
1

 Shouhuai Xu 2001 1

Password-based Authentication and
Authenticated Key Exchange

Shouhuai Xu

Laboratory for Information Security Technology

www.list.gmu.edu/~shxu

 Shouhuai Xu 2001 2

Password-based A&AKE

FBackground knowledge

FPrevious solutions to authentication: The Trouble

FBeing implemented proposals: Server has a cert.

FWeaker assumption proposals: Server has no cert.

FPassword protocols and public key cryptography

FFuture directions

2

 Shouhuai Xu 2001 3

Semantic Security of PKC

§Intuition: Whatever is computable about the plaintext of a given ciphertext is computable
without the ciphertext. (Analogy to Shannon’s perfect secrecy of the plaintext!)

§Definition. Adversary A receives a challenge ciphertext c∈RENC(m) where m∈RM and
produce x. Compare it with that A’ does not receive ENC(m) and produces x’. We
say that ENC is semantic security, if for all PPT (Probabilistic polynomial time)
relations R(m, x) and all PPT A there exists a PPT A’ such that

|Pr[R(m, x)] - Pr[R(m, x’)]| < 1/poly(k).

§The outputs of A and A’ are indistinguishable!

§Alternative definition: Challenge the adversary with a ciphertext c∈RENC(m) where
m∈RENC(m0, m1). Ask the adversary to guess which plaintext is used? The
probability for the adversary to win is negligibly more than ½.

 Shouhuai Xu 2001 4

Non-malleable Security of PKC

§Intuition: Whatever is computable in an encrypted form about the plaintext of a given
ciphertext is computable without the ciphertext. (Still analogy to perfect
secrecy, but not for plaintext directly!)

§Definition [DDN91]. Adversary A receives a challenge ciphertext c∈RENC(m) where m∈RM and
produce x. Compare it with that A’ does not receive ENC(m) and produces x’. We
say that ENC is non-malleable if for all PPT relations R(m, x) and all PPT A there
exists a PPT A’ such that

|Pr[R(m, y)] - Pr[R(m, y’)]| < 1/poly(k).

Where y is the decryption of x and y’ is the decryption of x’.

§The decryption of the outputs of A and A’ are indistinguishable!

3

 Shouhuai Xu 2001 5

DH Key Exchange

n Basic Diffie-Hellman: unauthenticated key exchange
n p : large prime, g : generator of certain group

gRa mod p

gRb mod p

K= (gRb)Ra mod p K= (gRa)Rb mod p

 Shouhuai Xu 2001 6

ROM

n A hash function f takes a variable length input and
outputs a fixed length “fingerprint”

n A good hash function is usually one-way and collision
resistant

n Sometimes we assume a hash function behaves like a
random oracle – Random Oracle Model

n Assume hash function (like SHA used in a special
way) behaves like a totally random function

n Used for proving security of many practical protocols,
including OAEP (RSA PKCS #1 v.2.0)

4

 Shouhuai Xu 2001 7

ICM

Ideal Cipher Model:

Given k∈{0,1}*, we set ENCk to be a random one-to-
one function, and we let ENCk be defined by DECk(y) is
the value x such that ENCk(x)=y, and BAD otherwise.

Note: The ideal cipher model is an even richer
assumption than Random Oracle model. While it may be
constructed from Random Oracle in an trivial way, it is
still an open problem to formally support this.

 Shouhuai Xu 2001 8

PRF

n Pseudo-random function (PRF): A keyed function (or
“function family”) whose outputs look random if the
key is unknown.

n Example
n Let f be a PRF. Let k be a random key.
n Let x be a public value. If k is unknown, fk(x) is

indistinguishable from real randomness.

5

 Shouhuai Xu 2001 9

FBackground knowledge

FPrevious solutions to authentication: The Trouble

FBeing implemented proposals: Server has a cert.

FWeaker assumption proposals: Server has no cert.

FPassword protocols and public key cryptography

FFuture directions

 Shouhuai Xu 2001 10

Authentication

Alice Bob
The Internet

§In the real world we know “who’s who” via various methods. (Perhaps the most
effective way is that, Aha, we had ever met…)

§Well, how do we know “who’s who” in the networked world?

