a2 United States Patent

US006970562B2

10y Patent No.: US 6,970,562 B2

Sandhu et al. 5) Date of Patent: Nov. 29, 2005
(54) SYSTEM AND METHOD FOR CRYPTO-KEY 5535276 A * 7/1996 Ganesan 713/155
GENERATION AND USE IN 5,557,678 A 9/1996 Ganesan
CRYPTOSYSTEM 5,737,419 A 4/1998 Ganesan
5,892,828 A * 4/1999 Perlman 713/183
(75) Inventors: Ravi Sandhu, Fairfax, VA (US); Colin 2’(9)(5)2’353 2 : lgﬁggg ?n%el% et al. L 7%8/51/52
. ,005, ortenberry et al.
dGeaSIfle,SI:sHﬁgrnér(\)’g (gi)&?sﬁ;r““a 6072876 A 6/2000 Obata et al.
’ 4 6,094,721 A * 7/2000 Eldridge et al. 713/168
6,151,676 A * i RN
(73) Assignee: TriCipher, Inc., San Mateo, CA (US) 6.230.269 B * 1%88(1) g;icecslaete;fl ;g%g
. . o . 6,370,250 BL* 4/2002 Stei 380/281
(*) Notice: Subject to any disclaimer, the term of this))
patent is extended or adjusted under 35 * cited by examiner
US.C. 154(b) by 772 days. Primary Examiner—Andrew Caldwell
Assistant Examiner—Zachary A. Davis
21) Appl. No.:
(1) Appl. No.: 09/739,260 (74) Attorney, Agent, or Firm—Aantonelli, Terry, Stout &
. Kraus, LLP
(22) Filed: Dec. 19, 2000 ’
(65) Prior Publication Data G7) ABSTRACT
US 2002/0076042 A1 Jun. 20, 2002 A first processor generates a private crypto-key and a public
crypto-key. The first processor divides the private crypto-
(31) Int. CL7 oo HO4K 1/00; HO4L 9/00 key into two portions, a first private key portion, based upon
(52) US.Cl oo, 380/30; 380/285; 380/44; 2 user’s passwlgrd, aréd; Sffl:cond private key portion. The
713/182 private crypto-key and the first private key portion are then
(58) Field of Searchcccccccoc..e. 380/30, 28, 277, destroyed. The remaining portion, second private key por-
380/285, 44, 713/168, 169, 171, 176, 200_202, tiOn, and the puth Crypto-key are stored in a memory. A
713/182 second processor generates the first private key portion
based upon the user’s password and responsive to receiving
(56) References Cited the user’s password. The second processor then destroys the
generated first private key portion with out storing the
U.S. PATENT DOCUMENTS generated first private key portion.
5,210,795 A * 5/1993 Lipner et al. 713/187
5,418,854 A * 5/1995 Kaufman et al. 713/156 30 Claims, 15 Drawing Sheets

KEY STOR

MATCH RECEIVED USER 1D
WITH USER ID AND SYMMETRIC
ED IN MEMORY

| 520

QENERATE CHALLENGE AND
ENCRYPT WITH SYMMETRIC KEY
AT SPONSOR STATION

(835

TRANSMIT ENCRYPTED
CHALLENGE AND PASSWORD
REQUEST TO NEW USER

| —638

DECRYPT ENCRYPTED
CHALLENGE USING SYMMETRIC
KEY AT NEW USER DEVICE

DECRYFT PASSWORD USING
SYMMETRIC KEY AT SPONSOR
STATION

SELECT PASSWORD AND ENCRYPT,—845
WITH SYMMETRIC KEY AND
TRANSMIT TO SPONSOR STATION

r 650

Dy

GENERATE NEW KEYSET

X

651

SPLIT Dy INTO Dy AND Dys,
QENERATE Dyt AT
SPONSOR STATION

| —656

STORE Dys, Dygt+, Ex AND
DESTROY PASSWORD, Dy AND Dyy
AT SPONSCR STATION

. —660

U.S. Patent

Nov. 29, 2005 Sheet 1 of 15

FIG. 1

US 6,970,562 B2

TRANSMIT "HELLO"
MESSAGE

L—100

|

SERVER SELECT
CRYPTOGRAPHY AND
TRANSMIT "MESSAGE TWO"

L—110

1

OBTAIN PUBLIC KEY AND
VERIFY CERTIFICATE

L—115

i

 —120

ENCRYPT SESSION KEY
AND TRANSMIT TO SERVER

|

DECRYPT SESSION KEY AND
ENCRYPT RANDOM NUMBER

125

\i

DECRYPT RANDOM NUMBER

L —~130

U.S. Patent

Nov. 29, 2005 Sheet 2 of 15

FIG. 2
(PRIOR ART)

TRANSMIT
36 BYTE HASH

US 6,970,562 B2

L —~200

l

SIGN AND TRANSMIT
36 BYTE HASH

-—210

l

215

OBTAIN PUBLIC KEY AND
VERIFY CERTIFICATE

{

VERIFY SIGNATURE

— 220

US 6,970,562 B2

Sheet 3 of 15

Nov. 29, 2005

U.S. Patent

H3AH3S
3HSINONLLSIA

19~

ee—1 H3SN

30I1A30

EJtEN
A3IHSINONILSIA

29

2]

301A3d

"3sN

W—

AHOMLIN

NOILYLS

HOSNOdS

05—

NVHOHIN| [37A3g

438N

HIAHIS \\ \

H3AH3S mu>mmw~/
W

Tm:w_zwz_._.w_o INVHOHS

301A3d

d43sn

A,

8\ ov\
£ '9l4

om\

U.S. Patent Nov. 29, 2005 Sheet 4 of 15 US 6,970,562 B2

FIG. 4a

ESTABLISH COMMUNICATION 1
SESSION BETWEEN USER DEVICE
AND MERCHANT SERVER

¥
TRANSMIT AUTHENTICATION
REQUEST —410

TO SPONSOR STATION

i
TO VES DETERMINE JF LOGGED-IN 415
STEP 510, TICKET STORED ON
FIGURE 5a USER DEVICE

NO

405

ESTABLISH ¥
COMMUNICATION ENTER PASSWORD AND
SESSION BETWEEN {=~| USERID TO BEGIN LOG-ON }-420
USER DEVICE AND PROTOCOL AT USER DEVICE
SPONSOR STATION

USER PROCESS PASSWORD |-425
TO OBTAIN Dy,

\

TRANSMIT LOG-IN REQUEST }-430
TO SPONSOR STATION

1
RECEIVE REQUEST AND
GENERATE CHALLENGE 435
AT SPONSOR STATION

TO STEP 440, FIGURE 4b

U.S. Patent Nov. 29, 2005 Sheet 5 of 15 US 6,970,562 B2

FIG. 4b

FROM STEP 4*35, FIGURE 4a

TRANSMIT CHALLENGE | —440
TO USER DEVICE

Y
RECEIVE CHALLENGE, GENERATE 445

R1 AND TIME STAMP AT -
USER DEVICE

i
FORM FIRST ENCRYPTED
MESSAGE WITH D, | —450

AT USER DEVICE

A

TRANSMIT FIRST 451
ENCRYPTED MESSAGE TO a8 TO STEP 420,
SPONSOR STATION FIGURE 4a

4
\
455 [TRANSMIT NOTICE TO
(TheSat b) SRR
SPCNSOR STATION USER DEVICE
J YES

GENERATE R2, COMPUTE R1XOR R2,
GENERATE TIME STAMP, DETERMINE 465
A LIFETIME-VALUE AT SPONSOR STATIONY™

460

]

ENCRYPT R2, TIME STAMP, AND
LIFETIME-VALUE WITH RT FORMING | 470
SECOND ENCRYPTED MESSAGE
AT SPONSOR STATION

TO STEP 47%‘, FIGURE 4c

U.S. Patent

Nov. 29, 2005 Sheet 6 of 15

FIG. 4c

FROM STEP 470, FIGURE 4b

l

US 6,970,562 B2

TRANSMIT SECOND ENCRYPTED
MESSAGE TO USER DEVICE

| —471

r
DECRYPT SECOND ENCRPYTED
MESSAGE WITH R1 AT

USER DEVICE

|

WITH R1, DESTROY R1 AND

COMPUTE R1 XOR R2, ENCRYPT D,
UNENCRPYPTED D, AT USER DEVICE

r480

| STOREENCRYPTED Dy, TIME

STAMP, LIFETIME - VALUE AT
USER DEVICE

—485

TRANSMIT A "“DONE" MESSAGE
TO SPONSOR STATION

L —490

U.S. Patent Nov. 29, 2005 Sheet 7 of 15 US 6,970,562 B2

FIG. 5a

TRANSMIT AUTHORIZATION
REQUEST TO SPONSOR —510
STATION

4

PROCESS RECEIVED MESSAGE | 515
TO AUTHENTICATE USER

Y
GENERATE AND TRANSMIT ‘o

ACKNOWLEDGEMENT MESSAGE |°
TO USER DEVICE

PR
ACKNOW

GE
10 A ‘ B[220
STATION, ENCODE 38 BYT

ENCODED 38 BYTE HASH WITH |525

DECRYPT RECEIVED ENCODED
36 BYTE HASH AND TIME STAMP [—530
USING R12 AT SPONSOR STATION

i

SIGN ENCODED 36 BYTE HASH | 535
WITH Dy

TO STEP 54!’, FIGURE 5b

U.S. Patent

Nov. 29, 2005 Sheet 8 of 15

FIG. 5b

FROM STEP 535, FIGURE 6a

US 6,970,562 B2

__t
ENCRYPT TIME STAMP, R1,
ENCODED 36 BYTE HASH WITH R12
AND TRANSMIT TO USER DEVICE

DECRYPT TIME STAMP, R1,

ENCODED 36 BYTE HASH
USING R12

—b45

Y

RECALL AND DECRYPT D,y
USING R1

r/-~5 50

L {

COMPLETE SIGNATURE AND
36 BYTE HASH WITH Dy AND

TRANSMIT TO MERCHANT SERVER

555

J

TRANSMIT "DONE" MESSAGE
TO SPONSOR STATION

K»56O

U.S. Patent

Nov. 29, 2005 Sheet 9 of 15

FIG. 6a

US 6,970,562 B2

DISTINGUISHED SERVER
LOGS IN WITH SPONSOR STATION

601
-

i

TRANSMIT NEW USER INTERNET
TO SPONSOR STATION

|_—605

|

GENERATE SYMMETRIC KEY PAIR
AND USER ID AT
SPONSOR STATION

{

STORE SYMMETRIC KEY AND USER
ID AND TRANSMIT SYMMETRIC
KEY AND USER ID TO
DISTINGUISHED SERVER

T

DELIVER SYMMETRIC KEY
AND USER ID TO NEW USER

| —617

1§
NEW USER ESTABLISHES
COMMUNICATION SESSION
WITH SPONSOR STATION

620

1

TRANSMIT USERID TO
SPONSOR STATION

TO STEP 630, FIGURE 6b

U.S. Patent

Nov. 29, 2005 Sheet 10 of 15

FIG. 6b

FROM STEP 625, FIGURE 6a

MATCH RECEIVED USER ID

US 6,970,562 B2

WITH USER ID AND SYMMETRIC |—830

KEY STORED IN MEMORY

}

GENERATE CHALLENGE AND

ENCRYPT WITH SYMMETRIC KEY (“535

AT SPONSOR STATION

Y

TRANSMIT ENCRYPTED

CHALLENGE AND PASSWORD |—638

REQUEST TO NEW USER

}

DECRYPT ENCRYPTED

CHALLENGE USING SYMMETRIC | __g40

KEY AT NEW USER DEVICE

:

