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Semantic Security of PKC

§Intuition: Whatever is computable about the plaintext of a given ciphertext is computable 
without the ciphertext. (Analogy to Shannon’s perfect secrecy of the plaintext!)

§Definition. Adversary A receives a challenge ciphertext c∈RENC(m) where m∈RM and 
produce x. Compare it with that A’ does not receive ENC(m) and produces x’. We 
say that ENC is semantic security, if for all PPT (Probabilistic polynomial time) 
relations R(m, x) and all PPT A there exists a PPT A’ such that 

|Pr[R(m, x)] - Pr[R(m, x’)]| < 1/poly(k).

§The outputs of A and A’ are indistinguishable!

§Alternative definition: Challenge the adversary with a ciphertext c∈RENC(m) where 
m∈RENC(m0, m1). Ask the adversary to guess which plaintext is used? The 
probability for the adversary to win is negligibly more than ½. 
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Non-malleable Security of PKC

§Intuition: Whatever is computable in an encrypted form about the plaintext of a given 
ciphertext is computable without the ciphertext. (Still analogy to perfect 
secrecy, but not for plaintext directly!)

§Definition [DDN91]. Adversary A receives a challenge ciphertext c∈RENC(m) where m∈RM and 
produce x. Compare it with that A’ does not receive ENC(m) and produces x’. We 
say that ENC is non-malleable if for all PPT relations R(m, x) and all PPT A there 
exists a PPT A’ such that 

|Pr[R(m, y)] - Pr[R(m, y’)]| < 1/poly(k).

Where y is the decryption of x and y’ is the decryption of x’.

§The decryption of the outputs of A and A’ are indistinguishable!
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DH Key Exchange

n Basic Diffie-Hellman: unauthenticated key exchange
n p : large prime, g : generator of certain group

gRa mod p

gRb mod p

K= (gRb)Ra mod p K= (gRa)Rb mod p
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ROM

n A hash function f takes a variable length input and 
outputs a fixed length “fingerprint”

n A good hash function is usually one-way and collision 
resistant

n Sometimes we assume a hash function behaves like a 
random oracle – Random Oracle Model

n Assume hash function (like SHA used in a special 
way) behaves like a totally random function

n Used for proving security of many practical protocols, 
including OAEP (RSA PKCS #1 v.2.0)
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ICM

Ideal Cipher Model:

Given k∈{0,1}*, we set ENCk to be a random one-to-
one function, and we let ENCk be defined by DECk(y) is 
the value x such that ENCk(x)=y, and BAD otherwise.

Note: The ideal cipher model is an even richer 
assumption than Random Oracle model. While it may be 
constructed from Random Oracle in an trivial way, it is 
still an open problem to formally support this.
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PRF

n Pseudo-random function (PRF): A keyed function (or 
“function family”) whose outputs look random if the 
key is unknown.

n Example
n Let f be a PRF.  Let k be a random key.
n Let x be a public value.  If k is unknown, fk(x) is 

indistinguishable from real randomness.



5

 Shouhuai Xu 2001 9

FBackground knowledge

FPrevious solutions to authentication: The Trouble

FBeing implemented proposals: Server has a cert.

FWeaker assumption proposals: Server has no cert.

FPassword protocols and public key cryptography

FFuture directions

 Shouhuai Xu 2001 10

Authentication

Alice Bob
The Internet

§In the real world we know “who’s who” via various methods. (Perhaps the most 
effective way is that, Aha, we had ever met…)

§Well, how do we know “who’s who” in the networked world?



6

 Shouhuai Xu 2001 11

Authentication

n “who’s who in the networked world” is always 
established by one or combination of:
Ø something a user has (smartcard/token)
Ø something a user is (fingerprint/voice scan)
Ø something a user knows (password/short secret)
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A Typical Scenario

n Remote user access
n Goal: The cost/overload on the user should be as 

little as possible

Remote client Firewall

protected
domain

VPN traffic
(authenticated using 

password)
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Previous Solutions

n Original Telnet - vulnerable to eavesdropping

pwdClient Server

Client Serverchallenge

h(challenge,pwd)

n Challenge-Response
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The Trouble

n Password is always weak (i.e., low entropy, easily guessed, drawn 
from a small dictionary)

n Dictionary attack
n Given data generated using a password, can guess possible 

passwords from a dictionary and verify against the data d
n Example: We know the challenge and the function h, we can 

test our guess of password∈dictionary by checking that 
d=h(challenge, password)

n It works no matter what function h is and, more importantly, it 
can be done offline!
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The Trouble in Kerberos