6

 Shouhuai Xu 2001 11

Authentication

n “who’s who in the networked world” is always
established by one or combination of:
Ø something a user has (smartcard/token)
Ø something a user is (fingerprint/voice scan)
Ø something a user knows (password/short secret)

 Shouhuai Xu 2001 12

A Typical Scenario

n Remote user access
n Goal: The cost/overload on the user should be as

little as possible

Remote client Firewall

protected
domain

VPN traffic
(authenticated using

password)

7

 Shouhuai Xu 2001 13

Previous Solutions

n Original Telnet - vulnerable to eavesdropping

pwdClient Server

Client Serverchallenge

h(challenge,pwd)

n Challenge-Response

 Shouhuai Xu 2001 14

The Trouble

n Password is always weak (i.e., low entropy, easily guessed, drawn
from a small dictionary)

n Dictionary attack
n Given data generated using a password, can guess possible

passwords from a dictionary and verify against the data d
n Example: We know the challenge and the function h, we can

test our guess of password∈dictionary by checking that
d=h(challenge, password)

n It works no matter what function h is and, more importantly, it
can be done offline!

8

 Shouhuai Xu 2001 15

The Trouble in Kerberos

Client

Authentication Server

Ticket Granting
Server (kTGS)

Server (kS)

Request TC,TGS

TC,TGS, ENCkC
(TGS, kC,TGS, …)

TC,TGS, ENCkC,TGS
(authenticator)

ENCkC,TGS
(kC,S, …)

Communication under kC,S

kS

kTGS

The trouble: kC is defined to be some one-way function of password!

 Shouhuai Xu 2001 16

A Subtle Example

n Try to find the hole!

W

V, α

W=gx+π

password π

V=gy +π, Z=(W/gπ)y

α=h1(Z,π)

Z=(V/gπ)x

Check α= h1(Z,π)
β= h2(Z,π) Check β= h2(Z,π)

β

password π

9

 Shouhuai Xu 2001 17

FBackground knowledge

FPrevious solutions to authentication: The Trouble

FBeing implemented proposals: Server has a cert.

FWeaker assumption proposals: Server has no cert.

FPassword protocols and public key cryptography

FFuture directions

 Shouhuai Xu 2001 18

Secure SHell (SSH)

n SSH - Relies on public key

gxClient Server

gy,SigS(gx,gy)

K=gxy

EK(user,pwd)

We don’t focus on this protocol. Instead, we take a somewhat
detailed look at [HK98, HK99, B99].

10

 Shouhuai Xu 2001 19

HK98

User (pwd) Server (pwd; pkS)

Hello, I am U

r, pkS

U, r, ENCpkS
(f(pwd, U, S, r))

§Is this protocol secure? (Assume that both f(pwd; ⋅) and f(⋅; x) are one-to-
one. Actually, f(pwd; ⋅) can even be collision-resistant.)

§Intuitively, if we assume the user can verify the validity of the server’s
public key certificate, it is secure.

§However, such an intuition is not true even if the ENC is semantic secure!

 Shouhuai Xu 2001 20

Semantic Security Is Not Enough
[HK98] gives an attack with log3/2|Dictionary| attempts. The attacks goes as follows:

1. The sever sends random challenge r.

2. The attacker choose m passwords from the dictionary and for each password it
computes f(pwd, U, S, r). Denote the resulting set by W = {w 1, …, wm}. Let n = max {|w|: w∈W}.

3. Denote w(i) the i-bit string that appears most frequently as a prefix of the strings in W. Let pi the
probability of the strings in W having prefix w(i). For example, if w1=01001, w2=10111, w3=1010,
then n=5, w(1)=‘1’, w(2)=‘10’, etc. and p i=2/3, pi=2/3, etc. Clearly, p1≥1/2, pi≥ pi+1≥pi/2. Moreover,
pn<1/2 (since f(⋅; x) is one-to-one). Therefore, there must exist some u such that 1/3< pu <2/3.

4. The attacker intercepts the user’s response c= ENCpkS
(f(pwd, U, S, r)) and substitutes it to get d

such that c = c1 … cu cu+1 … cn

d = d1 … du cu+1 … cn

where d1…d u is the encryption of w(u).

5. If server accepts, the attacker knows that the first u-bit prefix is w(u), otherwise, it is not. Anyway,
the size of the dictionary is shrunk. In the extreme case that m is the size of the dictionary, then at
least 1/3 passwords are eliminated. So, at the worst log3/2m attempts is enough. (We can also use
small m and then apply some standard probabilistic evaluation like Chernoff bounds to find the high
successful probability for the attacker.)

