Outline

– Language Hierarchy
– Definition of Turing Machine
– TM Variants and Equivalence
– Decidability
– Reducibility

Language Hierarchy

• Regular: finite memory
• CFG/PDA: infinite memory but in stack space
• TM: infinite and unrestricted memory
 – TM Decidable/Recursive
 – TM Recognizable/Recursively Enumerable
Outline

– Language Hierarchy
– Definition of Turing Machine
– TM Variants and Equivalence
– Decidability
– Reducibility

Semantics of TM

• Not a real machine, but a model of computation
• Components:
 – 1-way infinite tape: unlimited memory
 • Store input, output, and intermediate results
 • Infinite cells
 • Each cell has a symbol from a finite alphabet
 – Tape head:
 • Point to one cell
 • Read or write a symbol to that cell
 • move left or right
States of a TM

- Initial state:
 - Head on leftmost cell
 - Input on the tape
 - Blank everywhere else
- Accept state
- Reject state
- Loop
- Accept or reject immediately

An Example

\[B = \{ w\#w \mid w \in \{0, 1\}^* \}, \text{ and } B = L(M_1) \]

- The tape changing:
Formal Definition

A Turing machine is a 7-tuple \((Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})\), where \(Q\), \(\Sigma\), and \(\Gamma\) are all finite sets and

1. \(Q\) is the set of states,
2. \(\Sigma\) is the input alphabet, where the blank symbol \(_ \not\in \Sigma\),
3. \(\Gamma\) is the tape alphabet, where \(_ \in \Gamma\) and \(\Sigma \subseteq \Gamma\),
4. \(\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}\) is the transition function,
5. \(q_0 \in Q\) is the start state,
6. \(q_{\text{accept}} \in Q\) is the accept state, and
7. \(q_{\text{reject}} \in Q\) is the reject state.

Example of transition function:

\[
\delta(q_7, 0) = (p, b, L) \\
\delta(q_7, 1) = (p, b, R)
\]

Configuration

• A configuration of TM:
 – Current state
 – Symbols on tape
 – Head of location

• A formal specification of a configuration:
 – \(uqv\), where
 – \(u, v\) are strings on \(\Gamma\), and \(uv\) is the current content on taps
 – \(q\) is current state
 – head is in the first symbol of \(v\).
 – ex: 1011 \(q_7\), 01111

\[\text{configuration diagram}\]
Configuration

• For two configurations: $uqa_i bv$ and $uq_j av$, where $a, b, c \in \Gamma$, and $u, v \in \Gamma^*$
 $uqa_i bv$ yields $uq_j av$ if $\delta(q_i, b) = (q_j, c, L)$
 $uqa_i bv$ yields $uacq_j v$ if $\delta(q_i, b) = (q_j, c, R)$

• Two special cases:
 – the leftmost cell
 • $qa_i bv$ yields $q_{c} v$ for $\delta(q_i, b) = (q_j, c, L)$
 • $qa_i bv$ yields $cq_{j} v$ for $\delta(q_i, b) = (q_j, c, R)$
 – on the cell with blank symbol
 – uqa_i is equivalent to $uqa_i \Box$

Configuration

• Initial configuration with input w: q_0w
• Accepting configuration: $uqa_{accept} y$
• Rejecting configuration: $uqa_{reject} y$
• $uqa_{accept} y$ and $uqa_{reject} y$ do not yield any other configurations
 – Immediate effect of accepting/rejecting
 – Halting configurations
• For a TM M, a string $w \in L(M)$ if there is a sequence of configurations C_i, C_2, \ldots, C_k such that:
 – $C_i = q_0w$
 – C_i yields C_{i+1} for $1 \leq i \leq k$
 – $C_k = uqa_{accept} y$, $u, v \in \Gamma^*$
Languages

- **Turing-recognizable Languages:**
 - For a \(L \subseteq \Gamma \), exists a \(M \) such that \(M \) recognizes \(L \)
 - “Recognize” means accept, reject, or loop

- **Turing-decidable languages:**
 - For a \(L \subseteq \Gamma \), exists a \(M \) such that \(M \) decides \(L \)
 - “Decide” means halting: either accept or reject

- Turing-decidable \(\subseteq \) Turing-recognizable
 - Halting Problem is Turing-recognizable, but not decidable.