SELECT PASSWORD AND ENCRYPTL—645

WITH SYMMETRIC KEY AND
TRANSMIT TO SPONSOR STATION

]

DECRYPT PASSWORD USING
SYMMETRIC KEY AT SPONSOR
STATION

GENERATE NEW KEYSET

D, AND E,

TO STEP 655, FIGURE 6¢

U.S. Patent Nov. 29, 2005 Sheet 11 of 15 US 6,970,562 B2

FIG. 6¢

FROM STEP 651, FIGURE 6b

{

SPLIT Dy INTO Dyy AND Dy, 655
GENERATE Dyy++ AT
SPONSOR STATION

1

STORE Dyg, Dyyt+, EXAND |-—660
DESTROY PASSWORD, Dy AND Dyy
AT SPONSOR STATION

US 6,970,562 B2

Sheet 12 of 15

Nov. 29, 2005

U.S. Patent

i

30IA30 301A30
B3N | 4,/ H3sn

-)

N \ H35N

NOILVLS

30130 [MHOMIAN| 1HOSNOdS

H3AH3S
Q3HSINONILSIA

19”7
30IA33
ee—| H3SN

o\.y

43AH3S

HHOMLIN

(3HSINONLLSIA

29

NOLLYLS

30N3C
2~ a3sn

d3AH3S |

HOSNOJS

omk

30IA30
43sn

\ 1 AN
uaneas | wangds |\

Q3HSINONILSIA|LNYHOHIW

321A30
H3sn

09~/ o 0’

US 6,970,562 B2

Sheet 13 of 15

Nov. 29, 2005

U.S. Patent

NOILYLS |—
\ HOSNOdS| 28
HINHIS
QIHSINONLLSIA ™
o7 J0IA3Q
NOILYLS | —
ec—] 435N HOSNOdS| 18
_ SIS YHOMLIN
GIHSINONLLSIA NOLLY IS
2T HOSNOJS
39IA3Q
26| v3sn 08/
| vanezs a\ \
b~ {INVHOBIW) 139103 HIAY3S || H3AM3S | \30IA3Q
43sn | |aansinoniLsiallinvHosan] | wasn
0 r\ —m\ om\ . ov.\ om..\
8 'Ol

U.S. Patent

Nov. 29, 2005

Sheet 14 of 15

US 6,970,562 B2

[~_1020
/L 000
1010 — |
| = |
) r]
1013 o
1012~ ==m |
o= 1040
FIG. 10 1010
D,SPLA’\f 121 /1 165
7T G | INTERFAGE. [VO PORT---o-omomeeeeeey
- 1160
PROCESSOR pispLay | 1120
CONTROLLER MODEM
—
E /110 {129 (FLOPPY DISK)
: 1128 [FLOPPY ;
1150 DRIVE A122 1123
’ DRIVE g
CONTROLLER EPROM RAM /140
P I | MOUSE |
! IpRIVE] |{DRIVE CONTROLLER }-1130 i
. ISK) | | 1141
i_-__j.tjgr_fggz __________ 1124 ['KEYBOARD |-1131[" MOUSE ||
1ige 1 INTERFACE INTERFACE |~

U.S. Patent Nov. 29, 2005 Sheet 15 of 15 US 6,970,562 B2

FIG. 11a
—
101~ =
= | 1000
] = /
\ [— h—
1040

{ J

\'\ID' T - 'E“"'

(1030 —] L= sl
1014’
D'Q%Anzf 165"
PLAY
o R A INTERFACE [~} phuhihuiiel
PROCESSOR DISPLAY WZOI
R —

1110 {129 (FLOPPY DISK)
§ . |t128' [FLOPPY . .
| 1150y | “—~{ DRIVE 122 1123 :
i [omve || i
i |CONTROLLER EPROM RAM (1140
' | I ‘ MOUSE [}
| [CD T'|[FARD[| {iagp | KEYBOARD |-1130|CONTROLLERY:
| DRIVE] JIDAIVE] | Disk) |CONTROLLER iatd
_[nzhien . Nuge Fveoren |11 wouse]!
158 INTERFACE INTERFACE [

US 6,970,562 B2

1

SYSTEM AND METHOD FOR CRYPTO-KEY
GENERATION AND USE IN
CRYPTOSYSTEM

TECHNICAL FIELD

This invention relates to cryptosystems. More particu-
larly, the present invention relates to crypto-key generation
and use in cryptosystems.

BACKGROUND ART

Today, computing devices are almost always intercon-
nected via networks. As these networks can be large closed
networks, as within a corporation, or truly public networks
as the Internet is, the network itself might have hundreds,
thousands or even millions of potential users. Consequently
it is often required to restrict access to any given computer
or service, or a part of a computer or service to a subset of
the users on the public or closed network. For instance, a
brokerage might have a public website accessible to all, but
would like to only give Ms. Alice Smith access to Ms. Alice
Smith’s brokerage account.

This is an old problem, tracing its roots to the earliest days
of computers, and passwords were among the first tech-
niques used, and to this day remain the most widely used
technique for protecting resources on a computer or service.

In its simplest form, every user has a unique password and
the computer has knowledge of the user password. When
attempting to log on Alice would enter her userid, say alice,
and password, say apple23, the computer would compare the
pair, i.e. alice, apple23, with the pair it had stored for Alice,
and if there is a match would establish a session and give
Alice access.

This simple scheme suffers from two problems. First, the
table containing the passwords is stored on the computer,
and represents a single point of compromise. If Eve could
somehow steal this table, she would be able to access every
user’s account. A second problem with this approach is that
when Alice enters her password it travels from her terminal
to the computer in the clear, and Eve could potentially
eavesdrop. For instance the “terminal” could be Alice’s PC
at home, and the computer could be a server on the Internet,
in which case her password travels in the clear on the
Internet.

Various solutions have been proposed and implemented to
solve these two issues. For instance, to solve the first
problem of storing the password on the computer, the
computer could instead store a one way function of the
password. E.g. F(apple23)= XD45DTY, and the pair {alice,
XD45DTY}. In this example as F() is a one way function,
computing XD45DTY from apple23 is easy, but as it is a
“one way function”, the reverse is believed to be difficult or
close to impossible. So when Alice logs on and sends the
computer {alice, apple23}, the computer can compute
F(apple23) and compare the result with XD45DTY. The
UNIX operating system was among the first to implement
such a system in the late 1970°s.

Before discussing more sophisticated conventional tech-
niques for solving this problem, let us briefly describe
symmetric, asymmetric and ‘split private key’ cryptography.

In symmetric key cryptography, the two parties who want
to communicate in private share a common secret key, say
K. the sender encrypts messages with K, to generate a
cipher, i.e. C= Encrypt(M,K). The receiver decrypts the
cipher to retrieve the message, i.e. D=Decrypt(C,K). An
attacker who does not know K, and sees C, cannot success-

10

15

20

25

30

35

40

45

50

55

60

65

2

fully decrypt the message, if the underlying algorithms are
strong. Examples of such systems are DES and RC4.
Encryption and decryption with symmetric keys provide a
confidentiality, or privacy service.

Symmetric keys can also be used to provide integrity and
authentication of messages in a network. Integrity and
authentication means that the receiver knows who sent a
message and that the message has not been modified so it is
received as it was sent. Integrity and authentication is
achieved by attaching a Message Authentication Code
(MAC) to a message M. E.g., the sender computes S=EMAC
(M,K) and attaches S to the message M. When the message
M reaches the destination, the receiver also computes S'=
MAC(M,K) and compares S' with the transmitted value S. If
S'=S the verification is successful otherwise verification fails
and the message should be rejected. Early MACs were based
on symmetric encryption algorithms such as DES whereas
more recently MACs are constructed from message digest
functions, or “hash” functions, such as MD5 and SHA-1.
The current Internet standard for this purpose is known as
hash-based MAC (HMAC).

By combining confidentiality with integrity and authen-
tication, it is possible to achieve both services with sym-
metric key cryptography. It is generally accepted that dif-
ferent keys should be used for these two services and
different keys should be used in different directions between
the same two entities for the same service. Thus if Alice
encrypts messages to Bob with a shared key K, Bob should
use a different shared key K' to encrypt messages from Bob
to Alice. Likewise Alice should use yet another key K" for
MAC:s from Alice to Bob and Bob should use K" for MACs
from Bob to Alice. Since this is well understood by those
skilled in the art, we will follow the usual custom of talking
about a single shared symmetric key between Alice and Bob,
with the understanding that strong security requires the use
of four different keys.

Symmetric key systems have been in use for literally
thousands of years, and have always suffered from a major
problem—namely how to perform key distribution. How do
Bob and Alice agree on K? Asymmetric key cryptography
was invented to solve this problem. Here every user is
associated with two keys, which are related by special
mathematical properties. These properties result in the fol-
lowing functionality: a message encrypted with one of the
two keys can then only be decrypted with the other.