11

 Shouhuai Xu 2001 21

Semantic Security Is Not Enough

User (pwd) Server (pwd; pkS)

Hello, I am U

r, pkS

c = c1 … cu cu+1 … cn

= ENCpkS
(f(pwd, U, S, r))

Attacker

r, pkS

d = d1 … du cu+1 … cn where d1…du
is the encryption of w (u)

An even simplified scenarios is to substitute the encryption of c1 with the encryption of 0.

 Shouhuai Xu 2001 22

How HK98 is flawed?

§One-ciphertext verification attack [HK98]:

ØThe key generation algorithm GEN(k) outputs a pair of (pk, sk)

ØGiven pk, the adversary generates a plaintext s

ØLet r∈R{0,1}|s|, z∈R{s, r}, and the adversary is given c=ENC pk(z).

ØThe adversary is allowed to generate a query (x’, c’), where c’≠c, whether or not
x’=DECsk(c’)

ØThe adversary guesses whether s=DECsk(c).

§Definition [HK98]. An encryption scheme (GEN, ENC, DEC) is said to resist one-ciphertext
verification attacks if for any PPT adversary A:

|Pr[A guesses “encryption of s” | s= DECsk(c)]

-Pr[A guesses “encryption of s” | r= DECsk(c)]| ≤ε(k)

where ε(k) is negligible.

12

 Shouhuai Xu 2001 23

How HK98 is flawed?
Theorem [B99]. The following scheme is resistant to one-ciphertext verification attack.

GEN. On input k and n, it outputs (e1
0, d1

0), (e1
1, d1

1), …, (en
0, dn

0), (en
1, dn

1). Generates
h∈RH, a family of universal hash functions. (Such a family has the mathematical
property that, for any x and a randomly chosen h∈RH, to find y≠x such that
h(x)=h(y) is intractable.) The public encryption key is (h, e1

0, e1
1, …, en

0, en
1), and

the corresponding private key is x (d1
0, d1

1, …, dn
0, dn

1).

ENC. To encrypt a k-bit message m=b1… bk.

ØSelect random bits bj
i for 1 ≤ i ≤ k, 1 ≤ j ≤ n such that ⊕n

j=1bj
i for all 1 ≤ i ≤ k (i.e.,

each bit of the plaintext is stretched to n-bit).

ØGenerate a one-time signature key pair (with security parameter n). We denote F the
verification key and P the signing key.

ØCompute h(F). Denote the outputs v=v1…vn, where vi∈{0,1}.

ØFor each 1 ≤ i ≤ k and 1 ≤ j ≤ n, generate the ciphertext cj
i of plaintext bit bj

i using
public key ej

vj.

ØGenerate a one-time signature s for the ciphertext cj
i for 1 ≤ i ≤ k and 1 ≤ j ≤ n.

 Shouhuai Xu 2001 24

How HK98 is flawed?

DEC. To decrypt (F, s, c1
1, …, cn

1, …, c1
k, …, cn

k).

Ø Using the one-time signature verification key F check the signature on the
ciphertext.

Ø Compute h(F). Denote the outputs v=v1…v1, where vi∈{0,1}.

Ø For each 1 ≤ i ≤ k and 1 ≤ j ≤ n, decrypt the ciphertext cj
i using private key dj

vj to
obtain plaintext bit bj

i.

Attack the password system based on the one-verification ciphertext secure encryption.
Assume that the adversary has corrupted a user A. Now we show how it can obtain
the password of another uncorrupted user B. Denote the ciphertext (F, s, c1

1, …, cn
1,

…, c1
k, …, cn

k) of c= ENCpkS
(pwd, B, S, r) (i.e., we assume that f is the concatenation function).

Ø The adversary authenticates himself as A. He generates a one-time signature key F’ such that
the jth bit of h(F’) equals to the jth bit of h(F). (This is true for half of those F’.)

Ø Substitute the dj
j (in A’s reply) with cj

j.

Ø If the server accepts, then the adversary knows bj
j (of honest B’s). After k·n attempts, the

adversary knows B’s password. (The intrusion detection parameters is reset to zero!)

13

 Shouhuai Xu 2001 25

Remark

§The revision [HK99] of [HK98] is still criticized by [B99] though the encryption scheme of
“one-ciphertext verification security” is changed to the security of “chosen
ciphertext verification security”.