Client

Authentication Server

Ticket Granting 
Server (kTGS)

Server (kS)

Request TC,TGS

TC,TGS, ENCkC
(TGS, kC,TGS, …)

TC,TGS, ENCkC,TGS
(authenticator)

ENCkC,TGS
(kC,S, …)

Communication under kC,S

kS

kTGS

The trouble: kC is defined to be some one-way function of password!
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A Subtle Example

n Try to find the hole!

W

V, α

W=gx+π

password π

V=gy +π, Z=(W/gπ)y

α=h1(Z,π)

Z=(V/gπ)x

Check α= h1(Z,π)
β= h2(Z,π) Check β= h2(Z,π)

β

password π
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Secure SHell (SSH)

n SSH - Relies on public key

gxClient Server

gy,SigS(gx,gy)

K=gxy

EK(user,pwd)

We don’t focus on this protocol. Instead, we take a somewhat 
detailed look at [HK98, HK99, B99].
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HK98

User (pwd) Server (pwd; pkS)

Hello, I am U

r, pkS

U, r, ENCpkS
(f(pwd, U, S, r))

§Is this protocol secure? (Assume that both f(pwd; ⋅) and f(⋅; x) are one-to-
one. Actually, f(pwd; ⋅) can even be collision-resistant.)

§Intuitively, if we assume the user can verify the validity of the server’s 
public key certificate, it is secure.

§However, such an intuition is not true even if the ENC is semantic secure!
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Semantic Security Is Not Enough
[HK98] gives an attack with log3/2|Dictionary| attempts. The attacks goes as follows:

1. The sever sends random challenge r.

2. The attacker choose m passwords from the dictionary and for each password it 
computes f(pwd, U, S, r). Denote the resulting set by W = {w 1, …, wm}. Let n = max {|w|: w∈W}.

3. Denote w(i) the i-bit string that appears most frequently as a prefix of the strings in W. Let pi the 
probability of the strings in W having prefix w(i). For example, if w1=01001, w2=10111, w3=1010, 
then n=5, w(1)=‘1’, w(2)=‘10’, etc. and p i=2/3, pi=2/3, etc. Clearly, p1≥1/2, pi≥ pi+1≥pi/2. Moreover, 
pn<1/2 (since f(⋅; x) is one-to-one). Therefore, there must exist some u such that 1/3< pu <2/3.

4. The attacker intercepts the user’s response c= ENCpkS
(f(pwd, U, S, r)) and substitutes it to get d 

such that c  = c1 … cu cu+1 … cn

d  = d1 … du cu+1 … cn

where d1…d u is the encryption of w(u).

5. If server accepts, the attacker knows that the first u-bit prefix is w(u), otherwise, it is not. Anyway, 
the size of the dictionary is shrunk. In the extreme case that m is the size of the dictionary, then at 
least 1/3 passwords are eliminated. So, at the worst log3/2m attempts is enough. (We can also use 
small m and then apply some standard probabilistic evaluation like Chernoff bounds to find the high 
successful probability for the attacker.)
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Semantic Security Is Not Enough

User (pwd) Server (pwd; pkS)

Hello, I am U

r, pkS

c  = c1 … cu cu+1 … cn

= ENCpkS
(f(pwd, U, S, r))

Attacker

r, pkS

d  = d1 … du cu+1 … cn where d1…du
is the encryption of w (u)

An even simplified scenarios is to substitute the encryption of c1 with the encryption of 0.
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How HK98 is flawed?

§One-ciphertext verification attack [HK98]: 

ØThe key generation algorithm GEN(k) outputs a pair of (pk, sk) 

ØGiven pk, the adversary generates a plaintext s

ØLet r∈R{0,1}|s|, z∈R{s, r}, and the adversary is given c=ENC pk(z).