One of these keys for each user is made public and the
other is kept private. Let us denote the former by E, and the
latter by D. So Alice knows Dalice, and everyone knows
Ealice. To send Alice the symmetric key K, Bob simply
sends C=Encrypt(K,Ealice). Alice, and only Alice (since no
one else knows Dalice), can decrypt the ciphertext C to
recover the message, i.e. Decrypt(C,Dalice)=K. Now both
Alice and Bob know K and can use it for encrypting
subsequent messages using a symmetric key system. Why
not simply encrypt the message itself with the asymmetric
system? This is simply because in practice all known asym-
metric systems are fairly inefficient, and while they are
perfectly useful for encrypting short strings such as K, they
are inefficient for large messages.

The above illustrates how asymmetric cryptography can
solve the key distribution problem. Asymmetric cryptogra-
phy can also be used to solve another important problem,
that of digital signatures. To sign a message M, Alice
encrypts it with her own private key to create S=Encrypt
(M,Dalice). She can then send (M,S) to the recipient who
can then decrypt S with Alice’s public key to generate M',
i.e. M'=Decyrpt(S,Ealice). If M'=M then the recipient has a

US 6,970,562 B2

3

valid signature as only someone who has Dalice, by defi-
nition only Alice, can generate S, which can be decrypted
with Ealice to produce M. To convey the meaning of these
cryptographic operations more clearly they are often written
as S= Sign(M,Dalice) and M'=Verify(M,S,Ealice). It is
worth noting that asymmetric key digital signatures provide
non-repudiation in addition to the integrity and authentica-
tion achieved by symmetric key MACs. With MACs the
verifier can compute the MAC for any message M of his
choice since the computation is based on a shared secret key.
With digital signatures this is not possible since only the
sender has knowledge of the sender’s private key required to
compute the signature. The verifier can only verify the
signature but not generate it.

The RSA cryptosystem is one system that implements
asymmetric cryptography as described above. In particular
the RSA crypto-system allows the same public-private key
pair to be used for encryption and for digital signatures. It
should be noted there are other asymmetric cryptosystems
which implement encryption only e.g., ElGamal or digital
signature only, e.g., DSA.

Finally, the above description does not answer the impor-
tant question of how Bob gets Alice’s public key Ealice. The
process for getting and storing the binding [Alice, Ealice]
which binds Ealice to Alice is tricky. The most practical
method appears to be to have the binding signed by a
common trusted authority. So such a “certificate authority”
(CA) can create CERTalice=Sign([Alice, Ealice], Dca).
Now CERTalice can be verified by anyone who knows the
CA’s public key Eca. So in essence, instead of everyone
having to know everyone else’s public key, everyone only
need know a single public key, that of the CA. More
elaborate schemes with multiple Certificate Authorities,
sometimes having a hierarchical relationship, have also been
proposed.

Asymmetric key cryptosystems have been around for a
long time, but have found limited use. The primary reasons
are twofold: (a) the private key D in most systems is long,
which means that users cannot remember them, and they
have to either be stored on every computer they use, or
carried around on smart cards or other tokens; and (b) the
infrastructure for ensuring a certificate is valid, which is
critical, is cumbersome to build, operate and use. The first
technique proposed to validate certificates was to send every
recipient a list of all certificates that had been revoked. This
clearly does not scale well to an environment with millions
of users. The second method proposed was to require that
one inquire about the validity of a certificate on-line, which
has its own associated problems.

A system based on split private key cryptography has
been developed to solve these two issues, among others. In
this system the private key for Alice, i.e. Dalice, is further
split into two parts, Daa which Alice knows, and a part Das
which is stored at a security server. To sign a message, Alice
could perform a partial encryption to generate a partial
signature, i.e. PS=Sign(M,Das). Alice then sends the server
PS which ‘completes’ the signature by performing S=Sign
(PS,Dss). This completed signature S is indistinguishable
from one generated by the original private key, so the rest of
the process works as previously described. However, Daa
can be made short, which allows the user to remember it as
a password, so this system is consumer friendly. Further, if
the server is informed that a particular ID has been revoked,
then it will cease to perform its part of the operation for that
user, and consequently no further signatures can ever be
performed. This provides for instant revocation in a simple
highly effective fashion.

10

15

20

25

30

35

40

45

50

55

60

65

4

Let us return now to password based systems. Challenge-
response systems solve the issue of having to send pass-
words in the clear across a network. If the computer and
Alice share a secret password, P, then the computer can send
her a new random challenge, R, at the time of login. Alice
computes C=Encrypt(R,P) and sends back C. The computer
decrypts Decrypt(C,P)=C'". If C=C', then the computer can
trust that it is Alice at the other end. Note however that the
computer had to store P. A more elegant solution can be
created using asymmetric cryptography. Now Alice has a
private key Dalice, or in a split private key system she has
Daa. The computer challenges her to sign a new random
challenge R. She signs the challenge, or in the split private
key system she interacts with the security server to create the
signature, and sends it back to the computer which uses her
public key, retrieved from a certificate, to verify the signa-
ture. Observe that the computer does not have to know her
private key, and that an eavesdropper observing the signa-
ture on R gains no knowledge of her private key.

The SSL system, which is widely used on the Internet in
effect implements a more elaborate method of exactly this
protocol. SSL. has two components, ‘server side SSL’ in
which a server proves its identity by signing a particular
message during connection set-up. As browsers such as
Netscape and Microsoft Internet Explorer come loaded with
the public keys of various CAs, the browser can verify the
signature of the server. This authenticates the server to the
client, and also allows for the set-up of a session key K,
which is used to encrypt all further communications. Server
side SSL is widely used, as the complexity of managing
certificates rests with system administrators of web sites
who have the technical knowledge to perform this function.
The converse function in SSL, client side SSL, which lets a
client authenticate herself to a server is rarely used, because
although the technical mechanism is exactly the same, it
now requires users to manage certificates and long private
keys which has proven to be difficult, unless they use the
split private key system. So in practice, most Internet web
sites use server side SSL to authenticate themselves to the
client, and to obtain a secure channel, and from then on use
Userid, Password pairs to authenticate the client.

So far from disappearing, the use of passwords has
increased dramatically. Passwords themselves are often
dubbed as inherently “weak” which is inaccurate, because if
they are used carefully passwords can actually achieve
“strong” security. As discussed earlier passwords should not
be sent over networks, and if possible should not be stored
on the receiving computer. Instead, in a “strong” system, the
user can be asked to prove knowledge of the password
without actually revealing the password. And perhaps most
critically passwords should not be vulnerable to dictionary
attacks.

Dictionary attacks can be classified into three types. In all
three cases the starting point is a ‘dictionary’ of likely
passwords. Unless the system incorporates checks to prevent
it, users tend to pick poor passwords, and compilations of
lists of widely used poor passwords are widely available.

1) On line dictionary attack. Here the attacker types in a
guess at the password from the dictionary. If the attacker
is granted access to the computer they know the guess was
correct. These attacks are normally prevented by locking
the user account if there are an excessive number of
wrong tries. Note that this very commonly used defense
prevented one problem, but just created another one. An
attacker can systematically go through and lock out the
accounts of hundreds or thousands users. Although the

US 6,970,562 B2

5

attacker did not gain access, now legitimate users cannot

access their own accounts either, creating a denial of

service problem.

2) Encrypt dictionary attacks: If somewhere in the operation
of the system a ciphertext C=Encrypt(M,P) was created,
and the attacker has access to both C and M, then the
attacker can compute off-line Cl=Encrypt(M,G1),
C2=Encrypt(M,G2), . . . where G1, G2, . . . etc. are the
guesses at the password P from the dictionary. The
attacker stops when he finds a Cn=C, and knows that
Gn=P. Observe that the UNIX file system, which uses a
one way function F() instead of an encryption function
E(), is vulnerable to this attack.

3) Decrypt dictionary attacks: Here the attacker, does not
know M, and only sees the ciphertext C (where
C=Encrypt (M, P) . The system is only vulnerable to this
attack IF it is true that M has some predictable structure.
So the attacker tries M1= Decrypt(C,G1), M2=Decrypt
(C,G2) . . ., and stops when the Mi has the structure he
is looking for. For instance Mi could be known to be a
timestamp, English text, or a number with special prop-
erties such as a prime, or a composite number with no
small factors.

It is possible to design strong password based systems but
the password should not be stored on the computer in any
form, ever communicated to it, and should be protected from
all three types of dictionary attacks.

FIG. 1 depicts the operations of Server-Side-Authentica-
tion during a communications session between network
users, in this instance a client device such as a personal
computer and a host device such as a server. It will be
understood that software is resident on the client device and
this software directs communications on the client side of
the communication session. It will also be understood that
software is resident on the server and that this software
directs communications on the server side of the communi-
cation session. Furthermore, it should be understood that
while in this example the server is associated with a mer-
chant, the server could be associated with any type of entity.
As used here, server designates any networked device
capable of presenting information to another network device
via the network. Also, it should be understood that while the
client device in this example is associated with an individual
user, the client device may be associated with an entity other
than an individual user. Also, a client device may be any
networked device capable of accessing information via a
network.

At step 100 the client device transmits a message to the
server. This message includes a first random number gen-
erated by the software and an indication of the types of
cryptography the client device is capable of supporting. This
message can be called a ‘hello’ message. The server then
selects one of the types of cryptography and includes a
second random number and the server’s certificate in a
transmission to the client device, step 110. This transmission
can be called ‘message two’. A certificate contains informa-
tion certifying that an entity is who that entity claims to be.
The client device then obtains the public portion of the
server’s asymmetric key from the certificate and verifies the
certificate by verifying the certificate issuer’s signature on
the certificate, step 115. The client device then generates and
encrypts a symmetric session key with the public portion of
the server’s asymmetric key and transmits the encrypted
symmetric session key to the server, step 120. The server
then decrypts the symmetric session key with the private
portion of the server’s asymmetric key and encrypts the first
random number using the symmetric key and transmits the

10

15

20

25

30

35

40

45

50

55

60

65

6

encrypted random number to the client device, step 125. The
client device then decrypts the random number using its
copy of the symmetric key, step 130. If the original first
random number is recovered, the server has authenticated
itself to the client device. All further communication
between the server and client device are secured using the
symmetric session key. It will be recognized that SSL
server-side-authentication in current use does not actually
follow steps 125 and 130. Rather these steps are represen-
tative of how the shared symmetric key could be used for
server to client authentication.

