
Proceedings of 3rd ACM Workshop on Role-Based Access Control, Fairfax, Virginia, October 22-23, 1998

Role Activation Hierarchies
�

Ravi Sandhu

Laboratory for Information Security Technology and

Information and Software Engineering Department

George Mason University

Abstract

The concept of a role hierarchy (that is, partial order)
is often included in role-based access control (RBAC)
models and systems. In current practice the same hier-
archy is typically used for two distinct purposes. Mem-
bers of a senior role in the hierarchy inherit permissions
from juniors. We call this the usage (or permission-
usage) aspect of role hierarchies. Membership in a se-
nior role also authorizes users to activate junior roles.
For purpose of least privilege a user may choose to acti-
vate only a junior role on a particular occasion, leaving
the senior roles dormant. We call this the activation (or
role-activation) aspect of role hierarchies.
In this paper we introduce and motivate the idea that

there are useful situations where these two hierarchies
should not be identical, and the activation hierarchy
should extend the inheritance hierarchy. In particular
we explore RBAC with respect to read-write access, and
its relationship to traditional lattice-based access con-
trol or LBAC (also known as mandatory access control).
More generally, we consider roles that are required to
have dynamic separation of duty.

1 Introduction

Role based access control (RBAC) has emerged as
a familiar alternative to classical discretionary and
mandatory access controls [SCFY96]. Several models
of RBAC have been published and several commercial

�This work is partially supported by grant CCR-9503560 from
the National Science Foundation at the Laboratory for Informa-
tion Security Technology at George Mason University.
All correspondence should be addressed to Ravi Sandhu, ISE

Department, Mail Stop 4A4, George Mason University, Fairfax,
VA 22030, sandhu@isse.gmu.edu, www.list.gmu.edu.

implementations are available. A common aspect of
RBAC is the use of role hierarchies (partial orders) to
simplify management of authorizations.

In current practice the same hierarchy is typically
used for two distinct purposes. Members of a senior role
in the hierarchy inherit permissions from juniors. We
call this the usage (short for permission-usage) aspect of
role hierarchies. We also refer to this as the permission
inheritance hierarchy.

Membership in a senior role also authorizes users to
activate junior roles. For purpose of least privilege a
user may choose to activate one or more junior roles on
a particular occasion, leaving the senior roles dormant.
We call this the activation (or role-activation) aspect
of role hierarchies. It should be mentioned that not all
RBAC models support role activation, but at the same
time it is quite common.

The central contribution of this paper is introduction
and motivation of the idea that there are useful situa-
tions where usage and activation hierarchies should not
be identical. As we will argue an activation hierarchy
that extends the usage hierarchy is useful when there
are roles in dynamic mutual exclusion. The same user
can belong to such roles but cannot activate them si-
multaneously. We were led to this idea by exploring
the relationship between RBAC and traditional lattice-
based access control or LBAC (also known as manda-
tory access control). Our analysis also reveals a close
connection between RBAC and LBAC which has not
been previously recognized in the literature.

The rest of the paper is organized as follows. Sec-
tions 2 and 3 respectively review RBAC and LBAC
models. Section 4 discusses how RBAC with read and
write permissions can be simulated in LBAC. Section 5
discusses the converse construction and shows how the
separation of activation and usage hierarchies is useful
in this context. Section 6 argues that this separation
is useful whenever we have roles in dynamic mutual
exclusion (such as in LBAC, for example). Section 7
formally de�nes the intuitive concepts discussed so far
and explores the relationship of activation hierarchies

to AND-OR roles [Gui95, Gui97]. Section 8 concludes
the paper.

2 The RBAC96 Model

This section gives a brief review of the RBAC96 model
introduced by Sandhu et al [SCFY96, San97]. Figure 1
illustrates the most general model in this family. For
simplicity we use the term RBAC96 to refer to the fam-
ily of models as well as its most general member.
The top half of �gure 1 shows (regular) roles and

permissions that regulate access to data and resources.
Intuitively, a user is a human being or an autonomous
agent, a role is a job function or job title within the
organization with some associated semantics regarding
the authority and responsibility conferred on a mem-
ber of the role, and a permission is an approval of a
particular mode of access to one or more objects in the
system or some privilege to carry out speci�ed actions.
The bottom half shows administrative roles and permis-
sions. These are not used in this paper and are included
only for sake of completeness.
Roles are organized in a partial order or hierarchy, so