ØThe adversary is allowed to generate a query (x’, c’), where c’≠c, whether or not 
x’=DECsk(c’)

ØThe adversary guesses whether s=DECsk(c).

§Definition [HK98]. An encryption scheme (GEN, ENC, DEC) is said to resist one-ciphertext 
verification attacks if for any PPT adversary A: 

|Pr[A guesses “encryption of s” | s= DECsk(c)]

-Pr[A guesses “encryption of s” | r= DECsk(c)]| ≤ε(k)

where ε(k) is negligible.
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How HK98 is flawed?
Theorem [B99]. The following scheme is resistant to one-ciphertext verification attack.

GEN. On input k and n, it outputs (e1
0, d1

0), (e1
1, d1

1), …, (en
0, dn

0), (en
1, dn

1). Generates 
h∈RH, a family of universal hash functions. (Such a family has the mathematical 
property that, for any x and a randomly chosen h∈RH, to find y≠x such that 
h(x)=h(y) is intractable.) The public encryption key is (h, e1

0, e1
1, …, en

0, en
1), and 

the corresponding private key is x (d1
0, d1

1, …, dn
0, dn

1).

ENC. To encrypt a k-bit message m=b1… bk.

ØSelect random bits bj
i for 1 ≤ i ≤ k, 1 ≤ j ≤ n such that ⊕n

j=1bj
i for all 1 ≤ i ≤ k (i.e., 

each bit of the plaintext is stretched to n-bit).

ØGenerate a one-time signature key pair (with security parameter n). We denote F the 
verification key and P the signing key.

ØCompute h(F). Denote the outputs v=v1…vn, where vi∈{0,1}.

ØFor each 1 ≤ i ≤ k and 1 ≤ j ≤ n, generate the ciphertext cj
i of plaintext bit bj

i using 
public key ej

vj.

ØGenerate a one-time signature s for the ciphertext cj
i for 1 ≤ i ≤ k and 1 ≤ j ≤ n.
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How HK98 is flawed?

DEC. To decrypt (F, s, c1
1, …, cn

1, …, c1
k, …, cn

k).

Ø Using the one-time signature verification key F check the signature on the 
ciphertext.

Ø Compute h(F). Denote the outputs v=v1…v1, where vi∈{0,1}.

Ø For each 1 ≤ i ≤ k and 1 ≤ j ≤ n, decrypt the ciphertext cj
i using private key dj

vj to 
obtain plaintext bit bj

i.

Attack the password system based on the one-verification ciphertext secure encryption. 
Assume that the adversary has corrupted a user A. Now we show how it can obtain 
the password of another uncorrupted user B. Denote the ciphertext (F, s, c1

1, …, cn
1, 

…, c1
k, …, cn

k) of c= ENCpkS
(pwd, B, S, r) (i.e., we assume that f is the concatenation function). 

Ø The adversary authenticates himself as A. He generates a one-time signature key F’ such that 
the jth bit of h(F’) equals to the jth bit of h(F). (This is true for half of those F’.)

Ø Substitute the dj
j (in A’s reply) with cj

j.

Ø If the server accepts, then the adversary knows bj
j (of honest B’s). After k·n attempts, the 

adversary knows B’s password. (The intrusion detection parameters is reset to zero!)
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Remark

§The revision [HK99] of [HK98] is still criticized by [B99] though the encryption scheme of 
“one-ciphertext verification security” is changed to the security of “chosen 
ciphertext verification security”.

§The potential attack: It is still possible to construct secure protocol under [HK99]’s
definition that leaks the information that the passwords of two different un-
corrupted passwords are equal. Therefore, the on-line attempts of the password 
guessing can be amortized to, possibly, bypass the intrusion detection system. 
Though this attack may not be so easy to impose in the real world, we should 
stress what we are concerned is whether the formal model is precise enough!

§According to [Hugo 2000], if the ENC is replaced with OAEP/CS98 scheme, then it is 
provably secure (authentication). Right now, I know it is easy to prove in the 
Definitional approach! (How about in the simulate model?)
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More Robust Definition [B99]

§The users in the system choose their password according to some joint distribution

D = (D1, D2, …, D|U|)

where U is the universe of users. User u gets his password from distribution Du.