§The potential attack: It is still possible to construct secure protocol under [HK99]’s
definition that leaks the information that the passwords of two different un-
corrupted passwords are equal. Therefore, the on-line attempts of the password
guessing can be amortized to, possibly, bypass the intrusion detection system.
Though this attack may not be so easy to impose in the real world, we should
stress what we are concerned is whether the formal model is precise enough!

§According to [Hugo 2000], if the ENC is replaced with OAEP/CS98 scheme, then it is
provably secure (authentication). Right now, I know it is easy to prove in the
Definitional approach! (How about in the simulate model?)

 Shouhuai Xu 2001 26

More Robust Definition [B99]

§The users in the system choose their password according to some joint distribution

D = (D1, D2, …, D|U|)

where U is the universe of users. User u gets his password from distribution Du.

§Definition [B99]. A protocol is secure against a given adversary class, if for all joint
distribution D and all adversaries A in the given class there is a probabilistic
polynomial time transcript simulator S that interacts with A, a password
verification oracle PV, and a tape-writer T, such that the annotated
transcripts of real long-lived runs with adversary A are probabilistic
polynomial time indistinguishable from those produced by S.

§There are no two worlds!!!!!!

14

 Shouhuai Xu 2001 27

More Robust Construction [B99]

User (pwd) Server (pwd; pkS)

Hello, I am U, Pu

SIGskS
(Eu, Pu)

ENCEU
(pwd), SIGSU

(ENC EU
(pwd))

Choose fresh one-time
signature key pair (Su, Pu)

Choose fresh (E u, Du) of
semantic security against
chosen plaintext attack

§Since each session uses different encryption key, semantic security is enough.

 Shouhuai Xu 2001 28

The Behavior of the Adversary

The adversary:
§The adversary may listen to any number of successful login attempts (challenges and

encrypted responses) by other users

§The adversary can initiate any number of authentications, posing either as non-
compromised users or compromised users

§The adversary can intercept and alter messages and generate spurious messages, in
any direction between the server and any user, and it can learn if attempted
authentications were successful

§The adversary has complete control over timing of events in the system.

15

 Shouhuai Xu 2001 29

How to model
§Ideally, we would like to say that the system is secure if the adversary cannot make the

server accept a session not initiated by said user, just like the matching
conversation. Unfortunately, such a definition is reasonable only if the password is
cryptographic strong.

§Intuitively, we can say that the system is secure if the transcripts of the login session can be
simulated without access to the password file. In this case, we have to use a
password verification oracle to incorporate the on-line guessing of the adversary.
Unfortunately, the simulator can use the password verification oracle to brute-force
the password. Consequently, the simulator can simulate the success of the
adversary’s successful attack.

§Therefore, we have to define a transcript to include certain immutable records of the
execution history; these will not be under the control of the simulator. In particular,
queries to the password verification oracle, and attempts by non-compromised
users to log in, will be recorded even during the simulation, and simulator is not
allowed to alter these records. Intuitively, this forces the simulator not to
access the password oracle more frequently than the adversary tries to
impersonate u.

 Shouhuai Xu 2001 30

How to Model

§Each non-compromised user u is equipped with a special tape. Whenever the adversary
causes u to initiate a login attempt, this fact is recorded on the tape. (successful:
ε)

§The server is equipped with a special tape. Every time a (possibly impersonated) user
attempts to log in, a record of the user being accessed, together with a bit saying
whether or not the attempt was successful. (successful Σ, if ΣΣ>εε , then attacker
succeeds.)

§The annotated transcript of an execution includes all the messages exchanged between
servers and (compromised or non-compromised) users, together with the contents
of the special tapes. The intuition is that if a break occurs it will be reflected in the
special tapes: the server’s special tape will show more successful accesses to a
user’s account than attempts recorded on the user’s special tape.

§In the simulation, the non-compromised users are our (i.e., simulator’s) oracle in
answering the first realm challenges. Of course, the simulator has access to the
passwords of compromised users, since these are known to the adversary.

16

 Shouhuai Xu 2001 31

The Simulator
§The simulator will choose a secret/public pair of keys for the server. The simulator will

choose a fixed random string σ. Whenever the adversary schedules a non-
compromised user to respond to a challenge, the simulator will send a random
encryption of σ.

§The simulator handles ciphertexts generated by the adversary different from those by non-
compromised users.

ØThe response ciphertext is generated by the attacker. We decrypt it and check the
syntactical validity of the plaintext (i.e., pwd,u,S). If not, record an unsuccessful
tuple in the special tape. If okay, ask the password verification oracle if the pwd is
correct. The result is recorded on the special tape of the server.

