Information security is fundamentally about managing
- authorization and
- trust
so as to manage risk
SOLUTIONS

- OM-AM
- RBAC
- PKI
- and others

THE OM-AM WAY

<table>
<thead>
<tr>
<th>What?</th>
<th>How?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objectives</td>
<td>Assurance</td>
</tr>
<tr>
<td>Model</td>
<td></td>
</tr>
<tr>
<td>Architecture</td>
<td></td>
</tr>
<tr>
<td>Mechanism</td>
<td></td>
</tr>
</tbody>
</table>
LAYERS AND LAYERS

- Multics rings
- Layered abstractions
- Waterfall model
- Network protocol stacks
- OM-AM

OM-AM AND MANDATORY ACCESS CONTROL (MAC)

<table>
<thead>
<tr>
<th>What?</th>
<th>Assurance</th>
</tr>
</thead>
<tbody>
<tr>
<td>No information leakage</td>
<td></td>
</tr>
<tr>
<td>Lattices (Bell-LaPadula)</td>
<td></td>
</tr>
<tr>
<td>Security kernel</td>
<td></td>
</tr>
<tr>
<td>Security labels</td>
<td></td>
</tr>
</tbody>
</table>

How?
OM-AM AND DISCRETIONARY ACCESS CONTROL (DAC)

<table>
<thead>
<tr>
<th>What?</th>
<th>Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner-based discretion</td>
<td>numerous ACLs, Capabilities, etc</td>
</tr>
</tbody>
</table>

How?

OM-AM AND ROLE-BASED ACCESS CONTROL (RBAC)

<table>
<thead>
<tr>
<th>What?</th>
<th>Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Policy neutral</td>
<td>RBAC96 user-pull, server-pull, etc. certificates, tickets, PACs, etc.</td>
</tr>
</tbody>
</table>

How?
ROLE-BASED ACCESS CONTROL (RBAC)

- A user’s permissions are determined by the user’s roles
 - rather than identity or clearance
 - roles can encode arbitrary attributes
- multi-faceted
- ranges from very simple to very sophisticated

WHAT IS THE POLICY IN RBAC?

- RBAC is a framework to help in articulating policy
- The main point of RBAC is to facilitate security management
RBAC SECURITY PRINCIPLES

- least privilege
- separation of duties
- separation of administration and access
- abstract operations

RBAC96
IEEE Computer Feb. 1996

- Policy neutral
- can be configured to do MAC
 - roles simulate clearances (ESORICS 96)
- can be configured to do DAC
 - roles simulate identity (RBAC98)
WHAT IS RBAC?

- multidimensional
- open ended
- ranges from simple to sophisticated

RBAC CONUNDRUM

- turn on all roles all the time
- turn on one role only at a time
- turn on a user-specified subset of roles
RBAC96 FAMILY OF MODELS

RBAC3
ROLE HIERARCHIES +
CONSTRAINTS

RBAC1
ROLE HIERARCHIES

RBAC2
CONSTRAINTS

RBAC0
BASIC RBAC

RBAC0

USER-ROLE ASSIGNMENT
PERMISSION-ROLE ASSIGNMENT

USERS
ROLES
PERMISSIONS

SESSIONS
PERMISSIONS

- Primitive permissions
 - read, write, append, execute
- Abstract permissions
 - credit, debit, inquiry

PERMISSIONS

- System permissions
 - Auditor
- Object permissions
 - read, write, append, execute, credit, debit, inquiry
PERMISSIONS

- Permissions are positive
- No negative permissions or denials
 - negative permissions and denials can be handled by constraints
- No duties or obligations
 - outside scope of access control

ROLES AS POLICY

- A role brings together
 - a collection of users and
 - a collection of permissions
- These collections will vary over time
 - A role has significance and meaning beyond the particular users and permissions brought together at any moment
ROLES VERSUS GROUPS

- Groups are often defined as
 - a collection of users

- A role is
 - a collection of users and
 - a collection of permissions

- Some authors define role as
 - a collection of permissions

USERS

- Users are
 - human beings or
 - other active agents

- Each individual should be known as exactly one user
USER-ROLE ASSIGNMENT

- A user can be a member of many roles
- Each role can have many users as members

SESSIONS

- A user can invoke multiple sessions
- In each session a user can invoke any subset of roles that the user is a member of
PERMISSION-ROLE ASSIGNMENT

- A permission can be assigned to many roles
- Each role can have many permissions

MANAGEMENT OF RBAC

- Option 1: USER-ROLE-ASSIGNMENT and PERMISSION-ROLE ASSIGNMENT can be changed only by the chief security officer
- Option 2: Use RBAC to manage RBAC
RBAC1

ROLE HIERARCHIES

USER-ROLE ASSIGNMENT

PERMISSION-ROLE ASSIGNMENT

USERS

ROLES

PERMISSIONS

SESSIONS

HIERARCHICAL ROLES

Primary-Care Physician

Specialist Physician

Physician

Health-Care Provider
EXAMPLE ROLE HIERARCHY

Director (DIR)

Project Lead 1 (PL1)
 Production 1 (P1)
 Quality 1 (Q1)
 Engineer 1 (E1)

Project Lead 2 (PL2)
 Production 2 (P2)
 Quality 2 (Q2)
 Engineer 2 (E2)

Engineering Department (ED)

Employee (E)

PROJECT 1

PROJECT 2

© Ravi Sandhu 2001
EXAMPLE ROLE HIERARCHY

Director (DIR)

Project Lead 1 (PL1)
 Production 1 (P1)
 Engineer 1 (E1)
 Quality 1 (Q1)

Project Lead 2 (PL2)
 Production 2 (P2)
 Engineer 2 (E2)
 Quality 2 (Q2)

PROJECT 1

PROJECT 2

EXAMPLE ROLE HIERARCHY

Project Lead 1 (PL1)
 Production 1 (P1)
 Engineer 1 (E1)
 Quality 1 (Q1)

Project Lead 2 (PL2)
 Production 2 (P2)
 Engineer 2 (E2)
 Quality 2 (Q2)

PROJECT 1

PROJECT 2
RBAC3

ROLE HIERARCHIES

- USER-ROLE ASSIGNMENT
- PERMISSIONS-ROLE ASSIGNMENT
- USERS
- ROLES
- PERMISSIONS
- SESSIONS
- CONSTRAINTS

CONSTRAINTS

- **Mutually Exclusive Roles**
 - Static Exclusion: The same individual can never hold both roles
 - Dynamic Exclusion: The same individual can never hold both roles in the same context
CONSTRAINTS

- Mutually Exclusive Permissions
 - Static Exclusion: The same role should never be assigned both permissions
 - Dynamic Exclusion: The same role can never hold both permissions in the same context

- Cardinality Constraints on User-Role Assignment
 - At most k users can belong to the role
 - At least k users must belong to the role
 - Exactly k users must belong to the role
CONSTRAINTS

- Cardinality Constraints on Permissions-Role Assignment
 - At most k roles can get the permission
 - At least k roles must get the permission
 - Exactly k roles must get the permission