§Definition [B99]. A protocol is secure against a given adversary class, if for all joint 
distribution D and all adversaries A in the given class there is a probabilistic 
polynomial time transcript simulator S that interacts with A, a password 
verification oracle PV, and a tape-writer T, such that the annotated 
transcripts of real long-lived runs with adversary A are probabilistic 
polynomial time indistinguishable from those produced by S.

§There are no two worlds!!!!!!
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More Robust Construction [B99]

User (pwd) Server (pwd; pkS)

Hello, I am U, Pu

SIGskS
(Eu, Pu)

ENCEU
(pwd), SIGSU

(ENC EU
(pwd))

Choose fresh one-time 
signature key pair (Su, Pu)

Choose fresh (E u, Du) of 
semantic security against 
chosen plaintext attack

§Since each session uses different encryption key, semantic security is enough.
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The Behavior of the Adversary

The adversary:
§The adversary may listen to any number of successful login attempts (challenges and 

encrypted responses) by other users

§The adversary can initiate any number of authentications, posing either as non-
compromised users or compromised users

§The adversary can intercept and alter messages and generate spurious messages, in 
any direction between the server and any user, and it can learn if attempted 
authentications were successful

§The adversary has complete control over timing of events in the system.
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How to model
§Ideally, we would like to say that the system is secure if the adversary cannot make the 

server accept a session not initiated by said user, just like the matching 
conversation. Unfortunately, such a definition is reasonable only if the password is 
cryptographic strong.

§Intuitively, we can say that the system is secure if the transcripts of the login session can be 
simulated without access to the password file. In this case, we have to use a 
password verification oracle to incorporate the on-line guessing of the adversary. 
Unfortunately, the simulator can use the password verification oracle to brute-force 
the password. Consequently, the simulator can simulate the success of the 
adversary’s successful attack. 

§Therefore, we have to define a transcript to include certain immutable records of the 
execution history; these will not be under the control of the simulator. In particular, 
queries to the password verification oracle, and attempts by non-compromised 
users to log in, will be recorded even during the simulation, and simulator is not 
allowed to alter these records. Intuitively, this forces the simulator not to 
access the password oracle more frequently than the adversary tries to 
impersonate u.
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How to Model

§Each non-compromised user u is equipped with a special tape. Whenever the adversary 
causes u to initiate a login attempt, this fact is recorded on the tape. (successful: 
ε)

§The server is equipped with a special tape. Every time a (possibly impersonated) user 
attempts to log in, a record of the user being accessed, together with a bit saying 
whether or not the attempt was successful. (successful Σ, if ΣΣ>εε , then attacker 
succeeds.)

§The annotated transcript of an execution includes all the messages exchanged between 
servers and (compromised or non-compromised) users, together with the contents 
of the special tapes. The intuition is that if a break occurs it will be reflected in the 
special tapes: the server’s special tape will show more successful accesses to a 
user’s account than attempts recorded on the user’s special tape.

§In the simulation, the non-compromised users are our (i.e., simulator’s) oracle in 
answering the first realm challenges. Of course, the simulator has access to the 
passwords of compromised users, since these are known to the adversary.
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The Simulator
§The simulator will choose a secret/public pair of keys for the server. The simulator will 

choose a fixed random string σ. Whenever the adversary schedules a non-
compromised user to respond to a challenge, the simulator will send a random 
encryption of σ. 

§The simulator handles ciphertexts generated by the adversary different from those by non-
compromised users.

ØThe response ciphertext is generated by the attacker. We decrypt it and check the 
syntactical validity of the plaintext (i.e., pwd,u,S). If not, record an unsuccessful 
tuple in the special tape. If okay, ask the password verification oracle if the pwd is 
correct. The result is recorded on the special tape of the server.

ØThe response ciphertext is generated by a non-compromised user. There are subcases:

üIt is a genuine login by u (though activated by the attacker). The simulator 
requests the tape writer to record a successful login session. 