- Not all languages are Turing-recognizable
 - There are some languages cannot be recognized by a TM.
 - Complement of Halting problem is Turing-unrecognizable

An example

\[A = L(M_2), \text{ where } A = \{0^2^n | n \geq 0\} \]

- **Semantical description:**

 For an input string \(w \):

 \[
 \begin{cases}
 & \text{sweep left to the right along the tape, crossing off every other 0} \\
 & \text{if tape contains single 0} \\
 & \quad \text{return accepted;}
 \\
 & \text{else if tape contains odd number and more than one of 0s} \\
 & \quad \text{return (rejected);} \\
 & \text{else go back to leftmost cell;}
 \end{cases}
 \]

- **Formal description:**

 \(M_2 = \{Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}}\}, \) where

 - \(Q = \{q_1, q_2, q_3, q_4, q_5, q_{\text{accept}}, q_{\text{reject}}\} \)
 - \(\Sigma = \{0\} \)
 - \(\Gamma = \{0, x, _\} \)
 - \(\delta \): state transition diagram
Outline

– Language Hierarchy
– Definition of Turing Machine
– TM Variants and Equivalence
– Decidability
– Reducibility

TM Variants

• Multitape TM
• Nondeterministic TM
• Enumerators
• Equivalence: All have same power
 – Recognize the same class of languages
 – Can be simulated by an ordinary TM
Simple variant

- \(\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, S\} \)
- \(\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, RR, LL\} \)
- They are equivalent in recognizing language:
 - They can be simulated by original the TM
 - The difference is not significant

Multitape TM

- A multitape TM is identical to ordinary TM except:
 - \(k \) tapes, where \(k \geq 1 \)
 - Each tap has its own head
- \(\delta : Q \times \Gamma^k \rightarrow Q \times \Gamma^k \times \{L, R, S\}^k \)
- \(\delta(q_i, a_1, a_2, \ldots, a_k) = (q_j, b_1, b_2, \ldots, b_k, L, R, \ldots, R) \)
Multitape TM

- Theorem: each multitape TM has an equivalent single tape TM
 - Put # in a single tape for demarcation of original k tapes.
 - Each movement of M is simulated by a series movement of S on each segment.
 - For a right-move on the rightmost cell of ith tape in M, S write blank symbol in $(i+1)th$ #, and right-shifts all symbols after that one cell.

Nondeterministic TM

- A nondeterministic TM is identical to an ordinary TM except:
 - $\delta : Q \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times \{L,R\})$
 - At any point the head has several possibilities to read/write/move.

- In deterministic TM, a computation is a single path with sequence of configurations.
- In nondeterministic TM, a computation is a tree or a directed acyclic graph.
 - A NTM accepts an input string if there exists a path leading to an accept state.
 - If all paths lead to reject state, then this input is rejected.
NTM

- A computation single path and multi-path in a tree:

![Diagram showing deterministic and nondeterministic computation]

Nondeterminism

- Is nondeterministic model always equivalent to a deterministic model?
 - Yes, for FA
 - No, for PDA
 - Some CFL cannot be recognized by any DPDA.
 - Yes, for TM!
NTM

- **Theorem:** *Every NTM has an equivalent DTM.*

- For a computing tree of a NTM N with an input w, simulated with a 3-tape DTM M:
 - 1st tape: input w
 - 2nd tape: tape of a computing path with N
 - 3rd tape: node address (finite)

Enumerator

- Semantically, an enumerator is a TM with an attached printer.
- Every time the TM wants to add a string to its output list, it sends the string to the printer.
- The language enumerated by an enumerator E is the collection of all the strings that E eventually prints out.
Enumerator

- Theorem: \textit{A language is Turing-recognizable iff some enumerator enumerates it.}
 - For a language, if \(E \) enumerates it, then construct a TM \(M \) works as:
 - Run \(E \). Every time that \(E \) outputs a string, compare it with input \(w \).
 - If \(w \) appears in the output of \(E \), accept.
 - For a language recognized by a TM \(M \), construct \(E \) such that:
 - Run \(M \) for \(i \) steps on each input, \(s_1, s_2, \ldots, s_i \).
 - If any computations accept, print out the corresponding \(s_j \).
 - Repeat the above two steps with all possible inputs
 - An enumerator can be regarded as a 2-tape TM.
 - Write accepted list on the 2nd tape.

Other Variants

- Write-twice TM
 - Each cell on tape can only be written twice
- Write-once TM
 - Each cell on tape can only be written once
- TM with doubly infinite tape
 - Two-way infinite tape
- Universal TM
 - A TM that takes input of description of another TM.
Thesis

• Church-Turing Thesis:
 – *Any algorithm can be expressed as a TM*
 – Formally defines an algorithm:

<table>
<thead>
<tr>
<th>Intuitive notion of algorithms</th>
<th>equals</th>
<th>Turing machine algorithms</th>
</tr>
</thead>
</table>

• Extended Church-Turing Thesis:
 – *Any polynomial-time algorithm can be expressed as a TM that operates in polynomial time.*
 – A polynomial-time algorithm: number of element operations is a polynomial function of input length.
 – A polynomial-time TM: number of state transition is a polynomial function of input length.

