Outline

– Language Hierarchy
– Definition of Turing Machine
– TM Variants and Equivalence
– Decidability
– Reducibility

Language Hierarchy

• Regular: finite memory
• CFG/PDA: infinite memory but in stack space
• TM: infinite and unrestricted memory
 – TM Decidable/Recursive
 – TM Recognizable/Recursively Enumerable

Semantics of TM

• Not a real machine, but a model of computation
• Components:
 – 1-way infinite tape: unlimited memory
 • Store input, output, and intermediate results
 • Infinite cells
 • Each cell has a symbol from a finite alphabet
 – Tape head:
 • Point to one cell
 • Read or write a symbol to that cell
 • move left or right
States of a TM

• Initial state:
 – Head on leftmost cell
 – input on the tape
 – Blank everywhere else

• Accept state

• Reject state

• Loop

• Accept or reject immediately

Formal Definition

A **Turing machine** is a 7-tuple \((Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})\), where

1. \(Q\) is the set of states,
2. \(\Sigma\) is the input alphabet, where the blank symbol \(_ \notin \Sigma\),
3. \(\Gamma\) is the tape alphabet, where \(_ \in \Gamma\) and \(\Sigma \subseteq \Gamma\),
4. \(\delta : Q \times \Gamma \longrightarrow (Q \times \Gamma \times \{L, R\})\) is the transition function,
5. \(q_0 \in Q\) is the start state,
6. \(q_{\text{accept}} \in Q\) is the accept state, and
7. \(q_{\text{reject}} \in Q\) is the reject state.

Example of transition function:

\[\delta(q, a) = (p, b, L)\]

\[\delta(q, a) = (p, b, R)\]

An Example

\[B = \{w \# w \mid w \in \{0, 1\}^*\}, \text{ and } B = L(M_1)\]

• The tape changing:

<table>
<thead>
<tr>
<th>01100000110000...</th>
<th>01100000110000...</th>
</tr>
</thead>
<tbody>
<tr>
<td>x110000111000...</td>
<td>x110000111000...</td>
</tr>
</tbody>
</table>

Configuration

• A configuration of TM:
 – Current state
 – Symbols on tape
 – Head of location

• A formal specification of a configuration:
 – where
 – \(u, v\) are strings on \(\Gamma\), and \(w\) is the current content on tape
 – \(q\) is current state
 – head is in the first symbol of \(v\).
 – ex: 1011 \(q_1 \ 01111\)
Configuration

- For two configurations:
 \(uaq_{ibv} \) and \(uq_{jvc} \), where
 \(a, b, c \in \Gamma \), and \(a, c \in \Gamma^* \)
 \(uaq_{ibv} \) yields \(uq_{jvc} \) if \(\delta(q_i, b) = (q_j, c, L) \)
 \(uaq_{ibv} \) yields \(uaq_{jvc} \) if \(\delta(q_i, b) = (q_j, c, R) \)

- Two special cases:
 - the leftmost cell
 - \(q_{ibv} \) yields \(q_{jvc} \) if \(\delta(q_i, b) = (q_j, c, L) \)
 - \(q_{ibv} \) yields \(cq_{jvc} \) if \(\delta(q_i, b) = (q_j, c, R) \)
 - on the cell with blank symbol
 - \(uaq_{i} \) is equivalent to \(uaq_{i,j} \)

Languages

- Turing-recognizable Languages:
 - For a \(L \subset \Gamma^* \), exists a \(M \) such that \(M \) recognizes \(L \)
 - “Recognize” means accept, reject, or loop
- Turing-decidable languages:
 - For a \(L \subset \Gamma^* \), exists a \(M \) such that \(M \) decides \(L \)
 - “Decide” means halting: either accept or reject
- Turing-decidable \(\subseteq \) Turing-recognizable
 - Halting Problem is Turing-recognizable, but not decidable.
- Not all languages are Turing-recognizable
 - There are some languages cannot be recognized by a TM.
 - Complement of Halting problem is Turing-unrecognizable

An example

\[A = L(M_2), \text{ where } A = \{0^n \mid n \geq 0 \} \]

