
Proceedings of 3rd ACM Workshop on Role-Based Access Control, Fairfax, Virginia, October 22-23, 1998

How to do Discretionary Access Control Using Roles�

Ravi Sandhu and Qamar Munawer

Laboratory for Information Security Technology and

Information and Software Engineering Department

George Mason University

Abstract

Role-based access control (RBAC) is a promising alter-
native to traditional discretionary access control (DAC)
and mandatory access control (MAC). The central
idea of RBAC is that permissions are associated with
roles, and users are made members of appropriate roles
thereby acquiring the roles' permissions. RBAC is pol-
icy neutral in that the precise policy being enforced is
a consequence of how various components of RBAC|
such as role hierarchies, constraints and administra-
tion of user-role and role-permission assignment|are
con�gured. This raises the important question as to
whether RBAC is su�ciently powerful to simulate DAC
and MAC. Simulation of MAC in RBAC has been
demonstrated earlier by Nyanchama and Osborn and
by Sandhu. In this paper we demonstrate how to simu-
late several variations of DAC in RBAC, using the well-
known RBAC96 model of Sandhu et al. In combination
with earlier work we conclude that RBAC encompasses
both MAC and DAC.

1 Introduction

The concept of role-based access control (RBAC) began
with multi-user and multi-application on-line systems
pioneered in the 1970s. The central notion of RBAC
is that permissions are associated with roles, and users
are assigned to appropriate roles. This greatly simpli-
�es management of permissions. Roles are created for

�This work is partially supported by grant CCR-9503560 from
the National Science Foundation at the Laboratory for Informa-
tion Security Technology at George Mason University.
All correspondence should be addressed to Ravi Sandhu, ISE

Department, Mail Stop 4A4, George Mason University, Fairfax,
VA 22030, sandhu@isse.gmu.edu, www.list.gmu.edu.

the various job functions in an organization and users
are assigned roles based on their responsibilities and
quali�cations. Users can be easily reassigned from one
role to another. Roles can be granted new permissions
as new applications and systems are incorporated, and
permissions can be revoked from roles as needed.
Although the basic concept of RBAC has been

around for some time, it is only recently that secu-
rity researchers have studied it rigorously. There are
di�erent aspects to RBAC that are dealt with in dif-
ferent ways in di�erent systems. This makes it dif-
�cult to arrive at a consensus de�nition of RBAC.
Sandhu et al [SCFY96, San97] introduced the well-
known RBAC96 model family which provides a general
framework within which variations of RBAC can be ac-
commodated. RBAC96 provides us the machinery to
settle the kinds of questions addressed in this paper.
A major attribute of RBAC is that it is policy neu-

tral. RBAC provides support for several important se-
curity principles (notably least privilege, privilege ab-
straction and separation of duties), but does not dictate
how, or even if, these should be put into practice. The
precise policy enforced in RBAC is a consequence of the
detailed con�guration of various components of RBAC,
such as role hierarchies, constraints and administration
of user-role and role-permission assignment.
This raises an important question regarding the ex-

pressive power of RBAC. In particular, can RBAC en-
force traditional mandatory access control1 (MAC) and
discretionary access control2 (DAC) policies? Nyan-
chama and Osborn, and Sandhu have earlier shown how
to simulate several variations of MAC in RBAC [NO96,
San96]. In this paper we show how to simulate a vari-
ety of DAC policies in RBAC, particularly in RBAC96.
This result is of theoretical interest because it relates
RBAC to the most dominant form of access control. It
is also of practical signi�cance because it allows DAC
policies to be implemented in systems that are predomi-

1We de�ne MAC to be equivalent to lattice-based access con-
trol such as described in [San93].

2We de�ne DAC to be access control based on ownership such
as described in [SS94, SS97].

nantly RBAC oriented. This could be very useful in real
systems for doing some amount of DAC with respect
to selected objects in an otherwise non-discretionary
RBAC environment. Also, coupled with the earlier
MAC to RBAC96 constructions, we can now assert
that both classical forms of access control are within
the purview of RBAC.
The rest of the paper is organized as follows. We

begin with a quick review of RBAC96 in section 2. In
section 3 we de�ne various discretionary access control
policies. Section 4 describes the simulation of these
policies in RBAC96. The �nal section gives our conclu-
sions.