Client-Side-Authentication is designed to operate similar
to Server-Side-Authentication as is depicted in FIG. 2. At
step 200, the server transmits a 36 byte hash to the client
device and requests the client device to sign it with the
private portion of the client device’s asymmetric key. Also,
the server will request that the client device return the client
device’s certificate. The client device signs the 36 byte hash
and sends the signed 36 byte hash and the client device
certificate to the server, step 210. The server then verifies
that the client device’s certificate is valid and obtains the
public portion of the browser’s asymmetric key from the
authority issuing the certificate, step 215. The server then
uses the public portion of the client device’s asymmetric
crypto-key to verify the client device signature, step 220. If
the server recovers the original 36 byte hash, the client
device has authenticated itself to the server. It will be
recognized here also that SSL client-side-authentication
currently in use does not actually follow these precise steps.
Rather these steps are representative of how the user’s
asymmetric public and private keys could be used for client
to server authentication.

In practice, only Server-Side-Authentication is generally
implemented today. Most servers which require authentica-
tion of other network users utilize passwords. As discussed
above, after Server-Side-Authentication is completed, both
the server and the client device are in possession of a
symmetric session key. All subsequent communications
between the parties during the present communication ses-
sion are secured with the symmetric session key. Typically,
the server requests the client device to supply a valid user ID
and password. This information is provided by the user and
transmitted from the client device to the server, encrypted
with the symmetric session key. Each server must maintain
a database of associated users. These databases contain
passwords and information identifying the holders of the
passwords. This requires the server to gather or dispense
passwords and to manage stored passwords. If the password
is valid, that is, it is included in the database, the client
device has authenticated itself to the server.

Accordingly, a need exists for a technique whereby a first
network user can obtain verifiable authentication from a
second network user without the first network user having to
maintain, process and utilize a password system.

A certificate issuing authority includes information about
the user in the user’s certificate. This information may
include associations the user maintains, personal informa-
tion, or even financial information. A certificate issuing
authority may include information that a user does not want
disclosed. Or, user information included in a certificate may
change. Presently, a user cannot update or change informa-
tion in an issued certificate. A user can at best revoke a
certificate and obtain a new one which includes the changed
information. When a new certificate is obtained, new keys
must be generated. Any entity who has previously obtained
the user’s certificate and public key must now reobtain the

US 6,970,562 B2

7

new certificate and key. Thus, there is no way to modify a
certificate without revoking the corresponding key pair.

Accordingly, a need exists whereby a certificate can be
modified, while retaining the associated key pair.

Asingle user may have associations with multiple servers.
Each of the multiple servers may require the user to maintain
a password and client ID. Thus, a single user may be
required to remember a plurality of passwords.

Oftentimes a user may attempt to establish the same client
ID and password with several unrelated servers. This cannot
always be accomplished. Some servers require a password
to meet certain quality standards not be a ‘bad’ password, as
discussed above. Thus a password that the user may wish to
use may not be acceptable to certain servers. Also, a pass-
word that a user may wish to use may already be in use by
another user of a server, and the server may not allow more
than one user to use the same password.

Even if a user is able to use the same client ID and
password for access to multiple servers, other problems with
using passwords for authentication arise. For instance, a
user’s password may become compromised. That is, the
password may become known to another individual. That
individual can then impersonate the user to multiple servers.
The user must obtain a new password with each server with
which the user uses the now compromised password. Fur-
thermore, if a user’s password is compromised and a first
server recognizes this fact, there is currently no method
whereby this first server can notify other servers at which the
user uses this same password that the password has been
compromised.

Yet another problem with the use of passwords in pro-
viding authentication is that a user must provide a password
to each and every server requiring authentication. If a user
is fortunate enough to obtain the same password with several
servers, the user still must provide the password to each
server to which the user seeks access. Thus, every time a
user wishes to perform communications with a server, that
user must cause his or her password to be transmitted to the
server. Furthermore, when a user ends an authenticated
communication with a server and immediately attempts to
reestablish an authenticated communication, the user must
again provide his or her password to the server for authen-
tication.

Accordingly, a need exists for a technique whereby a
network user can utilize a single password to access a
plurality of networked devices and enter that single pass-
word only once to gain access to any of the plurality of
networked devices.

SSL as deployed in current systems is based upon the
RSA public key cryptosystem. As introduced above, RSA
relies upon the use of products of large prime numbers
which are not easily factorable. If the RSA technique should
be broken, that is, if an algorithm for factoring large prime
numbers is found, SSL and any cryptosystem based on RSA
would be useless. An attacker would have access to com-
munications in any RSA based cryptosystem. Secure and
trusted communications in SSL and other public key cryp-
tosystems would become impossible. Accordingly, a need
exists for a technique whereby a public key based crypto-
system could provide secure communications if RSA were
to become unusable.

OBJECTIVES OF THE INVENTION

It is an object of the present invention to provide a system
and method for improving conventional public cryptosys-
tems to afford short passwords an increased level of security.

10

15

20

25

30

35

40

45

50

55

60

65

8

Additional objects, advantages, novel features of the
present invention will become apparent to those skilled in
the art from this disclosure, including the following detailed
description, as well as by practice of the invention. While the
invention is described below with reference to preferred
embodiment(s), it should be understood that the invention is
not limited thereto. Those of ordinary skill in the art having
access to the teachings herein will recognize additional
implementations, modifications, and embodiments, as well
as other fields of use, which are within the scope of the
invention as disclosed and claimed herein and with respect
to which the invention could be of significant utility.

SUMMARY DISCLOSURE OF THE INVENTION

The present invention provides methods and systems for
generating asymmetric crypto-keys and for using asymmet-
ric crypto-keys to transform data. This transformation
includes both encrypting and decrypting data. Data can be
transformed for transmission, can be transformed for stor-
age, and can be transformed to provide authentication of
individuals as well as devices. Other uses of transformed
data will be recognized by those skilled in the art.

The systems include at least a first processor and a second
processor which perform the described operations. The
processors may be any type processor, such as a personal
computer, high powered workstation, or sophisticated main-
frame computer. The processors may be located in the same
physical environment, or widely separated. The processors
may be connected to a network, in such an instance the
processors can be termed networked devices, servers, or
network access devices.

In accordance with the invention, a private crypto-key and
a public crypto-key are generated which are associated with
a user. This processing takes place on a first processor. A
private crypto-key is a crypto-key which is not publicly
available. A public crypto-key is a crypto-key which is
publicly available. The public key may be distributed to
users of a crypto-system, or may be made available to users
of a crypto-system upon request. These keys are generated
based upon a password belonging to the user. A password
can include letters, numbers, and even symbols, as well as
combinations of letters, numbers, and symbols. A password
has a value. That password value may be processed, manipu-
lated, or otherwise changed to generate some of the private
crypto-keys. The private crypto-key is divided into two
portions, a first private key portion and second private key
portion. The private crypto-key may be divided into more
than two portions. When divided into two portions, after the
division the original whole private crypto-key is destroyed
as well as the first private key portion. The private crypto-
key and the first private key portion no longer exist. Addi-
tionally, the private crypto-key and the first private key
portion are not distributed. They are not stored at the first
processor, or at any other place. No user or computing
device holds either of these crypto-keys. Outside of the first
processor no user or computing device has ever had knowl-
edge of the original whole private key, and once destroyed
on the first processor that processor will never again have
knowledge of the original whole private key or the first
private key portion.

In a separate instance unrelated to the above-described
generation, and preferably at a second processor, the first
private key portion is generated based upon the same
password as described above. This generation is in response
to receipt of the password. The first private portion cannot be
generated without receipt of the password. Furthermore, the

US 6,970,562 B2

9

first described generation of the first private key portion is
unrelated to the second generation of the first private key
portion. The first described generation could be prior to the
second described generation, subsequent to the second
described generation or concurrent with the second
described generation. Subsequent to the second generation,
the first private portion is destroyed. Prior to destruction, the
first private portion is not stored, communicated or other-
wise shared.

The generated crypto-keys of the present invention can be
used to transform a message. A first transformation is
preferably performed by the processor performing the
above-described second generation by using the generated
first private key portion. This transformation is prior to any
destruction of the generated first private key portion.

The transformed message can be further transformed by
another processor than the processor having performed the
first transformation. Preferably, the further transformation is
performed by the processor which performed the first key
generation, as described above. This further transformation
can be obtained using either one of the second private key
portion or the public crypto-key. The initial transformation
may be made using one of the second private key portion or
the public crypto-key, and the further transformation may be
made using the first private portion.

The further transformation may be an encryption of the
message, or a decryption of the message. Additionally, the
transformed message resulting from the first transformation
may be transmitted via a network from the processor per-
forming this transformation to the processor performing the
further transformation. In such an instance the processors
may be referred to as networked devices. The network may
be an interconnection of only the two described processors/
network devices, it may be the Internet, or it may be any
other network.

The second private key portion and/or the public crypto-
key can be stored in a persistent state, making them available
for use without requiring their generation. In such a case,
either key may be retrieved for use as required or desired.
When the first private key portion is used in performing the
first transformation, it must be generated for use because it
is never stored in a persistent state. That is, it must be
generated prior to each use. Also, it will be recognized that
according to the present invention, a message can be trans-
formed by two separate processors using associated crypto-
keys, yet the crypto-keys are never distributed from one
processor to another.

According to one beneficial aspect of this invention, the
password has a bit length of 56 to 72 bits, and the generated
first private key portion has a bit length of at least 257 bits.
56 to 72 bits is approximately equal to 8 alpha-numeric
characters, and 257 bits is approximately equal to 36 alpha-
numeric characters. A short password is converted into a
long crypto-key according to the present invention.

According to another aspect of the invention, the first
private key portion is generated in accordance with a one
way function. A one way function is a function which is
difficult if not impossible to reverse. A beginning value is
converted into an end value by the function. Even knowing
the one way function and the value of the result of the one
way function, it is impossible or very difficult to determine
the initial value the one way function acted upon.