ØThe response ciphertext is generated by a non-compromised user. There are subcases:

üIt is a genuine login by u (though activated by the attacker). The simulator
requests the tape writer to record a successful login session.

üThe attacker makes a compromised u’ to make use of u to impersonate u. The
simulator ask the tape writer to record a successful tuple iff there is
server partner instance for u. Otherwise it is a failure record since u’≠u.

 Shouhuai Xu 2001 32

The Reduction
§Assume there exists a distinguisher D. Let Q(k) be the running time of D on security

parameter k. So, Q(k) is also the upper bound for the transcripts (thereof the
running time of the simulator). Consequently, we have

|Pr[D(simulated view) = 1] – Pr[D(real view)] = 1| ≥ 1/poly(k)

§Given such an adversary, we can break the semantic security of the encryption scheme.

§realQ(k). This is the real transcripts.

§realm for m∈{1,…,Q(k)}. The first m challenges to non-compromised users are answered as
exactly in the real world (i.e., via oracle query). After that, every reply by a non-
compromised user is the encryption of a random string. (The adversary cannot
distinguish them.)

§real0. No challenges to non-compromised users are answered with proper encryption.
Instead, all are encryption of a random string. It is identical in the real and
in the simulated transcripts.

§Therefore, for some m∈{1,…,Q(k)} we have

|Pr[D(realm-1) = 1] – Pr[D(realm)] = 1| ≥ 1/[poly(k)·Q(k)]

17

 Shouhuai Xu 2001 33

The Reduction

§We guess this m.

§At the m-th challenge, we replace the encryption of (pwd;
U, S) with an encryption of a random element of
{(pwd; U, S), σ} (i.e., we embedding the trap).

§If the encryption is for (pwd; u, S), we obtain a transcript of realm-1,
otherwise realm.

§We present the transcript to D.

§We output D’s answer.

 Shouhuai Xu 2001 34

FBackground knowledge

FPrevious solutions to authentication: The Trouble

FBeing implemented proposals: Server has a cert.

FWeaker assumption proposals: Server has no cert.

FPassword protocols and public key cryptography

FFuture directions

18

 Shouhuai Xu 2001 35

EKE: RSA version [BM92]

User (pwd) Server (pwd)

Choose a temporary RSA key pair (pkU,skU)

U, ENCpwd(pkU)

ENCpwd(ENCpkU
(random))

ENCrandom(challengeU)

ENCrandom(challengeU, challengeS)

ENCrandom(challengeS)

 Shouhuai Xu 2001 36

EKE: RSA version [BM92]
Potential problems:
§ It is not clear how to encode efficiently a pair <e,n> so that it is indistinguishable from a

random string. For example, n should not have small factors. Therefore, we may
have to encode e only.

§ Moreover, since e is always odd, we can overhear more valid sessions and the possible
passwords can be narrowed down to one at a logarithm rate (This is the very
difference from the Archot idea). If we don’t encrypt the public key, the story is
very different.

§ The solution in [BM92] is to randomly add one to e before encrypting it with pwd. The user
at the other end can remove the one if it was added because the users know e
should always be odd.

§ Information leakage can also result from fitting numbers of maximum size n into a block of
size 2m because a trial pwd generating a decryption greater than n is rejected.

§ [BM92] said that an attacker even after substituting his own n for RSA modulus will not be
able to mount a dictionary attack. [Patel, S&P97] presented such an attack.

§ All simple modifications will eventually fail [Patel, S&P97]!

19

 Shouhuai Xu 2001 37

EKE: DH version [BM92]

User (pwd) Server (pwd)

U, ENCpwd(gx)

ENCpwd(gy), ENCk(challengeS)

ENCk(challengeU, challenge S)

ENCk(challengeU)

K = f(gxy)

K = f(gxy)

 Shouhuai Xu 2001 38

EKE: DH version [BM92]

Potential problems [Patel, S&P97]:
§ If an active attacker, instead of sending g and p in clear, chooses to send gd and p such that

d is a small prime and d|(p-1). Then, (gdy)(p-1)/d = 1 mod p. When the attacker receives the
password encrypted ENCpwd(g

y), he tries to decrypt it with different candidate passwords and
raises the decrypted number to (p-1)/d. If the result is not 1 then that password is rejected.
Since (p-1)/d number out of p -1 number will be dth power residue, hence 1/d numbers on
average will be congruent to 1 when raised to (p-1)/d. At each session the possible space of
password is reduced to 1/d and the space of valid passwords will be narrowed to 1 at a
logarithm rate (typically, logp).