2 The RBAC96 Model

A general family of RBAC models called RBAC96 was
de�ned by Sandhu et al [SCFY96, San97]. Figure 1
illustrates the most general model in this family. For
simplicity we use the term RBAC96 to refer to the fam-
ily of models as well as its most general member.
The top half of �gure 1 shows (regular) roles and

permissions that regulate access to data and resources.
The bottom half shows administrative roles and per-
missions. Intuitively, a user is a human being or an
autonomous agent, a role is a job function or job title
within the organization with some associated semantics
regarding the authority and responsibility conferred on
a member of the role, and a permission is an approval
of a particular mode of access to one or more objects
in the system or some privilege to carry out speci�ed
actions.
Roles are organized in a partial order, so that if x > y

then role x inherits the permissions of role y, but not
vice versa. In such cases, we say x is senior to y. By
obvious extension we write x � y to mean x > y or
x = y.
Each session relates one user to possibly many roles.

The idea is that a user establishes a session (e.g., by
signing on to the system) and activates some subset of
roles that he or she is a member of. In the construc-
tions of this paper the session concept is not really used.
Rather it is assumed that all roles of a user are auto-
matically activated in every session. This assumption
is consistent with RBAC96 where it amounts to a con-
straint on the roles function.

3 Variations of DAC

In this section we discuss DAC policies that will be con-
sidered in this paper. The central idea of DAC is that
the owner of an object, who is usually its creator, has
discretionary authority over who else can access that

object [SS94, SS97]. In other words the core DAC policy
is owner-based administration of access rights. There
are many variations of DAC policy, particularly con-
cerning how the owner's discretionary power can be del-
egated to other users and how access is revoked. This
has been recognized since the earliest formulations of
DAC [Lam71, GD72].
Our approach in this paper is to identify major main-

stream variations of DAC and demonstrate their con-
struction in RBAC. The constructions are such that it
will be obvious how they can be extended to handle
other related DAC variations. This is an intuitive, but
well-founded, justi�cation for the claim that DAC can
be simulated in RBAC.3

The DAC policies we consider in this paper all share
the following characteristics.

� The creator of an object becomes its owner.

� There is only one owner of an object.4 In some
cases ownership remains �xed with the original cre-
ator, whereas in other cases it can be transferred
to another user.

� Destruction of an object can only be done by its
owner.

With this in mind we now de�ne the following variations
of DAC with respect to granting of access.

1. Strict DAC requires that the owner is the only
one who has discretionary authority to grant ac-
cess to an object and that ownership cannot be
transferred. For example, suppose Alice has cre-
ated an object (Alice is owner of the object) and
grants read access to Bob. Strict DAC requires
that Bob cannot propagate access to the object to
another user.5

2. Liberal DAC allows the owner to delegate discre-
tionary authority for granting access to an object
to other users. We de�ne the following variations
of liberal DAC.

3A formal proof would require a formal de�nition of DAC en-
compassing all its variations, and a construction to handle all of
these in RBAC96. Models such as HRU [HRU76], SPM [San88]
and TAM [San92] could be used as general \DAC" models for
this purpose. Such a construction would be a useful formal con-
�rmation of our intuitive approach in this paper, but is outside
the scope of the present paper.

4This assumption is not critical to our constructions. It will be
obvious hoe mutiple owners can be handled. Assuming a single
owner is convenient and simpli�es our exposition.

5Of course, Bob can copy the contents of Alice's object into
an object that he owns, and then propagate access to the copy.
This is why DAC is unable to enforce information ow controls,
paricularly with respect to Trojan Horses.

SESSIONS

S

ADMINIS-

TRATIVE

ROLES

AR

.

.