that if x > y then role x inherits the permissions of role
y, but not vice versa. In such cases, we say x is senior to
y. By obvious extension we write x � y to mean x > y

or x = y. Each session relates one user to possibly many
roles. The idea is that a user establishes a session (e.g.,
by signing on to the system) and activates some subset
of roles that he or she is a member of.
Like most other RBAC models, RBAC96 has a sin-

gle hierarchy for usage of permissions (via permission
inheritance) and for role activation (in sessions). When
a senior role is activated the permissions of all junior
roles can be used in that session. At the same time a
user assigned to a senior role may activate sessions in
which only some of the junior roles are activated.
The use of a single hierarchy for both permission-

usage and role-activation purposes is used by almost all
existing RBAC models that support role-activation.1

As we will see in this paper there are good reasons to
separate these two aspects of role hierarchies. For con-
sistency we will require that the role activation hierar-
chy is a superset of the permission usage hierarchy.
As a motivating example, consider a situation where

there are two roles Cashier and Manager in a retail
store. The Manager role can override and correct errors
which the Cashier role is not able to do. A Manager
can also serve as a Cashier, but both roles cannot be
invoked by a single user at the same time. From the
activation viewpoint we would like the Manager role

1We will return to the treatment of this issue in existing RBAC
models in section 6.

?-property subject s can write object o
variation only if

liberal ?-property �(s) � �(o)
trusted liberal ?-property �w(s) � �(o)
strict ?-property �(s) = �(o)
trusted strict ?-property �w(s) � �(o) � �r(s)

Table 1: Variations of ?-property in LBAC

to be senior to the Cashier role, so that a user who
is a Manager does not need to be explicitly enrolled in
the Cashier role. From the permission-usage viewpoint,
the dynamic separation of duty between Cashier and
Manager precludes Manager being senior to Cashier. If
activation and usage hierarchies are identical, we have
an impasse (as noted by Kuhn [Kuh97]). Separating
these two hierarchies allows us to resolve this impasse
gracefully.

3 LBAC Models

We were led to the idea of separating these two hier-
archies while exploring the relationship between LBAC
and RBAC. In this section we identify some commonly
recognized variations of LBAC. LBAC is concerned
with enforcing one directional information
ow in a lat-
tice of security labels [San93] (possibly with exceptions
allowed for trusted subjects). LBAC is also known as
mandatory access control or MAC. Each subject and
object carries a label which we denote by the symbol �.
The security labels form a lattice structure with a par-
tially ordered dominance relation � and a least upper
bound operator. For read access we have the familiar
simple security rule: subject s can read object o only if
�(s) � �(o).
Simple security for read access is required in all vari-

ations of LBAC. For write access there are several vari-
ations of the ?-property as shown in table 1. The
liberal ?-property comes from the original formulation
of the Bell-LaPadula model [BL75]. In many systems
the strict ?-property is stipulated to prevent integrity
or covert channel problems due to writing up. The
trusted liberal ?-property was de�ned by Bell [Bel87].
In this case each subject has two labels, �r and �w with
�w � �r so that simple-security is applied relative to
�r and liberal ?-property to �w. We similarly de�ne
the trusted strict ?-property as shown. The relation-
ship to the strict ?-property is easier to see by writing
it as �(s) = �(o) = �(s), and then comparing with the
trusted strict ?-property. Both the strict and trusted
strict ?-properties adhere to the principle that a subject

SESSIONS

S

ADMINIS-

TRATIVE

ROLES

AR

.

.

.
user roles

HIERARCHY

ROLE

RH

ROLE

HIERARCHY

ADMINISTRATIVE

ARH

PERMISS-

IONS

P
PERMISSION

ASSIGNMENT

PA

ROLES

R

PERMISSION

APA

ADMINISTRATIVE

ASSIGNMENT

ADMIN.