§ Avoidance: The success of the attack is due to the fact that gd is not a generator. To find a generator g it
is necessary and sufficient to check that g(p-1)/m ≠ 1 mod p for all factors m of p-1.

20

 Shouhuai Xu 2001 39

[BPR Eurocrypt2000]

User (pwd) Server (pwd)

U, ENCpwd(gx)

ENCpwd(gy), H(k’, 1)

H(k’,2)

k’ = f(u,s, gx,gy,gxy)

k’ = f(u,s, gx,gy,gxy)

k = H(k’,0)

sid = A, ENCpwd(g
x), B, ENCpwd(gy)

pid = B

k = H(k’,0)

sid = A, ENCpwd(g
x), B, ENCpwd(gy)

pid = A

 Shouhuai Xu 2001 40

[BPR Eurocrypt2000]

The [BM92] can only be proved secure in this year in ROM and ICM.

Theorem. Let qse, qre, qco, qex, qor be integers and let q = qse + qre + qco + qex + qor. Let
Password be a finite set of size N and assume (|Ì|)1/2/q ≥ N ≥ 1. Let PW be the
associated LL-key generator as discussed above, SK be the associated session key
space. Assume the weak corruption model. The

Advfs
P,PW,SK(t,qse,qre,qco,qe x,qor) <= qse/N + qse · qor Advdh

Ì ,g(t’,qor) + O(q2)/| Ì| + O(1)/(| Ì|)1/2

Where t’ = t + O(qse+qor).

21

 Shouhuai Xu 2001 41

AEKE: [BM, CCS93]

User (pwd) Server (h(pwd))

U, ENCh(pwd)(g
x)

ENCh(pwd)((g
y), ENCk(challengeS)

ENCk(challengeU, challenge S)

ENCk(challengeU)

K = f(gxy)

K = f(gxy)

ENCk(h(pwd,k)) Sever checks the predicate
T(h(pwd), h(pwd,k), k) is
true

 Shouhuai Xu 2001 42

AEKE: [BM CCS93]
§ Motivation: An attacker break into a server still needs to impose dictionary guessing before

impersonating an authorized user.

§ The predicate T(h(pwd), h(pwd,k), k) was defined as following [BM93]:

Ø Digital signature-based: h(pwd) is the public key, whereas h(pwd,k) is the signature on
k. Therefore, the public key is used for EKE exchange, and the private key is used for
AEKE extension.

v [BM93]: Any number (e.g., pwd or some simple function of it) can be private key.

Ø Commutative hash function-based: Let h(pwd) be defined as h0 (p), a member of a
family of commutative one-way hash functions, {h0, h1, …}. After the EKE transfer
using h(pwd)=h0(pwd), both participants generate the hash function hk().
Finally,h0(hk(pwd))=hk(h0(pwd)).

v Right now, we do not know any such hash functions.

v The RSA-based hash functions are subject to attacks. Define hk(pwd) = (pwd)k and h0(pwd) =
(pwd) l, then h0(hk(pwd))=hk(h0(pwd)). However, if (l,k)=1, then pwd can be
computed using Simmons’ attack with probability 61%; If t = gcd(l,k) >1, then
(pwd)t can be found out and it can be used to compute ((pwd)t)s for any s.

22

 Shouhuai Xu 2001 43

SPEKE: [Jablon, CCR96]

User (pwd) Server (pwd)

U, f(pwd)x

ENCk(challengeU)

ENCk(challengeU, challenge S)

k = h(f(pwd)xy))

ENCk(challengeS)

f(pwd)y

k = h(f(pwd)xy))

 Shouhuai Xu 2001 44

PAK: [BMP, Eurocrypt2000]

n EKE (or AKE) proven secure using random oracle
assumption and “ideal block cipher” assumption
[BPR00]

n PAK proven secure using random oracle assumption
[BMP00]
n PAK: using gx ⋅ H(pwd) instead of ENCH(pwd)(gx)

23

 Shouhuai Xu 2001 45

PAK (simplified)

W
V = gy

Z = (W/H1(pwd))y
V, H2a(gxy, pwd)

W = gx · H1(pwd)