Beneficially, the one way function can be applied to the
password a number of times. That is, a first result of
applying the one way function to the password is then used
with the one way function to obtain a second result, and so

10

15

20

25

30

35

50

55

60

10

on. The number of times the one way function is applied to
the password can be selected.

This selection may be based upon the identity of a user or
the strength of the password. The identity of the user can
include information personal to the user, such as the user’s
authority. Also the identity of the user can include the
location a user may cause a crypto-key to be generated. And,
the identity of the user can include information identifying
a quality of service paid for by the user. Thus, a user who
pays less for use of a crypto-key may not be afforded strong
security. The strength of a password means a quality of the
password. A high strength/high quality password can be an
uncommon password, a password which is not easily
guessed, or a password with a desirable combination of
characters. Thus, such a password may be subjected to fewer
iterations of the one way function. A low strength/low
quality password may be subjected to increased iterations of
the one way function.

According to another aspect of the present invention, a
one way function for use in generation can be selected from
a group of one way functions, each of the group of one way
functions providing a different result of applying each
function to the same password. Selection of which one way
function may be based on the factors as described above.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a flow chart showing the operations of a prior art
cryptograhic system in performing authentication of a server
to a client.

FIG. 2 is a flow chart showing the operations of a prior art
cryptograhic system in performing authentication of a client
to a server.

FIG. 3 depicts an exemplary network of the present
invention, including networked devices of the present inven-
tion.

FIGS. 4a—4c is a flow chart showing the operations which
are performed by a user and the sponsor station of the
present invention for the user to log on with the sponsor
station

FIGS. 54-5b is a flow chart showing the operations which
are performed by a user and the sponsor station of the
present invention for a user to authenticate himself or herself
to a server.

FIGS. 6a—6c¢ is a flow chart showing the operations which
are performed by a user and a distinguished server and
sponsor station of the present invention in associating an
asymmetric key pair with the user.

FIG. 7 depicts the exemplary network and networked
devices of FIG. 1 in addition to another network, including
networked devices according to the present invention
present on the other network.

FIG. 8 depicts the exemplary network of FIG. 3, including
alternative networked devices according to the present
invention.

FIG. 9 depicts a computer suitable for use by a user to
access a network in accordance with the invention.

FIG. 10 is an exemplary block diagram of components of
the computer depicted in FIG. 9.

FIG. 11 A depicts a server suitable for use by the sponsor
station, distinguished entities, and merchants in accordance
with the present invention.

FIG. 11B is an exemplary block diagram of components
of the server depicted in FIG. 11A.

US 6,970,562 B2

11

BEST MODE FOR CARRYING OUT THE
INVENTION

FIG. 3 illustrates a network 10, which could be the
Internet. As shown, the network 10 is an interconnection of
networked devices in communication with each other. These
networked devices include networked devices 30-33 asso-
ciated with individual network users, networked device
4041 associated with a merchant network user, a sponsor
station 50 associated with a sponsor, and networked devices
60—62 associated with entities known to and trusted by the
SpOonNSsor.

Networked devices 30-33 will be referred to as user
devices. These network devices are typically personal com-
puters. Networked devices 40-41 will be referred to as
merchant servers. Networked devices 60—-62 will be referred
to as distinguished servers. It will be understood that a
network may consist of more networked devices than
depicted in FIG. 3.

FIGS. 9 and 10 depict an exemplary personal computer
suitable for use by individual users to access the network 10
in the below-described invention. The computer is prefer-
ably a commercially available personal computer. It will be
recognized that the computer configuration is exemplary in
that other components (not shown) could be added or
substituted for those depicted and certain of the depicted
components could be eliminated if desired.

The computer functions in accordance with stored pro-
gramming instructions which drive its operation. Preferably,
the computer stores its unique programming instructions on
an EPROM, or hard disk. It will be recognized that only
routine programming is required to implement the instruc-
tions required to drive the computer to operate in accordance
with the invention, as described below. Further, since the
computer components and configuration are conventional,
routine operations performed by depicted components will
generally not be described, such operations being well
understood in the art.

Referring to FIG. 9, the computer 1000 includes a main
unit 1010 with slots 1011, 1012, and 1013, respectively
provided for loading programming or data from a floppy
disk and/or compact disk (CD) onto the computer 1000. The
computer 1000 also includes a keyboard 1030 and mouse
1040 which serve as user input devices. A display monitor
1020 is also provided to visually communicate information
to the user.

As depicted in FIG. 10, the computer 1000 has a main
processor 1100 which is interconnected via bus 1110 with
various storage devices including EPROM 1122, RAM
1123, hard drive 1124, which has an associated hard disk
1125, CD drive 1126, which has an associated CD 1127, and
floppy drive 1128, which has an associated floppy disk 1129.
The memories, disks and CD all serve as storage media on
which computer programming or data can be stored for
access by the processor 1100. The memory associated with
a personal computer here after will collectively be referred
to as Memory 1170. A drive controller 1150 controls the hard
drive 1124, CD drive 1126 and floppy drive 1128. Also
depicted in FIG. 10 is a display controller 1120 intercon-
nected to display interface 1121, a keyboard controller 1130
interconnected to keyboard interface 1131, a mouse control-
ler 1140 interconnected to mouse interface 1141 and a
modem 1160 interconnected to I/O port 1165, all of which
are connected to the bus 1110. The modem 1160 and
interconnected I/O port 1165 are used to transmit and
receive signals via the Internet 100 as described below. It
will be understood that other components may be connected

10

15

20

25

30

35

40

45

50

55

60

65

12

if desired to the bus 1110. By accessing the stored computer
programming, the processor 1100 is driven to operate in
accordance with the present invention.

Sponsor station 50, the merchant users and the distin-
guished entities are preferably represented on network 10 by
an Internet server of the applicable type shown in FIGS. 11A
and 11B, as will be described further below. However, here
again, any network compatible device which is capable of
functioning in the described manner could be substituted for
the servers shown in FIGS. 11A and 11B.

FIGS. 11A and 11B depict an exemplary network server
suitable for use by the sponsor, merchants, and distinguished
entities to access the network 10 in the below-described
invention. The server is preferably a commercially available
high power, mini-computer or mainframe computer. Here
again, it will be recognized that the server configuration is
exemplary in that other components (not shown) could be
added or substituted for those depicted and certain of the
depicted components could be eliminated if desired.

The server functions as described below in accordance
with stored programming instructions which drive its opera-
tion. Preferably, the server stores its unique programming
instructions on an EPROM or hard disk. It will be recog-
nized that only routine programming is required to imple-
ment the instructions required to drive the server to operate
in accordance with the invention, as described below. Fur-
ther, since the server components and configuration are
conventional, routine operations performed by depicted
components will generally not be described, such operations
being well understood in the art.

Referring to FIG. 11A, the server 1000' includes a main
unit 1010' with slots 1011', 1012', 1013' and 1014, respec-
tively provided for loading programming or data from a
floppy disk, CD and/or hard disk onto the server 1000'. The
server 1000' also includes a keyboard 1030' and mouse
1040', which serve as user input devices. A display monitor
1020' is also provided to visually communicate information
to the user.

As depicted in FIG. 11B, the server 1000' has a main
processor 1100" which is interconnected via bus 1110' with
various storage devices including EPROM 1122', RAM
1123, hard drive 1124', which has an associated hard disk
1125', CD drive 1126', which has an associated CD 1127',
and floppy drive 1128', which has an associated floppy disk
1129'. The memories, disks and CD all serve as storage
media on which computer programming or data can be
stored for access by the processor 1100'. The stored data
includes one or more databases containing information
associated with network users. The memories associated
with a server hereafter will be collectively referred to as
memory 1170'. A drive controller 1150' controls the hard
drive 1124', CD drive 1126' and floppy drive 1128'. Also
depicted in FIG. 11B is a display controller 1120' intercon-
nected to display interface 1121', a keyboard controller 1130'
interconnected to keyboard interface 1130, a mouse con-
troller 1140 interconnected to mouse interface 1141' and a
modem 1160' interconnected to I/O port 1165, all of which
are connected to the bus 1110'. The modem 1160' and
interconnected I/O port 1165' are used to transmit and
receive signals via the network 10 as described above. It will
be understood that other components may be connected if
desired to the bus 1110". By accessing the stored computer
programming, the processor 1100' is driven to operate in
accordance with the present invention.

An asymmetric crypto-key is associated with at least each
individual network user, and each distinguished server. If
desired, an asymmetric crypto-key can also be associated

US 6,970,562 B2

13

with each merchant user. Each asymmetric crypto-key con-
sists of two portions, a public portion and a private portion.
The public portion of each asymmetric crypto-key is known
to at least each merchant user. If desired, the public portion
of each asymmetric crypto-key can also be known to each
individual user. Each of these public portions can be stored
on each merchant server, or on each merchant server and
each individual device. The private portion of each asym-
metric crypto-key consists of at least a first private portion
and a second private portion. The first private portion is
retained by the individual or merchant user with whom the
asymmetric crypto-key is associated. The first private por-
tion of the asymmetric crypto-key will be referred to as Dxx
and is derived from the user’s password, as will be discussed
below. The second private portion of each asymmetric
crypto-key is retained by the sponsor station 50 and will be
referred to as Dxs.

The asymmetric crypto-keys are used in transforming
information. Preferably, the asymmetric crypto-keys are
used in providing trusted authentication of an individual user
to a merchant user. Also, the asymmetric crypto-keys can be
used in providing trusted authentication of an individual user
to another individual user, or of a merchant user to another
merchant user.

In the case of providing trusted authentication of an
individual user, in this instance, the individual user associ-
ated with user device 30, to a merchant user, in this instance,
the merchant user associated with merchant server 40, the
following operations, as shown in FIGS. 4 and 5, are
performed by networked devices 30 and 40.

A communication session between user device 30 and
merchant server via network 10 is established, step 401 of
FIG. 4. Merchant server 40 transmits a request via network
10 to user device 30 requesting that the individual user
authenticate himself or herself to the merchant user, step
410. As described above, this request typically is a request
for the party being authenticated to sign a 36 bit hash
provided by the authenticating party or otherwise deter-
mined by the user-merchant communication.