PERMISS-

IONS

AP

CONSTRAINTS
U

USERS

USER

ASSIGNMENT

UA

USER

ASSIGNMENT

ADMINISTRATIVE

AUA

� U , a set of users
R and AR, disjoint sets of (regular) roles and administrative roles
P and AP , disjoint sets of (regular) permissions and administrative permissions
S, a set of sessions

� UA � U �R, user to role assignment relation
AUA � U �AR, user to administrative role assignment relation

� PA � P �R, permission to role assignment relation
APA � AP �AR, permission to administrative role assignment relation

� RH � R�R, partially ordered role hierarchy
ARH � AR �AR, partially ordered administrative role hierarchy
(both hierarchies are written as � in in�x notation)

� user : S ! U , maps each session to a single user (which does not change)

roles : S ! 2R[AR maps each session si to a set of roles and administrative roles roles(si) � fr j (9r0 �
r)[(user(si); r

0) 2 UA [AUA]g (which can change with time)

session si has the permissions [r2roles(si)fp j (9r
00 � r)[(p; r00) 2 PA [APA]g

� there is a collection of constraints stipulating which values of the various components enumerated above are
allowed or forbidden.

Figure 1: Summary of the RBAC96 Model

M1 M2

S

J

Figure 2: A Role Hierarchy

cannot write what it cannot read.

Like traditional RBAC hierarchies, LBAC also cou-
ples label-activation and permission-usage in a single
lattice. A user cleared to a high sensitivity in the lat-
tice can activate subjects with lesser sensitivity. Thus
a Top-Secret user can activate an Unclassi�ed subject.
The read permission is inherited upwards in the secu-
rity lattice. For the liberal ?-property the write per-
mission is inherited downwards, whereas for the strict
?-property there is no inheritance of write.

4 Simulating Read-Write RBAC in

LBAC

We now consider how RBAC can be simulated in
LBAC.2 In general, RBAC allows for abstract permis-
sions such as credit and debit operations on an account.
Both operations require read and write access to the
account balance. Since LBAC only considers read and
write operations, it is unable to distinguish these. In
such cases RBAC cannot be reduced to LBAC. So we
limit our scope to RBAC with read and write operations
only.

Consider the RBAC hierarchy shown in �gure 2. S is
the seniormost role and inherits permissions (both read
and write) from M1, M2 and J. In particular S can read
and write whatever J can, and then some more. M1 and
M2 inherit from J, while J being juniormost does not

2Understanding the relationship between di�erent models is a
fundamental activity of computer science. It has theoretical sig-
ni�cance because such results show the underlying unity between
models that at �rst thought appear to be quite di�erent. It has
practical utility because systems which implement one model can
then also be used to support other models. Computer science
has numerous examples of such results particularly in the area of
automata and formal languages. Development of such results in
the access control arena can be similarly bene�cial.

inherit permissions from any other role. A user who is
a member of S can create a session in which, say, only
J is activated. As discussed earlier this hierarchy serves
both purposes of usage and activation.
Suppose we try to simulate this RBAC hierarchy in

LBAC.3 Neither the liberal nor strict ?-properties give
us the RBAC behavior. Inheritance of read permissions
is the same in all these cases, but inheritance of write is
very di�erent. In RBAC there is no di�erence between
read and write inheritance. In LBAC with liberal ?-
property write inheritance is exactly opposite to read
inheritance, so J inherits the write power of M1, M2
and S while S inherits nothing. In LBAC with strict
?-property there is no write inheritance.
It turns out there is actually a simple construction

for solving this problem. Let us use the given RBAC
hierarchy of �gure 2 as a lattice with trusted strict ?-
property with following assignment of read and write
labels.

role �r �w
S S J
M1 M1 J
M2 M2 J
J J J

This results in exactly the same read and write in-
heritance as the original RBAC hierarchy. The con-
struction obviously generalizes to arbitrary read-write
RBAC hierarchies.4

This is an interesting fact that indicates a strong
connection between RBAC and the trusted strict ?-
property down to system low. We can consider read-
write RBAC to be an extreme variation of strict LBAC
with trusted write-down to system low. In hindsight,
this correspondence can be traced to the di�erent moti-
vations for RBAC and LBAC. RBAC has been largely
driven by consideration of authority to users, whereas
LBAC is much more concerned with Trojan Horses.

5 Simulating LBAC in RBAC

The simulation of LBAC in RBAC has been considered
previously by Nyanchama and Osborn [NO96] and by
Sandhu [San96]. The Nyanchama-Osbron construction

3By suitable construction of lattices and modi�cations to
LBAC rules, it is possible to accommodate many read-write con-
�gurations that at �rst sight do not seem to be compatible with
LBAC information
ow [Bry97, Fol92, San93]. Some of these
constructions are intended to handle very general situations and
can result in fairly complex lattices. Our objective here is �nd
an \intuitive" and \natural" construction. If we naively use the
RBAC hierarchy as a lattice we get completely di�erent read
write properties.

