

CRYPTOGRAPHIC TECHNOLOGY

- Secret-key encryption
- Public-key encryption
- Public-key digital signatures
- Public-key key agreement
- Message digests
- Message authentication codes
- Public-key certificates
- Challenge-response authentication
- Secure Sockets Layer (SSL)

© Ravi Sandhu 1999

CRYPTOGRAPHIC SERVICES

- confidentiality
 - traffic flow confidentiality
- ♦ integrity
- authentication
- non-repudiation
- management of security

© Ravi San dhu 1999

4

© Ravi Sandhu 1999

CIPHER BLOCK CHAINING (CBC) MODE

- Needs an Initialization Vector (IV) to serve as the first feedback block
- IV need not be secret or random
- Integrity of the IV is important, otherwise first data block can be arbitrarily changed.
- IV should be changed from message to message, or first block of every message should be distinct

```
© Ravi Sandhu 1999
```

PUBLIC KEY ENCRYPTION **INSECURE CHANNEL** Plain-Plain-Ciphertext text text Encryption Decryption Algorithm E Algorithm D В **B's Private Key B's Public Key RELIABLE CHANNEL** 26 © Ravi Sandhu 1999

NIST DIGITAL SIGNATURE STANDARD

- to sign message m: private key x
 - choose random r
 - compute v = (g^r mod p) mod q
 - compute s = (m+xv)/k mod q
 - signature is (s,v,m)
- to verify signature: public key y
 - compute u1 = m/s mod q
 - compute u2 = v/s mod q
 - verify that v = (g^{u1*}y^{u2} mod p) mod q

© Ravi Sandhu 1999

NIST DIGITAL SIGNATURE STANDARD signature does not repeat, since r

- Signature does not repeat, since r will be different on each occasion
- if same random number r is used for two messages, the system is broken
- message expands by a factor of 2
- RSA signatures do repeat, and there is no message expansion

© Ravi Sandhu 1999

40

How does Alice get Bob's public key

- directly from Bob through some secure channel (e.g., post, phone, floppy)
- from Chuck, who is known to both Alice and Bob and introduces Bob to Alice
- from a trusted certifying authority
- PGP has mechanisms to support these, and related, alternatives

© Ravi Sandhu 1999

63

 RSA is the only known public-key cryptosystem in which the same public-private key pair can be used for

- digital signatures
- encryption
- perceived as a major advantage

- private key: backup or archive required for recovery
 - should not be destroyed after lifetime
 - may be weakened/escrowed due to law
- public key:
 - no need to backup RSA or other encryption keys
 - need to backup Diffie-Hellman key agreement keys

© Ravi Sandhu 1999

X.509v3 EXTENSIONS CRITICALITY

- non-critical: extension can be ignored by certificate user
 - alternate name can be non-critical
- critical : extension should not be ignored by certificate user
 - limit on use of signatures for further certification

© Ravi Sandhu 1999

criticality is flagged by certificate issuer

- certificate user may consider non-critical extensions more important than critical ones
- certificate user may refuse to use certificate if some extensions are missing
- critical extensions should be few and should be standard

71

- Key and policy information
- Subject and issuer attributes
- Certification path constraints
- Extensions related to CRLs
 - will be discussed with CRLs

KEY AND POLICY INFORMATION

- key usage
 - critical: intended only for that purpose, limits liability of CA
 - non-critical: advisory to help find the correct key, no liability implication
- private-key usage period
 - certificate valid for 2 years for verifying signature
 - key valid only for one year for signing
- certificate policies
 - for CAs

© Ravi Sandhu 1999

- Subject alternative names
- Issuer alternative names
- Subject directory attributes
 - whatever you like
 - position, phone, address etc.

CERTIFICATION PATH CONSTRAINTS

- Basic Constraints
 - can or cannot act as CA
 - if can act as CA limit on certification path
 limit=1 means cannot certify other CAs
- Name Constraints
 - limits names of subjects that this CA can issue certificates for
- Policy Constraints
 - concerned with CA policies

© Ravi San dhu 1999

76

Basic Constraints

- can or cannot act as CA
- if can act as CA limit on certification path extending from here
- limit=1 means cannot certify other CAs
- b. Name Constraints
- limits names of subjects that this
- © Ravi Sand CA can issue certificates for

77

CERTIFICATE REVOCATION LISTS

- CRLs issued periodically as per CA policy
 - off-cycle CRLs may also be needed
 - blank CRLs can be issued

78

4 parts to state

- current read state
- current write state
- pending read state
- pending write state
- handshake protocol
 - initially current state is empty
 - either pending state can be made current and reinitialized to empty

© Ravi San dhu 1999

SSL HANDSHAKE PROTOCOL

- initially SSL session has null compression and encryption algorithms
- both are set by the handshake protocol at beginning of session
- handshake protocol may be repeated during the session

© Ravi Sandhu 1999

SSL HANDSHAKE PROTOCOL			
Client	Server		
Certificate* ClientKeyExchange CertificateVerify* [ChangeCipherSpec] Finished	ServerHello Certificate* ServerKeyExchange* CertificateRequest* <		
	[ChangeCipherSpec]		
Application Data	<pre><> Application Data</pre>		
Fig. 1 - Message flow for a full handshake * Indicates optional or situation-dependent messages that are not always sent.			
© Ravi Sandhu 1999		113	

SSL HANDSHAKE PROTOCOL		
Client	Server	
ClientHello	> ServerHello [ChangeCipherSpec]	
[ChangeCipherSpec]	< Finished	
Application Data	<> Application Data	
Fig. 2 - Message flow for	an abbreviated handshake	
© Ravi Sandhu 1999	114	

SSL HANDSHAKE PROTOCOL

client hello

- 4 byte timestamp, 28 byte random value
- session ID: if reuse existing session
- cipher_suite list: ordered list
- compression list: ordered list
- client version: highest version

server hello

- 32 byte random value
- session ID: new or reuse
- cipher_suite, compression, version: select one each

© Ravi Sandhu 1999

SSL HANDSHAKE PROTOCOL: MASTER SECRET

SSL HANDSHAKE PROTOCOL: FINISHED MESSAGE

<pre>verify_data PRF(master_secret, finished_label, MD5(handshake_messages)+ SHA-1(handshake_messages)) [011];</pre>
finished_label For Finished messages sent by the client, the string "client finished". For Finished messages sent by the server, the string "server finished".
handshake_messages All of the data from all handshake messages up to but not including this message. This is only data visible at the handshake layer and does not include record layer headers.
© Ravi Sandhu 1999 122

