tables 3 and 4.

Given a stateless and a corresponding stateful trace,
authorization is equivalent in every state. To establish this
"correspondence," mappings are disclosed that would take a
stateless trace and create a stateful trace and vice-versa.

5.1. Notation
a denotes a stateless trace and a denotes a stateful trace.

a, refers to state i in a trace a with infinite states. a,J denotes 10

a state i in a where only the first j states are considered.
Actions are represented using relations. Thus (u,g) EE
[SJ stateless l a, denotes that a user u is strictly joined to

group g in state i in a stateless trace a. Similarly, (i, Join,
Liberal) E [table(u,g)S a, denotes user u has liberally 15

joined group g in state i in a stateful trace a.

12
Lemma 3 (Soundness). For every trace a accepted by
itstatefuz, there exists a ~-mapped trace a that is accepted by
itstateless such that:

'efiEN·'eftE(U,0,Q)·tE IAuthzn,,azefal lc\~tE
[Authzn,,azeb J CT;

Lemma 4 (Completeness). For every trace a accepted by
itstateles5' there exists an a-mapped trace a that is accepted by
itstateful such that:

'efiEN·'eftE(U,0,Q).tE IAuthzn,,azefal JCT,~IE
[Authzn,,azeb J 0,

The proofs for lemmas 3 and 4 are provided m the
appendix. The proofs are inductive.
Theorem 1. The stateful and stateless it-system specifica
tions are authorization equivalent That is:

'efiEN ·'eftE(U,0' y) ·tE

[Authzn,,azefal J 0,~tE [Authzn,,azeb J CT;

The time interval that a clock tick corresponds to is
abstract. Any event request (such as a request to join) that is
processed during a transition from clock tick (state) i to i+l
will receive a time-stamp of i+l. This convention makes
stateful specification consistent with the FOTL semantics in
the stateless specification.

20 Proof 1. The theorem follows from lemmas 3 and 4.

Definition 7 (Action Trace). Given a stateless or stateful
trace in the it-system, an action trace is a sequence of states
excluding the authorization relation.
Definition 8 (Action Equivalence). A stateful trace a and a
stateless trace a are action equivalent if the join, leave, add
and remove actions match for every user and object in every
group in the corresponding states in a and a.

25

Definition 9 (a-mapping). Given a stateless trace a in 30

itstatelexs' a-mapping creates an action equivalent stateful
trace a in itstatefu/·

The above theorem states that in every state in a stateful
trace, the authorization relation is equivalent to that of the
corresponding state in a stateless trace.

6. Hardware Implementation

FIG. 2 is a block diagram of a user authorization system
400. The purpose of user authorization system 400 is to
protect secured objects 442 stored in storage 442 by granting
access to the secured objects 442 to an authorized user 480
and denying access to an unauthorized user 482. The exem-
plary layout of authorization system 420 is presented as a set
of logical interconnections and does not represent physical
connections. For example, processor 410 is shown connect-

Rules used for a-mapping are straight-forward. For
example (see FIG. 3), for each (u,g) E [SJ stateless] a,, create
an entry (i, Join, Strict) in [table(u,g)] a,.

This is achieved by sending a SJReq(u,g) (see table 2)
during phase 1 in the time interval between the state tran
sition from o,_ 1 to a,. Similarly, for each (u,g)

35 ing to storage 440 via bus 470, but in some exemplary
embodiments, a process 410 implementing an authorization
engine 422 may be located in a completely separate physical
computing device from storage 440, and there may be

E [LJstµteless] a,, create an entry (i, Join, Liberal) in [table
(u,g) l a,. Similar rules apply to other predicates.
Definition 10 (~-mapping). Given a stateful trace a in
itstatefuz, ~-mapping creates an action equivalent stateless
trace a in rr,stateless·

40

Rules used for ~-mapping are also straight-forward. For
example (see FIG. 3), for each tuple in [table(u,g) la,- 45

[table(u,g) l o,_l, create that entry in corresponding relation
in the stateless trace. That is if (i, Join, Strict) E [table
(u,g) la,- [table(u,g) l o,_l, then create an entry (u,g) in
[SJ stateless] a). Similarly, for each (i, Join, Liberal) E
[table(u,g) l a,, create an entry (u,g) in [LJstateless l a,. 50