4Of course, if the RBAC hierarchy is not a lattice the LBAC
hierarchy will also be a partial order which is not a lattice.

M1 M2

H

L

(a) A lattice

HR

LR

M1R M2R M1W M2W

HW

LW

(b) Dual role simulation in RBAC

Figure 3: Simulating a lattice using dual read and write roles

HW

LW

HR

LR

M1R M2R

M1W M2W

(b) Separate Activation Hierarchy(a) Private Write Roles

HW

LW

HR

LR

M1R M2R

M1W M2W

Figure 4: Simulating strict ?-property

does not make use of role hierarchies. Sandhu's con-
structions show how di�erent LBAC variations, such as
in table 1, can be simulated using role hierarchies in
RBAC96. Sandhu's construction is shown in �gure 3
for the liberal ?-property. The original lattice is shown
on the left. For each lattice label we need two corre-
sponding read and write roles as shown on the right
with both read and write going up in the role hierar-
chy. The su�xes R and W respectively identify read
and write roles. Appropriate constraints are required
to ensure that only matched read and write roles are
activated in a session. Similar constructions for other
variations of LBAC are also given in [San96]. For the
strict ?-property there is no write hierarchy and the
write roles are all incomparable.

In this section we explore the possibility of simpler
constructions relating LBAC to RBAC. As we have ob-
served there is a strong connection between RBAC and
LBAC with trusted strict ?-property. In fact if we are
given a lattice with trusted strict ?-property we can en-
force the identical controls using the lattice as a role
hierarchy.

This raises the question of what happens if we have
the strict ?-property (with no trusted write-down).
Consider the lattice of �gure 3(a). We can attempt to
simulate it using the role hierarchy of �gure 4(a). We
have separate read and write roles. Each write role is
senior to its read role, but only reads are inherited up-
wards in the hierarchy. Such roles, which have no ances-
tors, are called private roles [SCFY96]. Constraints are
imposed so that users can only be assigned to the write
roles (for instance, by requiring the maximum cardinal-
ity of read roles to be zero), and only write roles can
be activated. Also only one write role can be activated
at a time. The role hierarchy of �gure 4(a) achieves
the e�ect of strict ?-property with respect to permis-
sion usage, but not with respect to role activation. A
user assigned to M1W can activate the role M1W and
will inherit the write permissions of M1W and the read
permissions of M1R and LR in that session. However,
that user is not automatically authorized to activate
LW in another session.

This leads us to suggest that permission-usage and
activation hierarchies should be separated. In �g-
ure 4(b) we show the activation hierarchy in dashed
lines coexisting with the usage hierarchy in solid lines.
With this separation a user assigned to M1W can in-
voke a session with role LW. Similarly, a user assigned
to HW can invoke any one of the junior write roles in
a session.

6 Dynamic Separation of Duties

In the previous section we have seen how to simulate
LBAC with the strict ?-property in RBAC using pri-
vate roles and an enhanced activation hierarchy which
extends the permission inheritance hierarchy. We now
interpret this construction in terms of dynamic separa-
tion of duty. One of the constraints used in the con-
struction was that only one write role can be activated
in any session, although in di�erent sessions a user may
invoke di�erent write roles. Such a requirement is often
called dynamic separation of duties or run-time separa-
tion of duties [FCK95, FB97, Kuh97, SZ97].

In general a separate activation hierarchy is useful in
dealing with roles that are in dynamic separation of du-
ties. If the roles are not in dynamic separation of duty,
we can allow senior roles to inherit from them. With
reference to �gure 4(b) an activation hierarchy allows
users assigned to HW to invoke any one of HW, M1W,
M2W or LW with dynamic separation. Suppose the
dynamic separation was not required. In that case we
could convert the dashed lines to solid ones and sim-
ply have a single hierarchy as traditionally done. The
net e�ect would be to have LBAC with trusted strict
?-property down to system low.