üThe attacker makes a compromised u’ to make use of u to impersonate u. The 
simulator ask the tape writer to record a successful tuple iff there is 
server partner instance for u. Otherwise it is a failure record since u’≠u. 
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The Reduction
§Assume there exists a distinguisher D. Let Q(k) be the running time of D on security 

parameter k. So, Q(k) is also the upper bound for the transcripts (thereof the 
running time of the simulator). Consequently, we have

|Pr[D(simulated view) = 1] – Pr[D(real view)] = 1| ≥ 1/poly(k)

§Given such an adversary, we can break the semantic security of the encryption scheme.

§realQ(k). This is the real transcripts.

§realm for m∈{1,…,Q(k)}. The first m challenges to non-compromised users are answered as 
exactly in the real world (i.e., via oracle query). After that, every reply by a non-
compromised user is the encryption of a random string. (The adversary cannot 
distinguish them.)

§real0. No challenges to non-compromised users are answered with proper encryption. 
Instead, all are encryption of a random string. It is identical in the real and 
in the simulated transcripts.

§Therefore, for some m∈{1,…,Q(k)} we have 

|Pr[D(realm-1) = 1] – Pr[D(realm)] = 1| ≥ 1/[poly(k)·Q(k)]
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The Reduction

§We guess this m.

§At the m-th challenge, we replace the encryption of (pwd; 
U, S) with an encryption of a random element of 
{(pwd; U, S), σ} (i.e., we embedding the trap). 

§If the encryption is for (pwd; u, S), we obtain a transcript of realm-1, 
otherwise realm.

§We present the transcript to D.

§We output D’s answer.

 Shouhuai Xu 2001 34

FBackground knowledge

FPrevious solutions to authentication: The Trouble

FBeing implemented proposals: Server has a cert.

FWeaker assumption proposals: Server has no cert.

FPassword protocols and public key cryptography

FFuture directions



18

 Shouhuai Xu 2001 35

EKE: RSA version [BM92]

User (pwd) Server (pwd)

Choose a temporary RSA key pair (pkU,skU )

U, ENCpwd(pkU )

ENCpwd(ENCpkU
(random))

ENCrandom(challengeU)

ENCrandom(challengeU, challengeS)

ENCrandom(challengeS)
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EKE: RSA version [BM92]
Potential problems:
§ It is not clear how to encode efficiently a pair <e,n> so that it is indistinguishable from a 

random string. For example, n should not have small factors. Therefore, we may 
have to encode e only.

§ Moreover, since e is always odd, we can overhear more valid sessions and the possible 
passwords can be narrowed down to one at a logarithm rate (This is the very 
difference from the Archot idea). If we don’t encrypt the public key, the story is 
very different.

§ The solution in [BM92] is to randomly add one to e before encrypting it with pwd. The user 
at the other end can remove the one if it was added because the users know e 
should always be odd.

§ Information leakage can also result from fitting numbers of maximum size n into a block of 
size 2m because a trial pwd generating a decryption greater than n is rejected.

§ [BM92] said that an attacker even after substituting his own n for RSA modulus will not be 
able to mount a dictionary attack. [Patel, S&P97] presented such an attack.

§ All simple modifications will eventually fail [Patel, S&P97]!
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EKE: DH version [BM92]

User (pwd) Server (pwd)

U, ENCpwd(gx)

ENCpwd(gy), ENCk(challengeS)

ENCk(challengeU, challenge S)

ENCk(challengeU)

K = f(gxy)

K = f(gxy)
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EKE: DH version [BM92]

Potential problems [Patel, S&P97]:
§ If an active attacker, instead of sending g and p in clear, chooses to send gd and p such that 

d is a small prime and d|(p-1). Then, (gdy)(p-1)/d = 1 mod p. When the attacker receives the 
password encrypted ENCpwd(g

y), he tries to decrypt it with different candidate passwords and
raises the decrypted number to (p-1)/d. If the result is not 1 then that password is rejected. 
Since (p-1)/d number out of p -1 number will be dth power residue, hence 1/d numbers on 
average will be congruent to 1 when raised to (p-1)/d. At each session the possible space of 
password is reduced to 1/d and the space of valid passwords will be narrowed to 1 at a 
logarithm rate (typically, logp).