Similar rules apply to other operations in the stateful speci
fication.

additional intervening layers of hardware and software.
Authorization system 420 is controlled by a processor

410, which may be connected to other system components
via a bus 470. Processor 410 may be a microprocessor or
microcontroller or other similar programmable or custom
logic device, such as a field-programmable gate array,
application-specific integrated circuit, or programmable
logic array. Processor 410 interfaces with a memory 420,
which in an exemplary embodiment is low-latency random
access memory. Memory 420 may also be embodied as other
memory technologies, such as flash, read-only memory, or
other data storage media. Memory 420 is shown connected
to processor 410 in a "direct memory access" (DMA)
configuration, but in some embodiments may be connected
to processor 410 via bus 470. Memory 420 has residing
therein an authorization engine 422. Authorization engine

Lemma 1. For every action trace a that is generated by
itstateless' a stateful action trace a constructed using a-map
ping is accepted by itstatefuZ· 55 422 includes executable software instructions for execution

The term "accepted by" above, means that by inputting an
a-mapped trace to the stateful it-system, the data structure it
maintains must reflect the exact action trace of the stateless
it-system (see FIG. 3 for example).
Lemma 2. For every action trace a generated by itstatefub a 60

stateless action trace constructed using ~-mapping is
accepted by itstateless·

The term "accepted by" above means that the ~-mapped
stateless action trace will be well-formed as per the stateless
it-system specification. The proofs of lemmas 1 and 2 are 65

provided in the appendix. Next, we have the following 2
lemmas.

by processor 410, and implements the authorization methods
described in this specification. For example, authorization
engine 422 may have programmed therein a security policy
for determining whether a user is permitted to access
secured objects 442 under certain contexts.

A network interface 430 is also provided so that autho
rization system 400 may be networked to other computing
devices. Network interface 430 may also represent a security
threat as it increases access to resources controlled by
authorization system 442.

A data storage 440 is provided, and in some embodiments
may include a higher-volume and higher-latency memory

US 10,116,664 B2
13

technology than memory 420. Storage 440 may comprise at
least one non-volatile storage medium while memory 420
may be a volatile storage medium. For example, storage 440
may include hard disk technology, while memory 420 may
include dynamic random access memory (DRAM) technol
ogy. In the exemplary embodiment, But it is expressly
anticipated by this specification that in some cases, storage
440 and memory 420 may be combined in a single physical
device. Storage 440 may have stored therein secured objects
442, which may be any type of data, and which in some 10

embodiments may be encrypted or otherwise obfuscated.
Users 480, 482 interact with the authorization system via

input driver 460 and receive output via output driver 450.
Input driver 460 and output driver 462 may include any of
numerous human interface devices known in the art, includ- 15

ing for example keyboards, mice, speech recognition, text
to-speech engines, displays, and audio drivers. Input driver
460 may also include authentication mechanisms, such as a
password input, card or other security token reader, or
biometric input device such as fingerprint, voice, or retinal 20

recognition.
In an exemplary interaction, authorized user 480 uses

input driver 460 to try to access secured objects 442. The
interaction may further comprise authorized user 480 pro
viding one or more security tokens such as a password, key 25

phrase, decryption key, or biometric data. Processor 410
accesses authorization engine 422 in memory 420 and
determines that in the present context, authorized user 480
is permitted to access secured objects 442. Process 410 may
then provide secured objects 442 to authorized user 480 in 30

a usable form. For example, secured objects 442 may be
decrypted and provided to authorized user 480 in a usable
form.