In response to this request, the user device 30 determines
if a logged-in ticket is stored on memory 1170 at the user
device 30, step 415. If so, operations continue as described
below and shown at step 510 of FIG. 5a. If not, user device
30 requests the individual user to enter his or her user ID and
password into the user device 30 to begin a log on protocol,
step 420.

Alternatively, a user associated with an asymmetric
crypto-key may contact the sponsor station 50, via the
network 10, to log on prior to establishing a communications
session with another network station. In this instance, pro-
cessing begins with establishing a communications session
between the user device and the sponsor station 50, step 405.
Processing in this instance continues with step 420 as herein
described.

User device 30 processes the entered password to obtain
Dxx, the first private portion of the asymmetric crypto-key,
step 425. Processing of the entered password to obtain Dxx
is discussed below. User device 30 then transmits a log-in
request to sponsor station 50, step 430. The log-in request
includes at least the user’s user ID. It should be understood
that step 425 can occur previous to step 430, concurrent with
step 430, or subsequent to step 430, though it is shown
previous to step 430 in FIG. 4a.

Sponsor station 50 receives and processes the log-in
request to generate a challenge to the user device 30, step
435. Use of a challenge will be understood by one skilled in
the art. The challenge is transmitted to the user device 30,

10

15

20

25

30

35

40

45

50

55

60

65

14

step 440. The log-in request and challenge are preferably
each transmitted in the clear. That is, neither of these
messages are protected. However, as will be discussed
below, optional operations can be performed to protect these
messages.

The user device 30 receives the challenge and generates
a random number R1 and a time stamp, step 445. Preferably,
R1 is a 192 bit number. Next, the user device 30 encrypts the
challenge, time stamp and R1 with Dxx, forming a first
encrypted message, step 450. User device 30 transmits the
first message to sponsor station 50, step 451.

Sponsor station 50 decrypts the first encrypted message
using the second portion of the user’s private key and the
user’s public key to recover the challenge, time stamp and
R1, step 455. This operation authenticates the user device 30
to the sponsor station 50. If this authentication fails, that is,
the challenge, time stamp and R1 are not encrypted with
Dxx and therefore are unrecoverable using the second
portion of the user’s private key and the user’s public key,
sponsor station 50 transmits a notice to the user device 30
causing the user device 30 to prompt the user to reenter his
or her password, and user ID, step 460, and operations
continue with step 420.

If authentication is successful, the sponsor station 50
generates a second random number R2, computes the func-
tion XOR of R1 and R2, generates a time stamp, and
determine a lifetime-value, step 465. As with R1, R2 is
preferably a 192 bit number. The lifetime-value is the life
span of the logged-in ticket. This value may be a finite time
period, such as 1 hour or any other finite time period so
desired, or this value may be an end time such that the
logged-in ticket expires upon that time being reached. Next,
the sponsor station 50 encrypts R2, the time stamp, and the
lifetime-value with R1, forming a second encrypted mes-
sage, step 470. The sponsor station 50 transmits this second
encrypted message to the user device 30, step 471.

The user device 30 decrypts the second encrypted mes-
sage using R1, recovering R2, the time stamp, and the
lifetime-value, step 475. This operation authenticates the
sponsor station 50 to the user device 30. The user device 30
computes function XOR of R1 and R2 which is called R12,
encrypts Dxx with R1, and then destroys R1 and the
unencrypted Dxx, step 480. The user device 30 then stores
the encrypted Dxx, user ID, time stamp, and the lifetime-
value on memory 1170, forming the logged-in ticket, step
485. The user device 30 then transmits a message to the
sponsor station 50 which includes a ‘done’ indication and a
time stamp which are encrypted using R12, step 490. The
sponsor station 50 stores an indication in memory 1170’ that
the user is logged in. The user has now successfully logged
in and can use the services of the sponsor station 50 to sign
the 36 byte hash. As will be shown below, if the user has an
unexpired logged-in ticket, the user need not provide the
user’s client ID or password again to provide authentication
to another network station requesting authentication.

Once the user is successfully logged in, to complete the
authentication of user to the merchant, the user device 30
transmits an authorization request to the sponsor station 50,
step 510 of FIG. 5. The authorization request includes the
user’s user ID which is stored as part of the logged-in ticket
on memory 1170. The user device 30 retrieves the user ID
from memory 1170, the user device 30 does not prompt the
user to enter the user ID. This transmission is sent using a
Message Authentication Code (MAC) using R12. As will be
understood by one skilled in the art, a MACed message is
not encrypted, rather it includes a number string appended to
the message which authenticates the sender of the message

US 6,970,562 B2

15

to the receiver of the message and assures integrity of the
message content. The user device 30 MACs the authoriza-
tion request with R12. The sponsor station 50 processes the
received message to authenticate the user based upon the
MACed message, step 515. Then, the sponsor station 50
generates and transmits an acknowledgement message to the
user device 30. This is also MACed with R12, step 516.

The user device 30 authenticates the received acknowl-
edgment and encodes a 36 byte hash, provided by the
merchant server 40, step 520. Preferably, the 36 byte hash is
encoded using the PKCS1 algorithm, though other well
known algorithms could be used. Next, the user device 30
encrypts the 36 byte hash and a time stamp with R12 and
transmits both to the sponsor station 50, step 525.

The sponsor station 50 decrypts encoded 36 byte hash and
time stamp using R12, step 530. Next, the sponsor station 50
signs the encoded 36 byte hash with Dxs, the second private
portion of the asymmetric crypto-key, step 535. The sponsor
station 50 generates a fresh time stamp, recalls R1 from
memory 1170', and transmits the time stamp, the signed
encoded 36 byte hash, and R1 to the user device 30, all
encrypted with R12, step 540.

The user device 30 decrypts the time stamp, the signed
encoded 36 byte hash, and R1 using R12, step 545. Then, the
user device 30 recalls encrypted Dxx from the memory 1170
and decrypts Dxx using R1 obtained from the sponsor box
50, step 550. The user device 30 then uses Dxx to complete
the signature of the encoded 36 byte hash and transmits the
fully signed 36 byte hash to the merchant server 40, step
555. To complete the transaction, the user device 30 trans-
mits a ‘done’ message to the sponsor station 50, step 560.

Alternately the encoded 36 byte hash could be first signed
on the user device 30 using Dxx decrypted via R12 and the
signature completed on the sponsor station 50 using Dxs.

It will be understood by one skilled in the art that any or
all of the communications depicted in FIGS. 4a—4c¢ and
5a—5b between the user device 30 and sponsor station 50
could include a sequence number. It also will be understood
that any or all of the communications depicted in FIGS.
5a—5b could be encrypted with R12, MACed with R12, or
both encrypted and MACed with R12. Also, further protec-
tion of encrypted messages can be obtained by use of a Salt,
which will be understood by one skilled in the art.

To provide trusted authentication to yet another merchant
server, or perhaps to merchant server 40 at a later time,
operations continue as depicted in FIG. 44, step 401, and as
discussed above. If, as depicted in step 4185, the user device
30 determines that an unexpired log-in ticket is stored in
memory 1170, operations continue as depicted in FIG. 5q,
step 510. Thus, the user associated with network station 30
need only enter his or her user ID and password once, while
the user is able to provide trusted authentication to more than
one merchant user.

The sponsor station 50 is responsible for creating the
association between users and asymmetric crypto-keys. For
a user to obtain an association with an asymmetric crypto-
key, the user must have a relationship with an entity asso-
ciated with a distinguished server. A distinguished server
and sponsor station 50 maintain a trusted relationship. The
sponsor station 50 will provide an asymmetric crypto-key
only for those users referred to it by a distinguished server.

For instance, if the individual user associated with user
device 31 wishes to obtain an association with an asymmet-
ric crypto-key, yet does not have a preexisting relationship
with any distinguished server, that user may choose to
contact distinguished server 60 via the network 10 and
provide identity information to the distinguished server 60.

10

15

20

25

30

35

40

45

50

55

60

65

16

In this case, the distinguished server 60 has the capabilities
to verify identity information. This capability may be any
well known method of verifying identify information, such
as a database of credit information, a database of telephone
account information, or a database of address information. If
the distinguished server 60 verifies the provided informa-
tion, the distinguished server 60 can refer the user to the
sponsor station 50.

If an individual user associated with user device 32
wishes to obtain an association with an asymmetric crypto-
key and has a relationship with the distinguished server 61,
the individual user must request that the distinguished server
61 initiate the process of associating an asymmetric crypto-
key with the individual user. Operations as described below
and depicted in FIG. 6 will be performed.

Also, in yet another instance of initiation of asymmetric
crypto-key association, distinguished server 62 may be
associated with an entity wishing to associate an asymmetric
crypto-key for each of a plurality of individuals already
known to it. For instance, a merchant or bank may wish to
provide to customers the opportunity to use the services of
the sponsor station 50. Or, an organization may wish to
provide to its members the opportunity to use the services of
the sponsor station 50.

In any event, association of an asymmetric crypto-key is
a three party process. As shown in step 601 of FIG. 64, a
distinguished server, in this instance distinguished server 62
logs in with the sponsor station 50, as described above.
Then, the distinguished server 62 transmits to the sponsor
station 50 information identifying a new user with whom an
asymmetric crypto-key will be associated, in this instance
the individual user associated with user device 33, step 605.
The sponsor box then generates a symmetric key pair and a
user ID which will be associated with the new user, step 610.
This symmetric key pair will serve as a one time activation
code. Preferably, the symmetric key is a short pronounceable
word. This symmetric key and user ID is stored in the
memory 1170' and is also transmitted to the distinguished
server 62, step 615. The distinguished server 62 then causes
the symmetric key and user ID to be delivered to the new
user. This delivery may be via traditional postal delivery, via
e-mail, or via other electronic delivery, such as via a
web-page, step 617. Preferably electronic or hard-copy
delivery will be secured using techniques familiar to those
skilled in the art.

The new user, after receiving the user ID and symmetric
key, establishes a communication session with the sponsor
station 50, step 620. The new user enters the user ID into his
or her user device and transmits the same to the sponsor
station 50, step 625.

The sponsor station 50 matches the received user ID with
the user ID and symmetric key stored in memory 1170', step
630. If the received user ID has a match, the sponsor station
50 generates a challenge and encrypts the challenge with the
symmetric key/one time activation code, step 635. The
sponsor box transmits the encrypted challenge and a request
for the new user to select a password to the user device 33,
step 638. The user device 33 decrypts the challenge using the
new user’s symmetric key/one time activation code, step
640.