.
user roles

HIERARCHY

ROLE

RH

ROLE

HIERARCHY

ADMINISTRATIVE

ARH

PERMISS-

IONS

P
PERMISSION

ASSIGNMENT

PA

ROLES

R

PERMISSION

APA

ADMINISTRATIVE

ASSIGNMENT

ADMIN.

PERMISS-

IONS

AP

CONSTRAINTS
U

USERS

USER

ASSIGNMENT

UA

USER

ASSIGNMENT

ADMINISTRATIVE

AUA

� U , a set of users
R and AR, disjoint sets of (regular) roles and administrative roles
P and AP , disjoint sets of (regular) permissions and administrative permissions
S, a set of sessions

� UA � U �R, user to role assignment relation
AUA � U �AR, user to administrative role assignment relation

� PA � P �R, permission to role assignment relation
APA � AP �AR, permission to administrative role assignment relation

� RH � R�R, partially ordered role hierarchy
ARH � AR �AR, partially ordered administrative role hierarchy
(both hierarchies are written as � in in�x notation)

� user : S ! U , maps each session to a single user (which does not change)

roles : S ! 2R[AR maps each session si to a set of roles and administrative roles roles(si) � fr j (9r0 �
r)[(user(si); r

0) 2 UA [AUA]g (which can change with time)

session si has the permissions [r2roles(si)fp j (9r
00 � r)[(p; r00) 2 PA [APA]g

� there is a collection of constraints stipulating which values of the various components enumerated above are
allowed or forbidden.

Figure 1: Summary of the RBAC96 Model

(a) One Level Grant: The owner can delegate
grant authority to other users but they can-
not further delegate this power. So Alice be-
ing the owner of object O can grant access
to Bob who can grant access to Charles. But
Bob cannot grant Charles the power to fur-
ther grant access to Dorothy.

(b) Two Level Grant: In addition to a one-
level grant the owner can allow some users
to further delegate grant authority to other
users. Thus, Alice can now authorize Bob for
two-level grants, so Bob can grant access to
Charles, with the power to further grant ac-
cess to Dorothy. However, Bob cannot grant
the two-level grant authority to Charles.6

(c) Multilevel Grant: In this case the power to
delegate the power to grant implies that this
authority can itself be delegated. Thus Alice
can authorize Bob, who can further authorize
Charlie, who can further authorize Dorothy,
and so on inde�nitely.

3. DAC with Change of Ownership: This varia-
tion allows a user to transfer ownership of an object
to another user. It can be combined with strict or
liberal DAC in all the above variations.

For revocation we consider two cases as follows.

1. Grant-Independent Revocation: Revocation
is independent of the granter. Thus Bob may be
granted access by Alice but have it revoked by
Charles.

2. Grant-Dependent Revocation: Revocation is
strongly tied to granter. Thus if Bob receives ac-
cess from Alice, access can only be revoked by Al-
ice.

In our constructions we will initially assume grant-
independent revocation and then consider how to sim-
ulate grant-dependent revocation. In general, we will
also assume that anyone with authority to grant also
has authority to revoke. This coupling often occurs in
practice. Where appropriate, we can decouple these in
our simulations because, as we will see, they are repre-
sented by di�erent permissions.

These DAC policies certainly do not exhaust all pos-
sibilities. Rather these are representative policies whose
simulation will indicate how other variations can also be
handled.

6More generally, we could consider a n-level grant but it will
be obvious how to do this from the two level construction.

4 DAC Variations in RBAC96

To specify the above variations in RBAC it su�ces to
consider DAC with one operation, which we choose to
be the read operation. Similar constructions for other
operations such as write, execute and append, are easily
possible.7 Before considering speci�c DAC variations,
we �rst describe common aspects of our constructions.

4.1 Common Aspects

The basic idea in our constructions is to simulate the
owner-centric policies of DAC using roles that are asso-
ciated with each object.

4.1.1 Create an Object

For every object that is created in the system we require
the simultaneous creation of three administrative roles
and one regular role as follows.