14
table 3, it is clearthat we can generate a well-formed 01 •1 for
any number of users and objects in the first state since the
functions userEvent and objectEvent enforce that a trace in
Jtstateless do not begin with leave or remove for any user or
object.
Induction Hypothesis: For every Jtstateless trace of length k,
there exists an a-mapped Jtstateless trace of length k.
Induction Step: Assuming the induction hypothesis is true,
for every Jtstateless trace oflength k+ 1 there exists a rt stateless

trace of length k+l.
Given a well-formed trace a of length k, consider the set of
actions that can belong to a state that can be appended to a
to create a trace of length k+l such that it would be
well-formed. Fixing an arbitrary user u, an event of type join
(SJ or LJ) can occur in ak+l only ifthere has not been a join
event since a state aP (where psk) in which an event of type
leave (SL or LL) had occurred. Also, there cannot be a
simultaneous leave event in ak+l·

Given this observation, if we generate a join request with
appropriate parameters in table 2 (e.g. SJReq(u,g)) in phase
I in the time interval between ak and ak+u the userEvent
function in table 3 will update the user's table with a
corresponding entry (e.g. (k+lllu,join,strict)) in ak+l ·This is
because given a well-formed trace in rtstatefuZ with the above
constraints in the corresponding Jtstateless trace, the user Event
function will obey the join request.
Similar argument applies to other operations that could have
occurred in a k+l. This proves the induction step and hence
the lemma.
Lemma 2. For every action trace Cr generated by Jtstateles5' a
stateless action trace constructed using ~-mapping is
accepted by Jtstateless·

Proof 3. We need to show that for every trace generated by
35 Jtstateles5' an action equivalent Jtstateless trace constructed

using ~-mapping will be well-formed and hence accepted by

In another example, unauthorized user 482 tries to use
input driver 460 to access secured objects 442, which may
include providing unacceptable security tokens. Processor
410 accesses authorization engine 422 to determine that
unauthorized user 482 is not permitted to access secured
objects 442 in the given context. Processor 410 does not
provide unauthorized user 482 with secured objects 442, and 40

may provide an error message. In some embodiments,
processor 410 may also report (for example, via network
interface 430) that an unauthorized access attempt was
made.

'Jf,stateless· ,.,

Basis: Consider a Jtstateless trace a of length 1. As per the
functions specified in table 3, the events in al 1 could only
be of type join or add. Evidently, a corresponding Jtstateless

action trace generated using ~-mapping would be well
formed. (The argument is similar to that of the basis in
lemma 1.)

7. Appendix of Proofs

Induction Hypothesis: For every Jtstateless trace of length k,

45 there exists an action equivalent Jtstateless trace of length k
that is well-formed.

Lemma 1. For every action trace a that is generated by
Jtstateless' a stateful trace Cr constructed using a-mapping is
accepted by Jtstatefu/·

Proof 2. We need to show that every well-formed trace
generated by Jtstateless will also be generated by Jtstateless· Fix
an arbitrary well-formed stateless trace a.
Basis: For every Jtstateless trace a of length 1, there exists an
a-mapped Jtstateless trace a of length 1. For each event in

Induction Step: Assuming the induction hypothesis is true,
for every Jtstateless trace oflength k+l, there exists a Jtstateless

trace of length k+l that is well-formed.

50 Given a set of new tuples that will be entered in a k+l k+u it
is straight-forward to generate a trace ak+l using ~-mapping.
This has to be a well-formed trace in Jtstateless· (The argu
ment for this similar to that of the induction step in lemma
1.) This proves the lemma.

55
Lemma 3 (Soundness). For every trace a accepted by
Jtstateles5' there exists a ~-mapped trace a that is accepted by
Jtstateless such that:

0 1 1 , we generate a corresponding event request from table
2 during phase 1 in the time interval leading up to a 1 1 and
show that the request will be accepted by the correspo~ding
function in table 3. If the set of events in 0 1 1 is empty, it is
trivial to generate a 01 1 with empty user an°d object tables. 60

Fix an arbitrary user u" and object o. The event in the first
state in a cannot be a leave or remove for these carriers.
Thus the only possible events for these carriers are strict or
liberal join and/or strict or liberal add. For each such event,
we generate a corresponding request event in the previous 65

interval. For example, if (u,g) E [SJ l a 1 u we generate a
SJReq(u,g) in the interval leading up to state 1. Inspecting

'efiEN ·'eftE(u ,0 ,()) ·tE IAuthzn,,azefal l c\~tE
[Authzn,,azeb J CT;

Proof 4. We prove this lemma using mathematical induction.
We apply induction on i, the number of states in the trace a
in rr,stateless·

Basis: Show that the lemma holds for i=l.
We limit our discussion with respect to users and objects in
a specific group for simplicity. The arguments can be easily
extended to multiple groups.