- Semantical description:
 For an input string \(w \):
 1. \(\text{sweep left to the right along the tape, crossing off every other 0} \)
 if tape contains single 0
 (return accepted)
 2. \(\text{if tape contains odd number and more than one of 0s} \)
 (return rejected)
 3. \(\text{else go back to leftmost cell} \)

- Formal description:
 \(M_2 = (Q, \Sigma, \Gamma, q_0, \phi, \phi_{accept}, \phi_{reject}), \) where
 \(Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6\} \)
 \(\Sigma = \{0\} \)
 \(\Gamma = \{0, 1, x\} \)
 \(\delta \) - state transition diagram
Outline

– Language Hierarchy
– Definition of Turing Machine
– TM Variants and Equivalence
– Decidability
– Reducibility

Simple variant

• $\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, S\}$
• $\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, RR, LL\}$
• They are equivalent in recognizing language:
 – They can be simulated by original the TM
 – The difference is not significant

TM Variants

• Multitape TM
• Nondeterministic TM
• Enumerators
• Equivalence: All have same power
 – Recognize the same class of languages
 – Can be simulated by an ordinary TM

Multitape TM

• A multitape TM is identical to ordinary TM except:
 – k tapes, where $k \geq 1$
 – Each tap has its own head
 – $\delta : Q \times \Gamma^k \rightarrow Q \times \Gamma^k \times \{L, R, S\}^k$
 – $\delta(q_i, \alpha_1, \alpha_2, \ldots, \alpha_k) = (q_j, b_1, b_2, \ldots, b_k, L, R, \ldots, R)$
Multitape TM

- Theorem: each multitape TM has an equivalent single tape TM
 - Put # in a single tape for demarcation of original k tapes.
 - Each movement of M is simulated by a series movement of S on each segment.
 - For a right-move on the rightmost cell of ith tape in M, S write blank symbol in $(i+1)$th #, and right-shifts all symbols after that one cell.

M	0	1	0	1	0	u	...							
	b	a	b	c	...									
S	1	0	1	0	0	a	a	a	a	b	b	b	u	...

Nondeterministic TM

- A nondeterministic TM is identical to an ordinary TM except:
 - $\delta : Q \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{L,R\})$
 - At any point the head has several possibilities to read/write/move.
- In deterministic TM, a computation is a single path with sequence of configurations.
- In nondeterministic TM, a computation is a tree or a directed acyclic graph.
 - A NTM accepts an input string if there exists a path leading to an accept state.
 - If all paths lead to reject state, then this input is rejected.

NTM

- A computation single path and multi-path in a tree:

<table>
<thead>
<tr>
<th>Deterministic computation</th>
<th>Non-deterministic computation</th>
</tr>
</thead>
<tbody>
<tr>
<td>start</td>
<td>reject</td>
</tr>
<tr>
<td></td>
<td>accept or reject</td>
</tr>
<tr>
<td></td>
<td>accept</td>
</tr>
</tbody>
</table>

Nondeterminism

- Is nondeterministic model always equivalent to a deterministic model?
 - Yes, for FA
 - No, for PDA
 - Some CFL cannot be recognized by any DPDA.
 - Yes, for TM!
NTM

- Theorem: *Every NTM has an equivalent DTM.*

- For a computing tree of a NTM N with an input w, simulated with a 3-tape DTM M:
 - 1st tape: input w
 - 2nd tape: tape of a computing path with N
 - 3rd tape: node address (finite)

Enumerator

- Theorem: *A language is Turing-recognizable iff some enumerator enumerates it.*
 - For a language, if E enumerates it, then construct a TM M works as:
 - Run E. Every time that E outputs a string, compare it with input w.
 - If w appears in the output of E, accept.
 - For a language recognized by a TM M, construct E such that:
 - Run M for i steps on each input, s_1, s_2, \ldots, s_i.
 - If any computations accept, print out the corresponding i.
 - Repeat the above two steps with all possible inputs.
 - An enumerator can be regarded as a 2-tape TM.
 - Write accepted list on the 2nd tape.