§ Avoidance: The success of the attack is due to the fact that gd is not a generator. To find a generator g it 
is necessary and sufficient to check that g(p-1)/m ≠ 1 mod p for all factors m of p-1.
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[BPR Eurocrypt2000]

User (pwd) Server (pwd)

U, ENCpwd(gx)

ENCpwd(gy), H(k’, 1)

H(k’,2)

k’ = f(u,s, gx,gy,gxy)

k’ = f(u,s, gx,gy,gxy)

k = H(k’,0)

sid = A, ENCpwd(g
x), B, ENCpwd(gy)

pid = B

k = H(k’,0)

sid = A, ENCpwd(g
x), B, ENCpwd(gy)

pid = A
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[BPR Eurocrypt2000]

The [BM92] can only be proved secure in this year in ROM and ICM. 

Theorem. Let qse, qre, qco, qex, qor be integers and let q = qse + qre + qco + qex + qor. Let 
Password be a finite set of size N and assume (|Ì|)1/2/q ≥ N ≥ 1. Let PW be the 
associated LL-key generator as discussed above, SK be the associated session key 
space. Assume the weak corruption model. The

Advfs
P,PW,SK(t,qse,qre,qco,qe x,qor) <= qse/N + qse · qor Advdh

Ì ,g(t’,qor) + O(q2)/| Ì| + O(1)/(| Ì|)1/2

Where t’ = t + O(qse+qor).
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AEKE: [BM, CCS93]

User (pwd) Server (h(pwd))

U, ENCh(pwd)(g
x)

ENCh(pwd)((g
y), ENCk(challengeS)

ENCk(challengeU, challenge S)

ENCk(challengeU)

K = f(gxy)

K = f(gxy)

ENCk(h(pwd,k)) Sever checks the predicate 
T(h(pwd), h(pwd,k), k) is 
true
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AEKE: [BM CCS93]
§ Motivation: An attacker break into a server still needs to impose dictionary guessing before 

impersonating an authorized user.

§ The predicate T(h(pwd), h(pwd,k), k) was defined as following [BM93]: 

Ø Digital signature-based: h(pwd) is the public key, whereas h(pwd,k) is the signature on 
k. Therefore, the public key is used for EKE exchange, and the private key is used for 
AEKE extension.

v [BM93]: Any number (e.g., pwd or some simple function of it) can be private key.

Ø Commutative hash function-based: Let h(pwd) be defined as h0 (p), a member of a 
family of commutative one-way hash functions, {h0, h1, …}. After the EKE transfer 
using h(pwd)=h0(pwd), both participants generate the hash function hk(). 
Finally,h0(hk(pwd))=hk(h0(pwd)).

v Right now, we do not know any such hash functions.

v The RSA-based hash functions are subject to attacks. Define hk(pwd) = (pwd)k and h0(pwd) = 
(pwd) l, then h0(hk(pwd))=hk(h0(pwd)). However, if (l,k)=1, then pwd can be 
computed using Simmons’ attack with probability 61%; If t = gcd(l,k) >1, then 
(pwd)t can be found out and it can be used to compute ((pwd)t)s for any s.
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SPEKE: [Jablon, CCR96]

User (pwd) Server (pwd)

U, f(pwd)x

ENCk(challengeU)

ENCk(challengeU, challenge S)

k = h(f(pwd)xy))

ENCk(challengeS)

f(pwd)y

k = h(f(pwd)xy))

 Shouhuai Xu 2001 44

PAK: [BMP, Eurocrypt2000]

n EKE (or AKE) proven secure using random oracle 
assumption and “ideal block cipher” assumption 
[BPR00]

n PAK proven secure using random oracle assumption 
[BMP00]
n PAK: using gx ⋅ H(pwd) instead of ENCH(pwd)(gx)
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PAK (simplified)

W
V = gy

Z = (W/H1(pwd))y
V, H2a(gxy, pwd)

W = gx · H1(pwd)

Z = Vx = gxy

H2b(gxy, pwd)

K = H3(gxy, pwd) 

pwd pwd

K = H3(gxy, pwd) 
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PAK

“A”,W
Verify W ≠ 0 mod p
V = gy

Z = (W/(H1(A|B|pwd))r)y
V, H2a(A|B|W|V|Z|pwd)