Describing TM

• Formal description
 – specifying Turing machine’s states, transition function, and so on.

• Implementation description
 – using natural language to describe the way that the Turing machine moves its head and the way that it stores data on its tape.

• High-level description
 – using natural language describe an algorithm, ignoring the implementation model.
Outline

– Language Hierarchy
– Definition of Turing Machine
– TM Variants and Equivalence
– Decidability
– Reducibility

Solvability

• Solvable:
 – an algorithm to solve it,
 – a TM decides it.
• Unsolvable:
 – not algorithm to solve it
 – no TM can decide it.
Decidable Language

\[A_{\text{DFA}} = \{ (B, w) \mid B \text{ is a DFA that accepts } w \} \]

- Acceptance problem:
 - Whether a particular DFA \(B \) accepts a given input string \(w \).
- Membership problem:
 - Another way to say: whether \(\langle B, w \rangle \) is a member of \(A_{\text{DFA}} \).
- Theorem: \(A_{\text{DFA}} \) is a decidable language.

\[M = \text{"On input } \langle B, w \rangle, \text{ where } B \text{ is a DFA and } w \text{ is a string:} \]
\[1. \text{ Simulate } B \text{ on input } w. \]
\[2. \text{ If the simulation ends in an accept state, accept; otherwise, reject."} \]

Decidable Language

\[A_{\text{NFA}} = \{ (B, w) \mid B \text{ is an NFA that accepts } w \}. \]

- Theorem: \(A_{\text{NFA}} \) is a decidable language.

\[N = \text{"On input } \langle B, w \rangle, \text{ where } B \text{ is an NFA and } w \text{ is a string:} \]
\[1. \text{ Convert NFA } B \text{ to an equivalent DFA } C. \]
\[2. \text{ Run TM } M \text{ for deciding } A_{\text{DFA}} \text{ (as a "procedure") on input } \langle C, w \rangle. \]
\[3. \text{ If } M \text{ accepts, accept; otherwise, reject."} \]
Decidable Language

\[A_{REX} = \{ \langle R, w \rangle \mid R \text{ is a regular expression that generates } w \} \]

- Theorem: \(A_{REX} \) is a decidable language.

\[P = \text{"On input } \langle R, w \rangle, \text{ where } R \text{ is a regular expression and } w \text{ is a string:}\]

1. Convert regular expression \(R \) to an equivalent DFA \(A \).
2. Run TM \(M \) for deciding \(A_{DFA} \) on input \(\langle A, w \rangle \).
3. If \(M \) accepts, accept; otherwise, reject."

Decidable Language

\[E_{DFA} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \} \]

- Emptiness test problem:
 - Whether the language of a particular DFA is empty.
- Theorem: \(E_{DFA} \) is a decidable language.

\[T = \text{"On input } \langle A \rangle, \text{ where } A \text{ is a DFA:}\]

1. Mark the start state of \(A \).
2. Repeat Step 3 until no new states get marked.
3. Mark any state that has a transition coming into it from any state that is already marked.
4. If no accept state is marked, accept; otherwise, reject."
Decidable Language

\[EQ_{\text{DFA}} = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \} \]

- Equivalence problem:
 - Test whether two DFAs recognize the same language.
- Theorem: \(EQ_{\text{DFA}} \) is a decidable language.

\[F = \text{"On input } \langle A, B \rangle, \text{ where } A \text{ and } B \text{ are DFAs:} \]

1. Construct DFA \(C = (A \cap B) \cup (\overline{A} \cap B) \).
2. Run TM \(T \) for deciding \(E_{\text{DFA}} \) on input \(\langle C \rangle \).
3. If \(T \) accepts, accept; otherwise, reject.

Other Problems

- \(A_{\text{CFG}} \) is decidable.
- \(E_{\text{CFG}} \) is decidable.
- \(EQ_{\text{CFG}} \) is undecidable.
 - CFG is not closed in intersection and complementation.

- \(A_{\text{TM}} \) is undecidable.
 - Halting problem
- \(E_{\text{TM}} \) is undecidable.
- \(EQ_{\text{TM}} \) is undecidable.
Halting Problem

$A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w\}$

Theorem: A_{TM} is Turing-recognizable.

$U = "On \text{ input } \langle M, w \rangle, \text{ where } M \text{ is a TM and } w \text{ is a string:}\n
1. \text{Simulate } M \text{ on input } w.\n2. \text{If } M \text{ ever enters its accept state, } accept; \text{ if } M \text{ ever enters its reject state, } reject."