US 10,116,664 B2
15

Consider a one state trace in rt stateless· If the set of events in
this state is empty, then the user and object tables are empty.
For each user and object in each group, the authzSF function
will return 0 at step 1. Thus the authorization relation
[Authz,, l a 1 1 is empty. Similarly, in rt t t I ' formulas

stateful , s a e ess

A1 and A2 will evaluate to false for each user and object in
each group if no events have occurred. Thus
[Authz,, l a 1 1 is also empty.

stateful '

Next fix an arbitrary set of user and object events that could
have occurred in the initial state. Note that as per lemma 2
there can be at most one event per user and at most one event
per object in this state in rtstateless· If there is not a single user
event in this set, authorization relations in both rtstateless and
rt stateless will be empty. The same result follows if there is not
a single object event in that set. Now consider an event set
with a mix of non-empty user and object events. Fix an
arbitrary user and object event in this set. Since this is the
first state, the user event could be a SJ or LJ and the object
event could be a SA or LA. As per the userEvent and
objectEvent functions and lemma 2, the initial state cannot
contain a disabling event such as leave or remove. Next, note
that for each user and object event pair from above, the
authzSF function returns 1. This is because the merge sort
operation in step 1 in authzSF places the object event
following the user event if both the user and object events
occurred in the same state. The table created from merge sort
is of length 2 (i.e., n=2) with the user entry followed by the
object entry. In this case, the function returns 1 from step 2a.
Consider a one state stateless trace with an arbitrary set of
user and object events. If the set of user or object events is
empty in the above set, both A1 and A2 will evaluate to false.
Thus the authorization relation in rtstateless will also be
empty. Now fix the same user and object considered in the
stateful specification above. For this pair it is easy to see that
either A1 or A2 will trivially evaluate to true regardless of the
event semantics since they are both enabling events and
happen at the same state. As a result, the authorization
relation in rtstateless will contain this specific user and object
tuple.
Based on the argument above, it is clear that for all one state
length traces of rtstateless and rtstateles5' a tuple exists in the
authorization relation in that state in rtstateless only if it also
exists in the authorization relation in that state in rtstateless·

Thus the basis is proved.
Induction Hypothesis: For every trace a of length k in
rtstateJes5' there exists a trace a of length k in rtstateless such
that a and a are authorization equivalent. (Note that a trace
of length k means that the trace has k states.)

'efkE N -W!ik·E{ 11, 0 ' Q) ·IE

[Authznstatefuz] Oi,k ___.,.tE [Authznstateless] oi,k

where a, k indicates a state i in a trace a with k states.

16
1. { u,o,g) E [~uthtzstatefuz] ak.k+l /\{ u,o,g) tf:_

[Authzstatefuz l 0 k+1 k+1

2. { u,o,gJ E [~uthtzstatefuz] ak.k+l /\{ u,o,g) E
[Authzstatefuz l 0 k+1 k+1

3. { u,o,g) $. [~uthtzstateful l ak.k+l /\{ u,o,g) $.
[Authzstatefuz l 0 k+1 k+1

4. { u,o,g) $. [~uthtzstateful l ak.k+l /\{ u,o,g) $.
[Authzstatefuz l 0 k+1.k+1

Case 1: For case 1, the event at state k+ 1 has to be either SL

10
(u,g) or SR (o,g) or both for { u,o,g,r) tf:_ [Authzstateful]

ak+l.k+l to be true. In the stateless specification, if an SL
(u,g) or SR (o,g) or both occur at state k+l, both A1 and A1

will be false. Thus { u,o,g,r) $. [Authzstatefuz l ak+l.k+l ·

Case 2: Authz is true in both steps k and k+l.

15
This is the converse of the above case. Here, in function
authzSF, the event at state k+l can be neither SL (u,g) or SR
(o,g). Inspecting A1 and A2 in the stateless specification,
Authz will continue to hold from state k to k+l if the
transitioning event is not SL (u,g) or SR (o,g).