W = gx · (H1(A|B|pwd))r

Z = Vx

Verify H2a(A|B|W|V|Z|pwd) H2b(A|B|W|V|Z|pwd)

K = H3(A|B|W|V|Z|pwd) 

Verify H2b(A|B|W|V|Z|pwd)

Public:
Primes p,q, p=rq+1, 

generator g of order q
pwd

pwd

K = H3(A|B|W|V|Z|pwd) 



24

 Shouhuai Xu 2001 47

PAK-X

n Resilient to server-compromise
n Alice = Client, Bob = Server
n Bob stores γ=gH’(A|B|pwd) instead of pwd
n Extra Proof of Knowledge used to prove Alice knows 

pwd
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PAK-X (simplified)

W
V = gy

Z = (W/H1(γ))y
V, H2a(Z,γ)

γ = gH’(A|B|pwd)

W = gx · H1(γ)

Z = Vx

s = gr

u = r+H’’(s|Z|γ)H’(A|B|pwd)
“Non-interactive Schnorr Proof”

s,u

K = H3(Z,γ) 

Check gu = sγH’’(s|Z|γ)

pwd γ = gH’(A|B|pwd)
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FBackground knowledge

FPrevious solutions to authentication: The Trouble

FBeing implemented proposals: Server has a cert.

FWeaker assumption proposals: Server has no cert.

FPassword protocols and public key cryptography

FFuture directions
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Is PKC Necessary?

§All the above protocols (and many other not mentioned 
protocols) used public key cryptography (warning: it 
doesn’t necessarily mean a public-key 
infrastructure!)

§Is public key cryptography necessary in constructing 
password-based authentication protocol secure 
against offline dictionary attack?

§The answer is strongly affirmative. 
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From PA to SKE

[HK99]: How to construct a a Secure Key Exchange (SKE) protocol from a secure 
Password Authentication (PA) protocol resistant to offline guessing attack?

Definition [HK99]. A two-party protocol (A, B) is a key-exchange protocol for one bit if 
at the end of the protocol both A, B output the same bit with respect to 
public security parameter k. Let ε(·) be a function and let (A, B) be a key-
exchange protocol for one bit. We say that (A, B) is secure up to ε if no 
feasible eavesdropper E can guess the bit that A, B output with probability 
better than ½ + ε(k).

Theorem [HK99]. Any protocol that ensures one-way password authentication up to 
ε(k, l, m) can be transformed into a key exchange protocol for one bit, 
which is secure up to ε’(k) = ε(k, 1, 1).

Notation. ε(k, l, m) means at most m active impersonation attempts, and in which the 
legitimate user outputs at most l successful sessions.
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Construction: From PA to SKE

The construction. We assume a dictionary of size 2. Therefore, a secure 
password protocol resistant to offline dictionary attack implies that the 
attacker cannot guess the user’s password with ½ plus non-negligible 
probability.

To exchange 1 bit, each of the parties chooses at random a password from the 
dictionary and then execute the password protocol with one party
playing the role of server and the other playing the role of client.

If the execution succeeds, then their secret bit is set to ‘0’ in the case that the 
password that they chose was the first password in the dictionary, or 
to ‘1’ otherwise.

After the expected 2 trials, the agree on 1 bit.
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The Reduction
We need to prove the completeness and the soundness.

Completeness. The probability q that the two parties output different bits i s negligible.

The event that they output different bits only happens if the passwords A and B pick 
in the first execution of the password protocol are different, and either this first 
execution is successful (even the password is different, i.e., we allow a probability 
error. we denote the probability p) or else the bit chosen in the remains of the 
protocol is not the same. Thus, we have q = ½ (p + (1-p)q).

Now we need to evaluate the bound of p. Since the password protocol is secure, we 
consider an attacker who simply guesses a password from the dictionary at random 
and tries an authentication session with the server using that password. Since the 
probability for the attack to hit the correct password is ½ , we have:

½ + ε ≥ Pr [attacker succeeds] 

= ½ · Pr [attacker succeeds | his guess is correct] + ½ · Pr [attacker succeeds | his guess is incorrect]

= ½ + ½ · p

Consequently, p ≤ 2ε, and q < p < 2ε (i.e., negligible).
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The Reduction

Soundness. We need to prove that the key exchange protocol is ε’(k) = ε(k, 1, 1) secure.