The new user selects and enters a password which is then
encrypted by the user device 33 using the symmetric key/
one time activation code, and this is then transmitted to the
sponsor station 50, step 645. The sponsor station 50 decrypts
the password using the symmetric key/one time activation
code, step 650. The sponsor station 50 generates a new key
set, step 651. The new key set is keys Dx and Ex, the entire

US 6,970,562 B2

17

private and public portions of the asymmetric crypto-key.
Then, the sponsor station 50 splits Dx into Dxx and Dxs, the
first and second portions of the private portion, step 655.
Computation of Dxx will be further discussed below, as well
as generation of yet another key, Dxx++, which is generated
after Dxx is obtained. However, it should be understood that
the sponsor station 50 bases Dxx on the password. After
generating the keys, the sponsor station stores Dxs, Dxx++,
and Ex in the memory 1170' and destroys the password, Dxx
and Dx, step 660. As a result, the user’s entire private key
is not stored at the sponsor station 50.

It should be noted that sponsor station 50 does not
distribute or otherwise supply Dxx to any user, including the
user with whom it is associated, yet the associated user will
be able to transform messages using Dxx. According to the
present invention, Dxx is a long key for use by a system user,
yet the system user need not store this long key, obviating
the problems with long keys discussed above. Furthermore,
because Dxx is generated each instance it is used from a
short password, a user need only memorize a short pass-
word. Thus the present invention includes not only the
benefits of short keys, but the protection of long keys.

It should also be noted that when a new user establishes
his or her password with the sponsor station 50, the new user
is also prompted for information to be included in a certifi-
cate to be associated with the asymmetric crypto-key.

Each time a user desires to log on to the sponsor station

50, the user enters his or her password into his or her
network device and the network device then computes
Dxx from the password, as introduced above. This
computation is a computation based upon a one way
function, preferably using the PKCS-5 algorithm. A
one way function is a function that it is very difficult to
reverse. Thus, it is difficult, if not impossible, to take a
computed Dxx and determine the password from which
it was computed. The computation performed by a
user’s networked device to obtain Dxx is the same
computation performed by the sponsor station 50 to
obtain Dxx during key association. At least one one-
way function is stored on memory 1170 of each net-
worked device. Each one way function stored on a
networked device is also stored on memory 1170' at the
sponsor station 50.

The user password is preferably a short password which
is easily remembered by the user, ideally approximately 8
characters in length. An eight character password is approxi-
mately between 56 and 72 bits in length. The one way
computation takes this short password and transforms it into
a long key, preferably 1024 bits long, but at least 257 bits
long. Thus, the effective length of the first portion of the
private key is not the bit length of the password, but the bit
length of the computed Dxx. It will be recognized that
advantages of generation of a long key from a short key, that
is, a password, are equally beneficial to any cryptosystem,
including symmetric and asymmetric cryptosystems.

The processing to obtain the long Dxx, whether it be
PKCS-5 or some other processing, requires a time period for
the computation to be completed. This time period, which
can referred to as a system delay, serves to defend against
dictionary attacks, which have been described above. For
instance, if an attacker were to obtain a message M
encrypted with Dxx, and even if the intruder had knowledge
of the one way computation algorithm, the intruder would be
required compute Dxx for each bad password in her arsenal
of bad passwords and attempt to decrypt S using the Dxx
obtained from each of the bad passwords. If the arsenal
consisted of 40,000 bad passwords, and if the system delay

10

15

20

25

30

35

40

45

50

55

60

65

18

to obtain Dxx is 10 seconds, at a minimum the attacker
would have to invest over 111 hours of computing time to
attack with each bad password in her arsenal.

The use of a computed Dxx also aids in defending against
on-line guessing attacks for the same reason discussed
above. An attacker would have to choose a user ID and a
password with which to attempt to log in, establish a
communication session with the sponsor station 50 and enter
the selected user ID and password. The networked device
the attacker is using would then have to compute Dxx from
the password and transmit the same to the sponsor station
50. The added computation time in obtaining Dxx would
decrease the number of guesses an attacker could attempt in
any time period. As will be understood by one skilled in the
art, the sponsor station 50 may be configured to allow only
a limited number password attempts.

The time for completion of the one way function com-
putation can be varied. That is, the one way computation can
be made more or less complex depending upon a number of
factors. This complexity may be based on the number of
iterations performed by a one way computation. Or, the
complexity may be varied based upon selection of the one
way function.

A first factor may be the user with whom the password is
associated. For instance, a system administrator’s password
may be required to be processed by the one way computation
such that a longer time delay is introduced.

A second factor may be the password itself. For instance,
a password which meets certain prescribed criteria for
quality, as discussed above, may not require a complex
computation, as a quality password is less likely to be
vulnerable to a dictionary attack.

A third factor may be type of system being accessed. For
instance, operators of a system which provides access to
sensitive financial data may wish to make compromising
their system’s integrity very difficult, thus requiring a long
system delay for password conversion.

A fourth factor, which also focuses on the identity of the
user, may be the location of the user, or networked device
used by the user, seeking access to a given resource. For
instance, FIG. 7 depicts the network of FIG. 3, with the
addition of another network 70 in communication with
network 10. The other network 70 may be an intranet, a
LAN, a WAN, or any other type of network. The other
network 70 includes a second sponsor station 71 and a
plurality of networked devices 72—74. Sponsor station 71
may mandate a longer system delay for user devices 30-33
than for user devices 72—74, as networked devices 30-33 are
not a part of the other network 70.

If the time of computation of the one way function is
varied, stored on memory 1170' at sponsor station 50 is an
indication of which one way function is associated with each
user and/or the number of iterations of a one way function
a particular user is required to perform.

The present invention also enables a user to manage his or
her information with the sponsor station 50. This includes
changing the password should the user so desire. This may
be due to the password becoming compromised, or for any
other reason. A user is also able to change, delete or
otherwise modify the information included in the user’s
certificate. Communications between a user and the sponsor
station 50 to manage user information may be encrypted
with R12, due to the sensitive nature of this operation.

It should be recognized that a user, prior to accessing any
given networking device, may establish a communications
session with the sponsor station 50 and change, delete or
otherwise modify information included in the user’s certifi-

US 6,970,562 B2

19

cate. After accessing the given networking device, the user
can reestablish a communication session with the sponsor
station 50 and once again change the information included
in the certificate. Thus, a user is able to access a plurality of
networking devices using the same public crypto-key, while
controlling information disclosed to each networking device
about the user in the user’s certificate.

The key Dxx++ was introduced above. Dxx++ is a key
which is obtained by performing a predetermined number of
additional iterations of a one way function on a password. As
an example, if five iterations of a one way function are
designated to obtain Dxx, seven iterations of the same one
way function may be designated to obtain Dxx++. It should
be remembered that it is difficult or impossible to reverse a
one way function. The Dxx++ associated with each user is
stored in memory 1170' at the sponsor station 50. Dxx++ can
be computed at each user’s networked device from a user’s
password.

As discussed above, most public cryptosystems are based
upon RSA. If RSA should become compromised, Dxx++
will be used to encrypt information between network users
and the sponsor station 50 and between network users
themselves. It will be apparent from the above discussion
that Dxx++ is a shared secret symmetric key. Both the user
and the sponsor station hold, or can easily obtain, Dxx++.
Dxx++ provides a fall back symmetric cryptographic sys-
tem.

If the sponsor station 50 determines that RSA has become
compromised, the sponsor station 50 will direct that com-
munications will be performed using symmetric key encryp-
tion. Thus, when a user establishes a communication session
with the sponsor station 50, the sponsor station 50 will
transmit a message to the user device causing the user device
to compute Dxx++ and to encrypt all further communica-
tions with the sponsor device using Dxx++. Thus even
though RSA may become compromised the sponsor station
50 and a networked device can still conduct secure com-
munications. A user will be able to use the same password
created for use in an asymmetric cryptosystem in what may
become a symmetric cryptosystem. In a fall back situation,
the sponsor station, which holds Dxx++ for each user, can
serve as a distributing agent for symmetric keys, enabling
users to have secure communications with one another. It
should be understood that use of Dxx++ as a fall back
scheme is applicable to any cryptosystem based upon RSA.
It is also applicable to public-key cryptosystems which are
not based on RSA.

As shown in FIG. 8, the sponsor station 50 of FIG. 3 may
be replaced by a plurality of sponsor stations. In this
instance, 3 sponsor stations are shown, sponsor stations 80,
81, and 82. Though these sponsor stations are shown com-
municating with networking devices via the network 10, it
should be understood that the plurality of sponsor stations
may also communicate with one another via separate com-
munications channels. Furthermore, the plurality of sponsor
stations may be located in the same physical location, or
they may be located in separate physical locations.

One or more sponsor stations may be used as back up for
a failed sponsor station. Or, the operation of signing a 36
byte hash, as described above, may be performed by mul-
tiple sponsor stations. In such a case, alternative operations
are set forth below.

In each alternative, the private key portion of the asym-
metric key is split into more than two portions. That is, each
of the multiple servers holds a Dxs. Thus, sponsor station 80
holds key Dxs,, sponsor station 81 holds key Dxs,, and
sponsor station 82 holds key Dxs;. In such an alternative,

10

15

20

25

30

35

40

45

50

55

60

65

20

any one of the sponsor stations can associate the keys with
users, as described above. That sponsor station then must
distribute the appropriate Dxs portion to each of the other
sponsor station.

In the first alternative, which could be called a parallel
method, to obtain a signature on a 36 byte hash, a user device
must transmit a copy of the hash to each of the multiple
sponsor stations. Each station applies that sponsor station’s
Dxs to the hash and transmits the signed hash back to the
user device. The user device then multiplies each of the
signed hashes together, relying on the commutative property
of RSA, and signs this result with the user’s portion of the
private key. The user device can then transmit the signed 36
byte hash to the requesting merchant server, as described
above.

In a second alternative, authentication of the user to each
of the multiple sponsor stations can be provided. In this
alternative a temporary shared secret key is established
between the multiple sponsor stations and the user.