Z = Vx = gxy

H2b(gxy, pwd)

K = H3(gxy, pwd)

pwd pwd

K = H3(gxy, pwd)

 Shouhuai Xu 2001 46

PAK

“A”,W
Verify W ≠ 0 mod p
V = gy

Z = (W/(H1(A|B|pwd))r)y
V, H2a(A|B|W|V|Z|pwd)

W = gx · (H1(A|B|pwd))r

Z = Vx

Verify H2a(A|B|W|V|Z|pwd) H2b(A|B|W|V|Z|pwd)

K = H3(A|B|W|V|Z|pwd)

Verify H2b(A|B|W|V|Z|pwd)

Public:
Primes p,q, p=rq+1,

generator g of order q
pwd

pwd

K = H3(A|B|W|V|Z|pwd)

24

 Shouhuai Xu 2001 47

PAK-X

n Resilient to server-compromise
n Alice = Client, Bob = Server
n Bob stores γ=gH’(A|B|pwd) instead of pwd
n Extra Proof of Knowledge used to prove Alice knows

pwd

 Shouhuai Xu 2001 48

PAK-X (simplified)

W
V = gy

Z = (W/H1(γ))y
V, H2a(Z,γ)

γ = gH’(A|B|pwd)

W = gx · H1(γ)

Z = Vx

s = gr

u = r+H’’(s|Z|γ)H’(A|B|pwd)
“Non-interactive Schnorr Proof”

s,u

K = H3(Z,γ)

Check gu = sγH’’(s|Z|γ)

pwd γ = gH’(A|B|pwd)

25

 Shouhuai Xu 2001 49

FBackground knowledge

FPrevious solutions to authentication: The Trouble

FBeing implemented proposals: Server has a cert.

FWeaker assumption proposals: Server has no cert.

FPassword protocols and public key cryptography

FFuture directions

 Shouhuai Xu 2001 50

Is PKC Necessary?

§All the above protocols (and many other not mentioned
protocols) used public key cryptography (warning: it
doesn’t necessarily mean a public-key
infrastructure!)

§Is public key cryptography necessary in constructing
password-based authentication protocol secure
against offline dictionary attack?

§The answer is strongly affirmative.

26

 Shouhuai Xu 2001 51

From PA to SKE

[HK99]: How to construct a a Secure Key Exchange (SKE) protocol from a secure
Password Authentication (PA) protocol resistant to offline guessing attack?

Definition [HK99]. A two-party protocol (A, B) is a key-exchange protocol for one bit if
at the end of the protocol both A, B output the same bit with respect to
public security parameter k. Let ε(·) be a function and let (A, B) be a key-
exchange protocol for one bit. We say that (A, B) is secure up to ε if no
feasible eavesdropper E can guess the bit that A, B output with probability
better than ½ + ε(k).

Theorem [HK99]. Any protocol that ensures one-way password authentication up to
ε(k, l, m) can be transformed into a key exchange protocol for one bit,
which is secure up to ε’(k) = ε(k, 1, 1).

Notation. ε(k, l, m) means at most m active impersonation attempts, and in which the
legitimate user outputs at most l successful sessions.

 Shouhuai Xu 2001 52

Construction: From PA to SKE

The construction. We assume a dictionary of size 2. Therefore, a secure
password protocol resistant to offline dictionary attack implies that the
attacker cannot guess the user’s password with ½ plus non-negligible
probability.

To exchange 1 bit, each of the parties chooses at random a password from the
dictionary and then execute the password protocol with one party
playing the role of server and the other playing the role of client.

If the execution succeeds, then their secret bit is set to ‘0’ in the case that the
password that they chose was the first password in the dictionary, or
to ‘1’ otherwise.

After the expected 2 trials, the agree on 1 bit.

27

 Shouhuai Xu 2001 53

The Reduction
We need to prove the completeness and the soundness.

Completeness. The probability q that the two parties output different bits i s negligible.

The event that they output different bits only happens if the passwords A and B pick
in the first execution of the password protocol are different, and either this first
execution is successful (even the password is different, i.e., we allow a probability
error. we denote the probability p) or else the bit chosen in the remains of the
protocol is not the same. Thus, we have q = ½ (p + (1-p)q).