This separation of activation and usage hierarchies
also allows us to resolve an impasse that was noted by
Kuhn [Kuh97]. Kuhn observes that it is not possible
to have a role A which is senior in the inheritance hi-
erarchy to two or more roles, say B and C, that are
in dynamic separation of duty. Dynamic separation of
duties is di�erent from static separation only if there
are some users who are able to activate B and C (in
di�erent sessions). There is no means to assign these
users to a common senior role A because activation of
A violates dynamic separation of duty with respect to
B and C.5 Thus the common users must be explicitly
made members of B and C. This goes against the basic
motivation of RBAC to reduce administrative complex-
ity. By bringing in a distinct activation hierarchy that
extends the inheritance hierarchy we can successfully
resolve this impasse.

This leads us to assert the following principle.

An activation hierarchy can extend beyond
the permission-inheritance hierarchy to roles
that are stipulated to have dynamic separation
of duty.

5We could constrain A so that it cannot be activated, but this
is not a general solution.

7 Formal De�nitions and Relation to

AND-OR Roles

The formal de�nitions for RBAC96 were summarized
earlier in �gure 1. We formally de�ne the activation hi-
erarchy, written �, to be an extension of the inheritance
hierarchy, written �, as follows.

De�nition 1 The activation hierarchy � is a partial
order on the set of roles R and on the set of administra-
tive roles AR, which extends the inheritance hierarchy
� (so that � is a subset of �). We write x�̂y to mean
that x�y and x6�y. 2

In terms of RBAC96 we need to modify the following
requirement concerning the roles activated in a session.

roles : S ! 2R[AR maps each session si to a set
of roles and administrative roles roles(si) � fr j
(9r0 � r)[(user(si); r

0) 2 UA [AUA]g (which can
change with time)

Since role activation is governed by the activation hier-
archy, this requirement is recast in terms of� as follows.

roles : S ! 2R[AR maps each session si to a set
of roles and administrative roles roles(si) � fr j
(9r0 � r)[(user(si); r

0) 2 UA [AUA]g (which can
change with time)

Note that the following requirement regarding permis-
sion inheritance in a session remains unchanged.

session si has the permissions [r2roles(si)fp j
(9r00 � r)[(p; r00) 2 PA [APA]g

With these changes the modi�ed model, which we
call ERBAC96 (extended RBAC96), has an activation
hierarchy that extends the inheritance hierarchy.
With reference to �gure 4(b) the dashed lines indicate

the �̂ relation, that is roles which are related by the ac-
tivation hierarchy but not by the inheritance hierarchy.
Since the four write roles are in dynamic mutual exclu-
sion we stipulated the constraint that only one of these
can be activated in a session. Following the general
approach of RBAC96 we do not make this constraint
part of our basic model but leave it to be introduced
explicitly as needed.
In �gure 4(b) the roles related by �̂ are maximal roles

with respect to the inheritance hierarchy (that is, they
have no seniors with respect to �). Figure 5(a) shows
a di�erent situation where B is not a maximal role. A
user who is a member of role A can activate various
combinations of roles in a single session as follows: A,
AD, AE, ADE, BD, BE, BDE, D, E, and DE.6 Fig-
ure 5(b) shows a situation where roles A and C inherit

6If D and E are stipulated to be in dynamic mutual exclusion
the combinations having both of them will not be allowed.

A

C

D E

B

(b)

A

C

D E

B

(a)

Figure 5: Activation hierarchies

permissions from D and E, but B does not. At the same
time members of B do have ability to activate D or E.
This is an acceptable situation in ERBAC96.7

Relationship to AND-OR Roles

Guiri [Gui95, Gui97] has proposed an activation hier-
archy based on AND and OR roles. In context of �g-
ure 5(a), A is an AND role consisting of AND(B,C).
OR roles in Guiri's model are really exclusive-OR roles
because exactly one of them can be activated. Let us
interpret B as an OR role consisting of OR(D,E). This
means that if B is activated one of D or E must be
activated.8 In this case if A is activated, one of D or E
must also be activated.
Guiri's AND-OR model is easily simulated in ER-

BAC96. AND roles correspond to the inheritance hier-
archy and OR roles to the activation hierarchy, with the
requirement that if a role is activated all OR roles ju-
nior to it in the activation hierarchy must have exactly
one alternative activated. Guiri's model can thus be
interpreted as a special case of ERBAC96 with an acti-
vation hierarchy that extends the inheritance hierarchy
in a particularly constrained manner.