A user initiates a log-in with any of the multiple sponsor
stations as described above, and in this instance with sponsor
station 80. The sponsor station 80 generates a challenge C1
and signs C1 with a private key associated with sponsor
station 80. This private key is verifiable by each of the other
sponsor stations. That is, they each have the corresponding
public key. Then, sponsor station 80 encrypts the challenge
with its portion of the user’s private key. The sponsor station
80 also encrypts a copy of C1 with the public key of sponsor
station 81 and encrypts a copy of C1 with the public key of
sponsor station 82. The sponsor station 80 then transmits C1
to the appropriate other sponsor station. Sponsor station 81
obtains C1 using its private key, and sponsor station 82
obtains C1 using its private key. At this point, each of the
sponsor stations knows C1.

Sponsor station 80 encrypts C1 with its portion of the
user’s private key and transmits the same to the user device.
Sponsor station 81 encrypts C1 with its portion of the user’s
private key and transmits the same to the user device. And,
sponsor station 82 encrypts C1 with its portion of the user’s
private key and transmits the same to the user device. The
user device then multiplies each of the received encrypted
Cls together and then recovers C1 using the user’s portion
of the private key. C1 can than be used as a shared secret key
between the user and the sponsor stations. Thus, by dem-
onstrating knowledge of C1, the user device can authenticate
itself to each of the multiple sponsor stations. The user can
then obtain the required signatures from each of the multiple
sponsor stations, such communications being protected by
Cl1.

In a third alternative, which could be called a series
alternative, to obtain a signature on a 36 byte hash, a user
device transmits the 36 byte hash to a sponsor station 80,
sponsor station 80 in this example. That sponsor station
signs the hash and forwards it to sponsor station 81. Sponsor
station 81 signs the hash and forwards it sponsor station 82.
Sponsor station 82 signs the hash and returns it to the user.
The user then applies his portion of the private key to the
hash and transmits it to a merchant server.

This second alternative can be modified. The user could
first be required to sign the hash and then forward it to
sponsor station 80. Operations continue at sponsor station 80
as described above. After sponsor station 82 signs the hash,
the hash would have a complete private portion. The sponsor
station 82 could verify the signature by using the user’s
public key. This adds an additional element of authentication
to the process.

US 6,970,562 B2

21

It will also be recognized by those skilled in the art that,
while the invention has been described above in terms of one
or more preferred embodiments, it is not limited thereto.
Various features and aspects of the above described inven-
tion may be used individually or jointly. Further, although
the invention has been described in the context of its
implementation in a particular environment and for particu-
lar purposes, e.g. in providing security for Internet commu-
nications, those skilled in the art will recognize that its
usefulness is not limited thereto and that the present inven-
tion can be beneficially utilized in any number of environ-
ments and implementations. Accordingly, the claims set
forth below should be construed in view of the full breath
and spirit of the invention as disclosed herein.

What is claimed is:

1. A system for generating an asymmetric crypto-key
usable to transform messages to encrypt and decrypt or sign
the messages for a user, comprising:

a first processor configured to (i) generate a private
crypto-key and a corresponding public crypto-key
associated with the user, (ii) divide the private crypto-
key into a first private key portion, based on a password
of the user, and a second private key portion, (iii)
destroy the private crypto-key and the first private key
portion without distribution thereof and without storage
thereof in a persistent state, and (iv) store only the
second private key portion and the public crypto-key in
a persistent state; and

a second processor representing a user and configured to
(i) generate, responsive to receipt of an inputting of and
based on the user password, only the first private key
portion, and (ii) destroy, without storing in a persistent
state, the generated first private key portion.

2. A system according to claim 1, wherein the user
password has a bit length of between 56 and 72 bits and the
generated first private key portion has a bit length of at least
257 bits.

3. Asystem according to claim 1, wherein the first private
key portion is generated in accordance with a one way
function.

4. A system according to claim 3, wherein:

the first processor and the second processor are further
configured to selectively operate in a first mode and a
second mode;

in the first mode the first processor and the second
processor apply the one way function a first number of
times to generate the first private key portion; and

in the second mode the first processor and the second
processor apply the one way function a second number
of times, different than the first number of times, to
generate the first private key portion.

5. A system according to claim 4, wherein:

the first processor and the second processor are further
configured to select one of the first and second mode for
operation based on at least one of an identity of the user
and a strength of the user password.

6. A system according to claim 3, wherein:

the first processor and the second processor are further
configured to select the one way function from a group
of one way functions.

7. A system according to claim 6, wherein:

the first processor and the second processor are further
configured to select the one way function based upon at
least one of an identity of the user and a strength of the
user password.

10

15

20

25

30

35

40

45

50

55

60

65

22

8. A system according to claim 1 wherein:

the second processor is further configured to encrypt or
sign a message with the first private key portion prior
to destroying the generated first private key portion;
and

the first processor is further configured to recover or
verify the encrypted message by applying the stored
second private key portion and the public key.

9. A system for asymmetrically transforming a message,

comprising:

a first processor representing a user and configured to
generate, based on a password of the user, a first portion
of a private crypto-key, to transform a message with the
first private key portion, and to destroy the generated
private key portion after transforming the message and;

a second processor configured to further transform the
transformed message by applying at least one of a
second portion of the private crypto-key and a public
crypto-key, both of which correspond to the first private
key portion.

10. A system according to claim 9, further comprising:

a storage device configured to store the second private key
portion and the public crypto-key in a persistent state;

wherein the applied at least one of a second portion of the
private crypto-key and a public crypto-key is at least
one of the stored second private key portion and the
stored public crypto-key, and the second processor is
further configured to retrieve the at least one of the
stored second private key portion and the stored public
crypto-key based on the user password;

wherein the first private key portion is never stored in a
persistent state.

11. A system according to claim 9, wherein the user
password has a bit length of between 56 and 72 bits and the
generated first private key portion has a bit length of at least
257 bits.

12. A system according to claim 9, wherein the first
private key portion is generated in accordance with a one
way function.

13. A system according to claim 12, wherein:

the first processor and the second processor are further
configured to selectively operate in a first mode and a
second mode;

in the first mode the first processor and the second
processor apply the one way function a first number of
times to generate the first private key portion; and

in the second mode the first processor and the second
processor apply the one way function a second number
of times, different than the first number of times, to
generate the first private key portion.

14. A system according to claim 13, wherein:

the first processor and the second processor are further
configured to select one of the first and second mode for
operation based on at least one of an identity of the user
and a strength of the user password.

15. A system according to claim 12, wherein:

the first processor and the second processor are further
configured to select the one way function from a group
of one way functions.

16. A system according to claim 15, wherein:

the first processor and the second processor are further
configured to select the one way function based upon at
least one of an identity of the user and a strength of the
user password.

17. A method for generating an asymmetric crypto-key

usable to transform messages to both encrypt and decrypt
the messages for a user, comprising:

US 6,970,562 B2

23

generating, based upon a password of the user, a private
crypto-key and a corresponding public crypto-key
associated with the user;

dividing the private crypto-key into a first private key

portion and a second private key portion;

destroying the private crypto-key and the first private key

portion without distribution thereof and without storage
thereof in a persistent state;

separately generating, responsive to receipt of, and based

upon, the user password, only the first private key
portion; and

destroying, without storing in a persistent state, the sepa-

rately generated first private key portion.

18. The method according to claim 17, wherein the
password has a bit length of 56 to 72 bits and the generated
first private key portion has a bit length of at least 257 bits.

19. The method according to claim 17, wherein the first
private key portion is generated in accordance with a one
way function.

20. The method according to claim 17, further compris-
ing:

selecting one of a first mode and a second mode in which

to generate the first private key portion in accordance
with a one way function;

wherein the first mode the one way function is applied to

the password a first number of times to generate the first
private key portion; and

wherein the second mode the one way function is applied

to the password a second number of times, different
than the first number of times, to generate the first
private key portion.

21. The method according to claim 20, wherein selection
of the first and second mode is based on at least one of an
identity of the user and a strength of the user password.

22. The method according to claim 17, further compris-
ing:

selecting a one way function from a group of one way

functions; and

generating the first private key portion in accordance with

the selected one way function;

wherein selection of the one way function is based upon

at least one of an identity of the user and a strength of
the user password.

23. The method according to claim 17, further compris-
ing:

transforming a message with the generated first private

key portion prior to destruction thereof; and

further transforming the message by applying at least one

of the second private key portion and the public crypto-
key.

24. The method according to claim 23, further compris-
ing:

storing the second private key portion and the public

crypto-key in a persistent state; and

retrieving the at least one of the stored second private key

portion and the stored public crypto-key;

10

15

20

25

30

55

24

wherein the applied at least one of the second private key
portion and the public crypto-key is at least one of the
retrieved at least one of the second private key portion
and the public crypto-key; and

wherein the first private key portion is never stored in a

persistent state.

25. A method for transforming a message, in which a user
is associated with a private crypto-key and a corresponding
public crypto-key, and the private crypto-key has a first
private key portion and a second private key portion, com-
prising:

processing a password to generate the first private key

portion and transforming a first message with the
generated first private key portion; and

further transforming the first message with the second

private portion;

wherein the first private portion is (i) not persistently

stored at any networked device and (ii) not transmitted
over a network;

wherein the processing and transforming are performed

by a networked device representing the user, and the
further transforming is performed by a networked
device representing other than the user.

26. The method according to claim 25, wherein the
password has a bit length of 56 to 72 bits and the generated
first private key portion has a bit length of at least 257 bits.

27. The method according to claim 26, wherein the first
private key portion is generated in accordance with a one
way function.

28. The method according to claim 26, further compris-
ing:

selecting one of a first mode and a second mode in which

to generate the first private key portion in accordance
with a one way function;

wherein the first mode the one way function is applied to

the password a first number of times to generate the first
private key portion; and

wherein the second mode the one way function is applied

to the password a second number of times, different
than the first number of times, to generate the first
private key portion.

29. The method according to claim 28, wherein selection
of the first and second mode is based on at least one of an
identity of the user and a strength of the user password.

30. The method according to claim 26, further compris-
ing:

selecting a one way function from a group of one way

functions; and

generating the first private key portion in accordance with

the selected one way function;

wherein selection of the one way function is based upon

at least one of an identity of the user and a strength of
the user password.