� Three administrative roles: OWN O, PARENT O
and PARENTwithGRANT O

� One regular role: READ O

The relationship between these roles is shown in �g-
ure 2. Figure 2(a) indicates that the role OWN O can
add users to the role PARENTwithGRANT O which in
turn can add users to the role PARENT O and so on.8

Each role also has the power to revoke users from the
following role in this chain. Figure 2(b) shows the se-
niority relation between the three administrative roles,
so OWN O inherits all permissions of PARENTwith-
GRANT O which in turn inherits permissions of PAR-
ENT O.
In addition we require simultaneous creation of the

following eight permissions along with creation of each
object O.

� canRead O: authorizes the read operation on ob-
ject O. It is assigned to the role READ O.

� destroyObject O: authorizes deletion of the object.
It is assigned to the role OWN O.

7The copy operation can be viewed as a read of the original
object and a write (and possibly creation) of the copy. It can be
useful to associate some default permissions with the copy. For
example, the copy may start with access related to that of the
original object or it may start with some other default. Speci�c
policies here could be simulated by extending our constructions.
As we have said earlier, we need to work with some formal model
of DAC such [HRU76, San88, San92] to argue that all possible
extensions have been considered.

8Strictly speaking we mean that users who are members of the
role can carry out the indicated action, but for simplicity we say
the role carries out the actions.

OWN_O PARENT_O PARENTwithGRANT_O READ_O

(a)

OWN_O

PARENTwithGRANT_O

PARENT_O

(b)

Figure 2: (a)Administration of roles associated with an object (b) Administrative role hierarchy

� addReadUser O, deleteReadUser O: respectively
authorize the operations to add users to the role
READ O and remove them from this role. They
are assigned to the role PARENT O.

� addParent O, deleteParent O: respectively autho-
rize the operations to add users to the role PAR-
ENT O and remove them from this role. They are
assigned to the role PARENTwithGRANT O.

� addParentWithGrant O, deletePar-
entWithGrant O: respectively authorize the oper-
ations to add users to the role PARENT O and
remove them from this role. They are assigned to
the role OWN O.

These permissions are assigned to the indicated roles
when the object is created and thereafter they cannot
be removed from these roles or assigned to other roles.
In RBAC96 the behavior described above would be

enforced by the constraints mechanism. For example,
one constraint on the permissions would be that they
are automatically associated with the roles at the time
of their creation. Another constraint would be that the
three administrative roles associated with object O have
the seniority relationship shown in �gure 2(b).

4.1.2 Destroy an Object

Destroying an object O requires deletion of the four
roles namely OWN O, PARENT O, PARENTwith-

GRANT O and READ O and the eight permissions (in
addition to destroying the object itself). This can be
done only by the owner, by virtue of exercising the de-
stroyObject O permission.

4.2 Strict DAC

In strict DAC only the owner can grant/revoke read ac-
cess to/from other users. The creator is the owner of
the object. By virtue of membership (via seniority) in
PARENT O and PARENTwithGRANT O, the owner
can change assignments of the role READ O. Member-
ship of the three administrative roles cannot change, so
only the owner will have this power. This policy can
be enforced in RBAC96 by imposing a cardinality con-
straint of 1 on OWN O and of 0 on PARENT O and
PARENTwithGRANT O.

This policy could be simulated using just two roles
OWN O and READ O, and giving the addReadUser O
and deleteReadUser O permissions directly to OWN O
at creation of O. For consistency with subsequent vari-
ations we have introduced all required roles from the
start.

4.3 Liberal DAC

The three variations of liberal DAC described in section
3 are now considered in turn.

4.3.1 One-Level Grant

The one-level grant DAC policy can be simulated by
removing the cardinality constraint of strict DAC on
membership in PARENT O. The owner can assign users
to PARENT O role who in turn can assign users to the
READ O role. But the cardinality constraint of 0 on
PARENTwithGRANT O remains.