20
Case 3: Authz is false in state k but true in state k+l.
In function authzSF, this is possible only if the transitioning
event is either LJ, SA or LA (we drop the fixed u, o and g
for convenience) with a respective open operation. (An open
operation for LJ is an occurrence of LA in the past followed

25
by no remove operation until the state in which LJ occurred.
Similarly, an open operation for SA is an occurrence of SJ
or LJ in the past followed by no leave operation up to the
current state.) Disabling events such as SL, LL, SR and LR
cannot occur. Further SJ cannot change Authz from false to

30
true in a single state due the nature of its authorization
semantics. In case the event at state k+l is LJ, function
authzSF will return true only if an authorizing LA exists
prior to state k+l with no SR and LR in between. For a
corresponding trace in the stateless specification, Authz will

35
be made true by formula A2 in which LAhad occurred in the
past and subsequently Authz becomes true at the instant an
LJ occurs. Similarly, in case the event at state k+l is SA or
LA, an open SJ or LJ event should have occurred in the past
from Authz to switch from false to true at state k + 1. Again,

40
for a corresponding trace in the stateless specification, Authz
will be made true by formula A2 .

This case is also possible if both the join and add operations
occur in state k+l. In this case, Authz would be true in state
k+l regardless of the join and add semantics. For a corre-

45 sponding trace in the stateless specification, Authz will be
made true by formula A1 .

Case 4: Authz is false in both steps k and k+l.
This is the converse of case 3. That is neither LJ, SA nor LA
can occur with a respective open operation. The argument

50
for this case is similar to that of case 3.
Lemma 4 (Completeness). For every trace a accepted by
rtstateless' there exists an a-mapped trace a that is accepted by
rtstateless such that:

'efiEN·'eftE{ 11,0,Q).tE IAuthzn,,azefal lc\~tE Inductio~ Step: Assuming that all rt , , 1 and rt , , 1
specifications are authorization equival;nt ef;r all tr;c~; ';;°[55

length k, prove the same for traces of length k+ 1. Consider
the set of user and object events in the k+ 1th state in rtstateless·

[Authz] a
Itstateless l

Proof 5. This lemma follows from lemmas 1 and 3. Lemma
1 proves that rtstateless generates every action trace generated
by rtstateless using a-mapping. Lemma 3 proves that every
trace generated by rtstateless is consistent with respect to the
authorization relation at every state to a corresponding trace
in rt stateless· Thus every a-mapped trace of a rt stateless trace is
accepted by rtstateless·

If this set is empty, it means that the tables of all users and
objects in the system are unchanged from k to k+l. If the
tables are unchanged from state k to k+l, the authorization 60

relations are unchanged from k to k+l in rt,, 1 . This is
trivially true of rtstateless as well. s a e ess

Now consider a non-empty set of user and/or object events.
Fix an arbitrary user u, object o and group g. There are four
ways in which the Authzstateful relation could change from k 65

to k+l in the stateful specification with respect to the fixed
u, o and g:

8. Conclusion

According to this disclosure, a highly abstract temporal
logic based stateless specification can be grounded in a

US 10,116,664 B2
17

concrete stateful specification while maintaining equiva
lency with respect to authorization.

Further according to this disclosure, a methodology for
consistent specification and enforcement of authorization
policies is presented. The stateless specification is highly
conducive to automated formal analysis using techniques
such as model checking. However, it cannot be enforced
using the way it is specified. The stateful specification
focuses on how to enforce the stateless policy using distrib
uted data structures and associated algorithms. This speci- 10

fication can be implemented by programmers. A formal
bridge between a highly abstract stateless specification and
a relatively concrete stateful specification has also been
shown.

The current stateful specification, although highly distrib- 15

uted, maintains unbounded history of user and object
actions.
Although the foregoing has been described with reference to
one or more embodiments, those having skill in the art will
appreciate that many variations are possible. It is intended 20

therefore that this application be limited only by the text of
the appended claims.