Other Variants

- Write-twice TM
 - Each cell on tape can only be written twice
- Write-once TM
 - Each cell on tape can only be written once
- TM with doubly infinite tape
 - Two-way infinite tape
- Universal TM
 - A TM that takes input of description of another TM.
Thesis

• Church-Turing Thesis:
 – *Any algorithm can be expressed as a TM*
 – Formally defines an algorithm:

<table>
<thead>
<tr>
<th>Instance</th>
<th>equals</th>
<th>Turing machine</th>
</tr>
</thead>
<tbody>
<tr>
<td>algorithm</td>
<td></td>
<td>algorithm</td>
</tr>
</tbody>
</table>

• Extended Church-Turing Thesis:
 – *Any polynomial-time algorithm can be expressed as a TM that operates in polynomial time.*
 – A polynomial-time algorithm: number of element operations is a polynomial function of input length.
 – A polynomial-time TM: number of state transition is a polynomial function of input length.

Describing TM

• Formal description
 – specifying Turing machine’s states, transition function, and so on.

• Implementation description
 – using natural language to describe the way that the Turing machine moves its head and the way that it stores data on its tape.

• High-level description
 – using natural language describe an algorithm, ignoring the implementation model.

Outline

– Language Hierarchy
– Definition of Turing Machine
– TM Variants and Equivalence
– Decidability
– Reducibility

Solvability

• Solvable:
 – an algorithm to solve it,
 – a TM decides it.

• Unsolvable:
 – not algorithm to solve it
 – no TM can decide it.
Decidable Language

$A_{\text{DFA}} = \{(B, w) \mid B \text{ is a DFA that accepts } w\}$

- Acceptance problem:
 - Whether a particular DFA B accepts a given input string w.
- Membership problem:
 - Another way to say: whether $\langle B, w \rangle$ is a member of A_{DFA}.
- Theorem: A_{DFA} is a decidable language.

$M = "\text{On input } \langle B, w \rangle, \text{ where } B \text{ is a DFA and } w \text{ is a string:}\n1. \text{Simulate } B \text{ on input } w;\n2. \text{If the simulation ends in an accept state, accept; otherwise, reject.}"$

Decidable Language

$A_{\text{NFA}} = \{(B, w) \mid B \text{ is an NFA that accepts } w\}$

- Theorem: A_{NFA} is a decidable language.

$N = "\text{On input } \langle B, w \rangle, \text{ where } B \text{ is an NFA and } w \text{ is a string:}\n1. \text{Convert NFA } B \text{ to an equivalent DFA } C;\n2. \text{Run TM } M \text{ for deciding } A_{\text{DFA}} \text{ (as a "procedure") on input } \langle C, w \rangle;\n3. \text{If } M \text{ accepts, accept; otherwise, reject.}"$

Decidable Language

$A_{\text{REX}} = \{(R, w) \mid R \text{ is a regular expression that generates } w\}$

- Theorem: A_{REX} is a decidable language.

$P = "\text{On input } \langle R, w \rangle, \text{ where } R \text{ is a regular expression and } w \text{ is a string:}\n1. \text{Convert regular expression } R \text{ to an equivalent DFA } A;\n2. \text{Run TM } M \text{ for deciding } A_{\text{DFA}} \text{ on input } \langle A, w \rangle;\n3. \text{If } M \text{ accepts, accept; otherwise, reject.}"$

Decidable Language

$E_{\text{DFA}} = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset\}$

- Emptiness test problem:
 - Whether the language of a particular DFA is empty.
- Theorem: E_{DFA} is a decidable language.

$T = "\text{On input } \langle A \rangle, \text{ where } A \text{ is a DFA:}\n1. \text{Mark the start state of } A;\n2. \text{Repeat Step 3 until no new states get marked.}\n3. \text{Mark any state that has a transition coming into it from any state that is already marked.}\n4. \text{If no accept state is marked, accept; otherwise, reject.}"$
Decidable Language

\[EQ_{DFA} = \{ (A, B) | A \text{ and } B \text{ are DFAs and } L(A) = L(B) \} \]

- Equivalence problem:
 - Test whether two DFAs recognize the same language.
- Theorem: \(EQ_{DFA} \) is a decidable language.

Other Problems

- \(A_{CFG} \) is decidable.
- \(E_{CFG} \) is decidable.
- \(EQ_{CFG} \) is undecidable.
 - CFG is not closed in intersection and complementation.
- \(A_{TM} \) is undecidable.
 - Halting problem
- \(E_{TM} \) is undecidable.
- \(EQ_{TM} \) is undecidable.