4.3.2 Two-Level Grant

In the two level grant DAC policy the cardinal-
ity constraint on PARENTwithGRANT O is also re-
moved. Now the owner can assign users to PAR-
ENTwithGRANT O who can further assign users to
PARENT O. Note that members of PARENTwith-
GRANT O can also assign users directly to READ O,
so they have discretion in this regard. Similarly the
owner can assign users to PARENTwithGRANT O,
PARENT O or READ O as deemed appropriate.9

4.3.3 Multilevel Grant

To grant access beyond two levels we authorize the role
PARENTwithGRANT O to assign users to PAREN-
TwithGRANT O. We achieve this by assigning the ad-
dParentWithGrant O permission to the role PAREN-
TwithGRANT O when object O is created. As per
our general policy of coupling grant and revoke au-
thority, we also assign the deleteParentWithGrant O
to the role PARENTwithGRANT O when O is created.
This coupling policy is arguably unreasonable in con-
text of grant-independent revoke, so the deleteParen-
tWithGrant O permission could be retained only with
the OWN O role if so desired. For grant-dependent re-
voke the coupling is more reasonable.

4.4 DAC with Change of Ownership

Change of ownership can be easily accomplished by
suitable rede�nition of the administrative authority of
a member of OWN O. The transfer capability can be
easily speci�ed in RBAC96.

4.5 Multiple Ownership

Multiple ownership can also be accommodated by al-
lowing users to be added to OWN O. Since all mem-
bers of OWN O have identical power, including the
ability to revoke other owners, it would be appropriate

9N-level grants can be similarly simulated by hav-
ing N roles, PARENTwithGRANT ON�1, PARENTwith-
GRANT ON�2, . . . , PARENTwithGRANT O, PARENT O.

with grant-independent revoke to distinguish the orig-
inal owner. Alternately, we can have grant-dependent
revoke of ownership.

4.6 Grant-Dependent Revoke

So far we have considered grant-independent revocation
where revocation is independent of granter. Now �nally
we consider how to simulate grant-dependent revoke in
RBAC96. In this case only the user who has granted
access to another user can revoke the access (with pos-
sible exception of the owner who is allowed to revoke
everything).
Speci�cally, let us consider the one level grant DAC

policy simulated earlier by allowing members of PAR-
ENT O role to assign users to READ O role. To sim-
ulate grant-dependent revocation with this one level
grant policy we need a di�erent administrative role
U PARENT O and a di�erent regular role U READ O
for each user U authorized to do a one-level grant by
the owner. These roles are automatically created when
the owner authorizes user U. We also need two new ad-
ministrative permissions created at the same time as
follows.

� addU ReadUser O, deleteU ReadUser O: respec-
tively authorize the operations to add users to the
role U READ O and remove them from this role.
They are assigned to the role U PARENT O.

Thereby, Ui PARENT O manages the membership as-
signments of Ui READ O role as indicated in �gure 3
for users U1, U2, . . . , Un. The cardinality constraint
of U PARENT O is one. Moreover, its membership
cannot be changed. Thus user U will be the only one
granting and revoking users from U READ O role. The
U READ O role itself is assigned the permission can-
Read O at the moment of creation. As before all of this
enforced by RBAC96 constraints.
We can allow the owner to revoke users from the

U READ O role by making U PARENT O junior to
OWN O. Simulation of grant-dependent revocation can
be similarly simulated with respect to PARENT O and
PARENTwithGRANT O roles. Extension to multiple
ownership is also possible.

4.7 Discussion

The nature of the RBAC96 simulations described above
suggests that many other DAC variations could be sim-
ilarly simulated. Some of these, such as multiple owner-
ship with each owner having identical and autonomous
authority, have been mentioned along the way. Other
variations could include groups of users who are granted
access as a single unit.

U1_PARENT_O

U2_PARENT_O

Un_PARENT_O

U1_READ_O

U2_READ_O

Un_READ_O

.

.

.

.

 .

.

.

.

.

.

.

Figure 3: Read O Roles associated with members of PARENT O

Our constructions have been described rather infor-
mally in keeping with the intuitive simplicity of RBAC.
These constructions can be formalized using RBAC96
notation, but there is probably not much bene�t to be
gained by this.