Now we need to evaluate the bound of p. Since the password protocol is secure, we
consider an attacker who simply guesses a password from the dictionary at random
and tries an authentication session with the server using that password. Since the
probability for the attack to hit the correct password is ½ , we have:

½ + ε ≥ Pr [attacker succeeds]

= ½ · Pr [attacker succeeds | his guess is correct] + ½ · Pr [attacker succeeds | his guess is incorrect]

= ½ + ½ · p

Consequently, p ≤ 2ε, and q < p < 2ε (i.e., negligible).

 Shouhuai Xu 2001 54

The Reduction

Soundness. We need to prove that the key exchange protocol is ε’(k) = ε(k, 1, 1) secure.

We reduce the security of the key exchange to the security of the password
authentication protocol. If there exists an eavesdropper adversary E with advantage
of more than ε’ in guessing the exchanged bit, then we use it as an oracle to break
the password authentication protocol with the same advantage, thus contradicts to
the security of the password authentication protocol.

The attacker runs an execution query for the password authentication protocol of
dictionary size 2, thus he obtained a genuine transcript τ. Then he simulates the
secret key exchange protocol. That is, he repeatedly picks pairs of passwords from
the dictionary (which is fresh for every runtime, just as the real key exchange
protocol) of size 2. As long as they are different (i.e., the one for A is different from
the one for B), then he obtained a transcript (we denote is by τ1) for this runtime.
This process is not stopped until the two passwords for A and B are equal at (say)
time i.

Now, we give the transcript <τ1, …, τi-1, τ> to E and we bet the password on the
answer of E. Therefore, we succeed with probability more than ε’(k) = ε(k, 1, 1).

28

 Shouhuai Xu 2001 55

PKC and Passwords

§Secure secret-key agreement is known to be possible
under the assumption that trapdoor functions
exist [DH76, GM84].

§Question: Can we base secure secret-key agreement
on the existence of one-way permutations only?

§Answer [IL STOC89]: probably no (see argument
below)

 Shouhuai Xu 2001 56

Impagliazzo & Rudich STOC89

§Motivated by the question: Can we base secure secret-key agreement on the existence of
one-way permutations only?

§They depicted a model in which only secret key tools are available. This model is different
from the standard model in the following ways:

ØNP-Complete oracle: To eliminate all public key tools from the model, the
adversary is given such an oracle to solve the public key related
problem (i.e., compute the private key from a public key).

ØRandom oracle: To enable non-public key tools in the presence of such a NP-C
oracle, all the parties in this model are given access to a random
function f, mapping arbitrary-length strings into strings of length k (i.e,
the security parameter). Namely, for each string in {0,1}*, f maps it to
an independent, uniformly distributed k-bit string. Within such a
Random Oracle, various primitives (e.g., collision-resistance hashing,
symmetric encryption, etc.) are easy to implement.

29

 Shouhuai Xu 2001 57

Impagliazzo & Rudich STOC89

Theorem [IR89]. There is no key-exchange protocol in
the IR-model which is secure up to any ε < ½ .

Theorem [HK99]. There is no password authentication
protocol in the IR-model which is secure up to
any ε < ½ .

 Shouhuai Xu 2001 58

Why OWP is not enough?

§In the IR-model, only non-public key tools are available.

§Claim. In the standard model, construct a password protocol that can be
provably secure based only on the security of symmetric key tools
(e.g., symmetric encryption, MAC, collision-resistant hashing) is at
least as hard as proving that P≠NP.

ØAssume that we have such a password protocol in the standard model.

ØSince the derived key exchange protocol is secure with only symmetric
key tools, it is still secure in the IR-model.

ØHowever, in IR-model, the existence of any NP-Complete oracle is enough
to break any key exchange protocol.

ØTherefore, there are no efficient oracles can solve NP-Complete problems.

ØConsequently, P≠NP.

30

 Shouhuai Xu 2001 59

A Corollary

Theorem [B99]. Secure password authentication protocol exists (in the
robust definition sense) if secure key exchange protocol exists.

This is due to the fact that the password authentication protocol
needs only a secret key exchange (i.e., we exchange password)
and a signature scheme. Moreover, secret key exchange (at least
we need OWF thereof) implies the existence of a signature
scheme.

Corollary. ∃ secure password protocol ⇔ ∃ secure key exchange protocol.

 Shouhuai Xu 2001 60

Future Direction

This is only part of the more comprehensive problem we
call Authentication and Authenticated Key
Exchange (A&AKE). There are still a lot of
challenges.

§How can we reach a consistent world?

§Adaptive security …

§Stronger notions …