We reduce the security of the key exchange to the security of the password 
authentication protocol. If there exists an eavesdropper adversary E with advantage 
of more than ε’ in guessing the exchanged bit, then we use it as an oracle to break 
the password authentication protocol with the same advantage, thus contradicts to 
the security of the password authentication protocol.

The attacker runs an execution query for the password authentication protocol of 
dictionary size 2, thus he obtained a genuine transcript τ. Then he simulates the 
secret key exchange protocol. That is, he repeatedly picks pairs of passwords from 
the dictionary (which is fresh for every runtime, just as the real key exchange 
protocol) of size 2. As long as they are different (i.e., the one for A is different from 
the one for B), then he obtained a transcript (we denote is by τ1) for this runtime. 
This process is not stopped until the two passwords for A and B are equal at (say) 
time i. 

Now, we give the transcript <τ1, …, τi-1, τ> to E and we bet the password on the 
answer of E. Therefore, we succeed with probability more than ε’(k) = ε(k, 1, 1).
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PKC and Passwords

§Secure secret-key agreement is known to be possible 
under the assumption that trapdoor functions 
exist [DH76, GM84].

§Question: Can we base secure secret-key agreement 
on the existence of one-way permutations only?

§Answer [IL STOC89]: probably no (see argument 
below)
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Impagliazzo & Rudich STOC89

§Motivated by the question: Can we base secure secret-key agreement on the existence of 
one-way permutations only?

§They depicted a model in which only secret key tools are available. This model is different 
from the standard model in the following ways:

ØNP-Complete oracle: To eliminate all public key tools from the model, the 
adversary is given such an oracle to solve the public key related 
problem (i.e., compute the private key from a public key).

ØRandom oracle: To enable non-public key tools in the presence of such a NP-C 
oracle, all the parties in this model are given access to a random 
function f, mapping arbitrary-length strings into strings of length k (i.e, 
the security parameter). Namely, for each string in {0,1}*, f maps it to 
an independent, uniformly distributed k-bit string. Within such a 
Random Oracle, various primitives (e.g., collision-resistance hashing, 
symmetric encryption, etc.) are easy to implement.  
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Impagliazzo & Rudich STOC89

Theorem [IR89]. There is no key-exchange protocol in 
the IR-model which is secure up to any ε < ½ .

Theorem [HK99]. There is no password authentication 
protocol in the IR-model which is secure up to 
any ε < ½ .
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Why OWP is not enough?

§In the IR-model, only non-public key tools are available.

§Claim. In the standard model, construct a password protocol that can be 
provably secure based only on the security of symmetric key tools 
(e.g., symmetric encryption, MAC, collision-resistant hashing) is at 
least as hard as proving that P≠NP.

ØAssume that we have such a password protocol in the standard model.

ØSince the derived key exchange protocol is secure with only symmetric 
key tools, it is still secure in the IR-model.

ØHowever, in IR-model, the existence of any NP-Complete oracle is enough 
to break any key exchange protocol.

ØTherefore, there are no efficient oracles can solve NP-Complete problems.

ØConsequently, P≠NP.
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A Corollary

Theorem [B99]. Secure password authentication protocol exists (in the 
robust definition sense) if secure key exchange protocol exists.

This is due to the fact that the password authentication protocol 
needs only a secret key exchange (i.e., we exchange password) 
and a signature scheme. Moreover, secret key exchange (at least 
we need OWF thereof) implies the existence of a signature 
scheme.

Corollary. ∃ secure password protocol ⇔ ∃ secure key exchange protocol.

 Shouhuai Xu 2001 60

Future Direction

This is only part of the more comprehensive problem we 
call Authentication and Authenticated Key 
Exchange (A&AKE). There are still a lot of 
challenges.

§How can we reach a consistent world?

§Adaptive security …

§Stronger notions …