The number of roles in our constructions is high be-
cause several roles are needed for each object. This is
due to separate discretion at the granularity of individ-
ual objects. In practice objects can be grouped together
to overcome this. For instance, if discretionary author-
ity over all objects owned by a user is uniformly granted
to others, we need have only one set of administrative
PARENT roles for that user. Grant-dependent DAC is
even more complex.

Generally, DAC appears to be more complex to sim-
ulate in RBAC96 than MAC. While we do not expect
DAC to be simulated in RBAC in this �ne-grained man-
ner in the normal course, our results tell us that theo-
retically this can be done in unusual circumstances as
required. For practical applications DAC can be realis-
tically provided within RBAC, but on reasonably sized
collections of objects rather than on individual objects.
Our results do con�rm that RBAC is policy neutral and
can certainly accommodate DAC and MAC, although
it is more suited for the latter than the former.

5 Conclusion

In this paper we have shown how to simulate a variety
of DAC policies in RBAC96. This fact is theoretically
important, especially in conjunction with earlier results
showing how to do MAC using roles [NO96, San96].

RBAC therefore subsumes both traditional forms of ac-
cess control. The results of this paper also have practi-
cal signi�cance, because they show how DAC can be
accommodated within a RBAC oriented system. In
particular DAC could apply to selected objects (such
as a user's private objects) and not to others (such as
objects belonging to the enterprise).
Finally, there is no generally accepted de�nition of

DAC. Models such as HRU [HRU76], SPM [San88] and
TAM [San92] could be used as general \DAC" models
for this purpose. Reduction of one of these models to
RBAC96 would be a valuable exercise to con�rm the
intuitive arguments and insights of this paper.

References

[GD72] G.S. Graham and P.J. Denning. Protection
{ principles and practice. In AFIPS Spring

Joint Computer Conference, pages 40:417{
429, 1972.

[HRU76] M.H. Harrison, W.L. Ruzzo, and J.D. Ull-
man. Protection in operating systems. Com-
munications of the ACM, 19(8):461{471,
1976.

[Lam71] B.W. Lampson. Protection. In 5th Prince-

ton Symposium on Information Science and

Systems, pages 437{443, 1971. Reprinted in
ACM Operating Systems Review 8(1):18{24,
1974.

[NO96] Matunda Nyanchama and Sylvia Osborn.
Modeling mandatory access control in role-

based security systems. In Database Security
VIII: Status and Prospects. Chapman-Hall,
1996.

[San88] Ravi S. Sandhu. The schematic protection
model: Its de�nition and analysis for acyclic
attenuating schemes. Journal of the ACM,
35(2):404{432, April 1988.

[San92] Ravi S. Sandhu. The typed access matrix
model. In Proceedings of IEEE Symposium

on Research in Security and Privacy, pages
122{136, Oakland, CA, May 1992.

[San93] Ravi S. Sandhu. Lattice-based access con-
trol models. IEEE Computer, 26(11):9{19,
November 1993.

[San96] Ravi S. Sandhu. Role hierarchies and con-
straints for lattice-based access controls. In
Elisa Bertino, editor, Proc. Fourth European
Symposium on Research in Computer Se-

curity. Springer-Verlag, Rome, Italy, 1996.
Published as Lecture Notes in Computer Sci-

ence, Computer Security{ESORICS96.

[San97] Ravi Sandhu. Rationale for the RBAC96
family of access control models. In Pro-

ceedings of the 1st ACM Workshop on Role-

Based Access Control. ACM, 1997.

[SCFY96] Ravi S. Sandhu, Edward J. Coyne, Hal L.
Feinstein, and Charles E. Youman. Role-
based access control models. IEEE Com-

puter, 29(2):38{47, February 1996.

[SS94] Ravi Sandhu and Pierangela Samarati. Ac-
cess control: Principles and practice. IEEE
Communications, 32(9):40{48, 1994.

[SS97] Ravi S. Sandhu and Pierangela Samarati.
Authentication, access control and intrusion
detection. In Allen B. Tucker, editor, The
Computer Science and Engineering Hand-

book, pages 1929{1948. CRC Press, 1997.