What is claimed is:
1. An authorization engine for enforcing a group-centric

secure authorization policy, the authorization engine com- 25

prising:
a processor accessible by a user and configured to execute

instructions;
a memory containing an access-limited object and further

containing executable instructions configured to 30

instruct the processor to execute a stateful security
policy, including the operations:

define a group;
receive a join command wherein the user joins the group

as a member; 35

receive a leave command wherein the user leaves the
group;

receive an add command wherein the object is added to
the group as to be in the group;

receive a remove command wherein the object is removed 40

from the group; and
authorize the user to access the object only when the user

is a member of the group and the object is in the group;
wherein the stateful security policy is based on an autho-

rization equivalent to a stateless security policy; 45

wherein the stateful security policy is configured to
enforce well-formedness constraints including:

the object cannot both be added to the group and removed
from the group within the same state;

the user cannot both join the group and leave the group 50

within the same state;
two types of operations cannot both occur in the same

state for the user or the object;
after joining the group, the user cannot join again unless

the user has left the group since joining the group; 55

after being added to the group, the object cannot be added
to the group again unless it has been removed from the
group since joining the group;

the user cannot leave the group when the user is not
already a member of the group; and 60

the object cannot be removed from the group unless the
object is already in the group; and

wherein the stateful security policy further sorts opera
tions by time and provides an order of precedence
wherein: 65

when add and join occur in the same state, add follows
join;

18
when join and remove occur m the same state, join

follows remove;
when add and leave occur in the same state, add follows

leave; and
when remove and leave occur in the same state, there is

no fixed precedence.
2. The authorization engine of claim 1, wherein a stateless

security specification is specified and verified using first
order linear temporal logic.

3. The authorization engine of claim 1, wherein the
stateful security policy is configured to handle non-well
formed sequences.

4. The authorization engine of claim 1, wherein the join,
leave, add, and remove operations include both strict and
liberal semantics wherein:

a strict join implies that the user may access the object
only when the object is added to the group after the join
state;

a liberal join implies that the user may access all objects
in the group;

a strict leave implies that the user loses access to the
object and any other objects in the group;

a liberal leave implies that the user retains access only to
objects that were in the group upon the leave state;

a strict add implies that the user may access the object
only when he joined the group before the add state;

a liberal add implies that the user may access the object
regardless of when the user joined the group;

a strict remove implies that the user may not access the
object or any other object in the group; and

a liberal remove implies that the user may access the
object when the user was a member of the group upon
the remove state.

5. A non-transitory storage medium having stored thereon
executable instructions that, when executed, instruct a pro
cessor to execute a stateful security policy, including the
operations of:

identify a user, a group, and an object;
receive a join command wherein the user joins the group

as a member;
receive a leave command wherein the user leaves the

group;
receive an add command wherein the object is added to

the group as to be in the group;
receive a remove command wherein the object is removed

from the group; and
authorize the user to access the object only when the user

is a member of the group and the object is in the group;
and

enforce well-formedness constraints wherein:
the object cannot both be added to the group and removed

from the group within the same state;
the user cannot both join the group and leave the group

within the same state;
two types of operations cannot both occur in the same

state for the user or the object;
after joining the group, the user cannot join again unless

the user has left the group since joining the group;
after being added to the group, the object cannot be added

to the group again unless it has been removed from the
group since joining the group;

the user cannot leave the group when the user is not
already a member of the group; and

the object cannot be removed from the group unless the
object is already in the group;

US 10,116,664 B2
19

wherein the stateful security policy further sorts opera
tions by time and provides an order of precedence
wherein:

when add and join occur in the same state, add follows
join;

when join and remove occur in the same state, join
follows remove;

when add and leave occur in the same state, add follows
leave; and

when remove and leave occur in the same state, there is
10

no fixed precedence.
6. The non-transitory medium of claim 5, wherein both

strict and liberal semantics are supported.
7. The non-transitory storage medium of claim 6,

wherein:
a strict join implies that the user may access the object 15

only when the object is added to the group after the join
state;

20
a liberal join implies that the user may access all objects

in the group;
a strict leave implies that the user loses access to the

object and any other objects in the group;
a liberal leave implies that the user retains access only to

objects that were in the group upon the leave state;
a strict add implies that the user may access the object

only when he joined the group before the add state;
a liberal add implies that the user may access the object

regardless of when the user joined the group;

a strict remove implies that the user may not access the
object or any other object in the group; and

a liberal remove implies that the user may access the
object when the user was a member of the group upon
the remove state.

* * * * *