8 Conclusion

In this paper we have shown that it is useful to have
a separate role activation hierarchy which extends the
permission-usage hierarchy. In most RBAC models
there is a single hierarchy that serves both purposes.

7However, if D and E are stipulated to be in dynamic mutual
exclusion they cannot have common seniors in the inheritance
hierarchy and this situation will be prohibited.

8Guiri's model also includes null roles, so OR(D,E,null) means
that at most one of D or E can be activated but activation is not
mandatory.

Distinguishing the two hierarchies is useful when roles
in dynamic separation of duties need to have common
seniors in the activation hierarchy, but cannot have
common seniors in the permission-usage hierarchy. Sep-
arate hierarchies are therefore called for in models that
support dynamic separation of duties.
While exploring these issues we have observed a close

connection between LBAC and RBAC. We can think
of read-write RBAC as LBAC with trusted strict ?-
property down to system low. Conversely we can view
LBAC with strict ?-property as a form of read-write
RBAC with dynamic separation of duties with respect
to write roles.

References

[Bel87] D.E. Bell. Secure computer systems: A net-
work interpretation. In Proceedings of 3rd

Annual Computer Security Application Con-

ference, pages 32{39, 1987.

[BL75] D.E. Bell and L.J. LaPadula. Secure com-
puter systems: Uni�ed exposition and Mul-
tics interpretation. Technical Report ESD-
TR-75-306, The Mitre Corporation, Bed-
ford, MA, March 1975.

[Bry97] Cyrian Bryce. Security engineering of
lattice-based policies. In Proceedings of

10th IEEE Computer Security Foundations

Workshop, pages 195{207, Rockport, Mass.,
June 1997.

[FB97] David Ferraiolo and John Barkley. Speci-
fying and managing role-based access con-
trol within a corporate intranet. In Proceed-

ings of 2nd ACM Workshop on Role-Based

Access Control, pages 77{82. ACM, Fairfax,
VA, November 6-7 1997.

[FCK95] David Ferraiolo, Janet Cugini, and Richard
Kuhn. Role-based access control (RBAC):
Features and motivations. In Proceedings of

11th Annual Computer Security Application

Conference, pages 241{48, New Orleans, LA,
December 11-15 1995.

[Fol92] Simon Foley. Aggregation and separation as
non-interference properties. The Journal Of

Computer Security, 1(2):159{188, 1992.

[Gui95] Luigi Guiri. A new model for role-based ac-
cess control. In Proceedings of 11th Annual

Computer Security Application Conference,
pages 249{255, New Orleans, LA, December
11-15 1995.

[Gui97] Luigi Guiri. Role-based access control: A
natural approach. In Proceedings of the 1st

ACM Workshop on Role-Based Access Con-

trol. ACM, 1997.

[Kuh97] D. Richard Kuhn. Mutual exclusion of roles
as a means of implementing separation of
duty in role-based access control systems. In
Proceedings of 2nd ACM Workshop on Role-

Based Access Control, pages 23{30. ACM,
Fairfax, VA, November 6-7 1997.

[NO96] Matunda Nyanchama and Sylvia Osborn.
Modeling mandatory access control in role-
based security systems. In Database Security

VIII: Status and Prospects. Chapman-Hall,
1996.

[San93] Ravi S. Sandhu. Lattice-based access con-
trol models. IEEE Computer, 26(11):9{19,
November 1993.

[San96] Ravi S. Sandhu. Role hierarchies and con-
straints for lattice-based access controls. In
Elisa Bertino, editor, Proc. Fourth European

Symposium on Research in Computer Se-

curity. Springer-Verlag, Rome, Italy, 1996.
Published as Lecture Notes in Computer Sci-

ence, Computer Security{ESORICS96.

[San97] Ravi Sandhu. Rationale for the RBAC96
family of access control models. In Pro-

ceedings of the 1st ACM Workshop on Role-

Based Access Control. ACM, 1997.

[SCFY96] Ravi S. Sandhu, Edward J. Coyne, Hal L.
Feinstein, and Charles E. Youman. Role-
based access control models. IEEE Com-

puter, 29(2):38{47, February 1996.

[SZ97] R. Simon and M. Zurko. Separation of duty
in role-based environments. In Proceedings

of 10th IEEE Computer Security Founda-

tions Workshop, pages 183{194, Rockport,
Mass., June 1997.