- U is an example of universal TM.
- U keeps looping if M neither accepts or rejects.

Halting Problem

- Theorem: A_{TM} is undecidable.

- Can be proved by recursive theorem.

Suppose H is a decider for A_{TM}:

$H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$

$D = "On \text{ input } \langle M \rangle, \text{ where } M \text{ is a TM:}\n
1. \text{Run } H \text{ on input } \langle M, \langle M \rangle \rangle.\n2. \text{If } H \text{ accepts, } reject \text{ and if } H \text{ rejects, } accept."

$D(\langle M \rangle) = \begin{cases} accept & \text{if } M \text{ does not accept } \langle M \rangle \\ reject & \text{if } M \text{ accepts } \langle M \rangle \end{cases}$

$D(\langle D \rangle) = \begin{cases} accept & \text{if } D \text{ does not accept } \langle D \rangle \\ reject & \text{if } D \text{ accepts } \langle D \rangle \end{cases}$
Unrecognizable

• Theorem: *There are languages that cannot recognized by any TM.*
 – The set of TMs are countable
 • \(Q, \Sigma, \) and \(\Gamma \) are all finite sets
 • Number of transition functions is countable.
 – The set of languages is uncountable.
 • \(w \in \Gamma^* \)
 • \(L \subseteq \Gamma^* \)
 • \(L \in \mathcal{P}(\Gamma^*), \mathcal{P}(\Gamma^*) \) is uncountable
 – Diagonalization method to prove this

Countable and Uncountable

• Two infinite sets \(A \) and \(B \) are the **same size** if there is a **correspondence** from \(A \) to \(B \).
 – A correspondence is a **one-to-one and onto** function:
 \[f : A \to B \]
 – one-to-one: \(f(a) \neq f(b) \) whenever \(a \neq b \)
 – Onto: \(\forall b \in B, \exists a \in A, f(a) = b \)

• A set is **countable** if either it is finite or it has the same size as \(N = \{1,2,3\ldots\} \); otherwise it is **uncountable**.
Countable

- Set of position rational numbers is countable: \(\{ m/n, m, n \in \mathcal{N} \} \)

Uncountable

- Set of real numbers \(R \) is uncountable:

Assume that a correspondence \(f \) existed between \(\mathcal{N} \) and \(R \).

<table>
<thead>
<tr>
<th>(n)</th>
<th>(f(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.14159...</td>
</tr>
<tr>
<td>2</td>
<td>55.55555...</td>
</tr>
<tr>
<td>3</td>
<td>0.12345...</td>
</tr>
<tr>
<td>4</td>
<td>0.50000...</td>
</tr>
</tbody>
</table>

We can find an \(x \), \(0 < x < 1 \), so that the \(i \)-th digit following the decimal point of \(x \) is different from that of \(f(i) \); for example, \(x = 0.4641\ldots \) is a possible choice.
Uncountable

• The set of all languages over an alphabet is uncountable.
 – Think that a real number is a string over alphabet of \{ . , 0,1,2,3,4,5,6,7,8,9 \}
 – Similar diagonalization way to prove with general alphabet

• Theorem: A language is decidable iff both it and its complement language are Turing-recognizable.
 – If \(A \) is decided by \(M_1 \), then :
 • \(M_2 = \text{“on input } w: \)
 1. Run \(M_1 \) on \(w \).
 2. If \(M_1 \) rejects, accept; if \(M_1 \) accepts, reject. “
 – \(M_2 \) decides \(\overline{A} \)
 – If \(A \) and \(\overline{A} \) are Turing-recognizable:
 Let \(M_1 \) be a recognizer for \(A \) and \(M_2 \) be a recognizer for \(\overline{A} \).
 \(M = \text{“On input } w:\)
 1. Run both \(M_1 \) and \(M_2 \) on input \(w \) in parallel. (\(M \) takes turns simulating one step of each machine until one of them halts.)
 2. If \(M_1 \) accepts, accept and if \(M_2 \) accepts, reject."
\[\overline{A_{TM}} = \{(M, w) \mid M \text{ is a } TM \text{ and } M \text{ does not accept } w\} \]

- **Theorem**: \(\overline{A_{TM}} \) is not Turing-recognizable
 - If \(\overline{A_{TM}} \) is Turing-recognizable, and \(A_{TM} \) is Turing-recognizable, then \(A_{TM} \) must be decidable. — contradiction!

Outline

- Language Hierarchy
- Definition of Turing Machine
- TM Variants and Equivalence
- Decidability
- Reducibility
Reducibility

- Semantics
- Reduce A_{TM} to $HALT_{TM}$
- PCP Problem
- Mapping Reducibility