Halting Problem

\[A_{TM} = \{ (M, w) | M \text{ is a TM and } M \text{ accepts } w \} \]

Theorem: \(A_{TM} \) is Turing-recognizable.

\[U = \text{"On input } (M, w), \text{ where } M \text{ is a TM and } w \text{ is a string:} \]
1. Simulate \(M \) on input \(w \).
2. If \(M \) ever enters its accept state, accept; if \(M \) ever enters its reject state, reject.
 - \(U \) is an example of universal TM.
 - \(U \) keeps looping if \(M \) neither accepts or rejects.

Halting Problem

- Theorem: \(A_{TM} \) is undecidable.
 - Can be proved by recursive theorem.

\[D((M)) = \begin{cases}
 \text{accept} & \text{if } M \text{ does not accept } (M) \\
 \text{reject} & \text{if } M \text{ accepts } (M)
\end{cases} \]
Unrecognizable

- **Theorem:** There are languages that cannot be recognized by any TM.
 - The set of TMs are countable
 - Q, Σ, and Γ are all finite sets
 - Number of transition functions is countable.
 - The set of languages is uncountable.
 - $w \in \Gamma^*$
 - $L \subseteq \Gamma^*$
 - $L \in \mathcal{P}(\Gamma^*)$. $\mathcal{P}(\Gamma^*)$ is uncountable
 - Diagonalization method to prove this

Countable

- Set of position rational numbers is countable: $\{m/n, m, n \in \mathcal{N}\}$

Countable and Uncountable

- Two infinite sets A and B are the same size if there is a correspondence from A to B.
 - A correspondence is a one-to-one and onto function:
 - $f : A \rightarrow B$
 - one-to-one: $f(a) \neq f(b)$ whenever $a \neq b$
 - Onto: $\forall b \in B, \exists a \in A, f(a) = b$

- A set is countable if either it is finite or it has the same size as $\mathcal{N} = \{1,2,3…\}$; otherwise it is uncountable.

Uncountable

- Set of real numbers \mathcal{R} is uncountable:

 Assume that a correspondence f existed between \mathcal{N} and \mathcal{R}.

<table>
<thead>
<tr>
<th>n</th>
<th>$f(n)$</th>
</tr>
</thead>
</table>
 | 1 | 3.14159...
 | 2 | 55.55555...
 | 3 | 0.12345...
 | 4 | 0.50000...

 We can find an x, $0 < x < 1$, so that the i-th digit following the decimal point of x is different from that of $f(i)$: for example, $x = 0.4641\ldots$ is a possible choice.
Uncountable

- The set of all languages over an alphabet is uncountable.
 - Think that a real number is a string over alphabet of \{ . , 0,1,2,3,4,5,6,7,8,9\}
 - Similar diagonalization way to prove with general alphabet

\[\overline{A_{TM}} = \{ \langle M, w \rangle | M \text{ is a TM and } M \text{ does not accept } w \} \]

- Theorem: \(\overline{A_{TM}} \text{ is not Turing-recognizable} \)
 - If \(\overline{A_{TM}} \) is Turing-recognizable, and \(A_{TM} \) is Turing-recognizable, then \(A_{TM} \) must be decidable. — contradiction!

Theorem: A language is decidable iff both it and its complement language are Turing-recognizable.

- If \(A \) is decided by \(M_j \), then :
 - \(M_j \) on input \(w \):
 1. Run \(M_j \) on \(w \).
 2. If \(M_j \) rejects, accept; if \(M_j \) accepts, reject.
 - \(M_j \) decides \(A \)

- If \(A \) and \(\overline{A} \) are Turing-recognizable:
 Let \(M_2 \) be a recognizer for \(A \) and \(M_2 \) be a recognizer for \(\overline{A} \).
 \(M = \) “On input \(w \):
 1. Run both \(M_1 \) and \(M_2 \) on input \(w \) in parallel. (\(M \) takes turns simulating one step of each machine until one of them halts.)
 2. If \(M_1 \) accepts and \(M_2 \) accepts, reject.”

Outline

- Language Hierarchy
- Definition of Turing Machine
- TM Variants and Equivalence
- Decidability
- Reducibility
Reducibility

- Semantics
- Reduce A_{TM} to $HALT_{TM}$
- PCP Problem
- Mapping Reducibility