INFS 766
Internet Security Protocols

Lecture 6
Digital Certificates

Prof. Ravi Sandhu

PUBLIC-KEY CERTIFICATES

- reliable distribution of public-keys
- public-key encryption
 - sender needs public key of receiver
- public-key digital signatures
 - receiver needs public key of sender
- public-key key agreement
 - both need each other’s public keys
THE CERTIFICATE TRIANGLE

user

X.509 attribute certificate

attribute

SPKI certificate

X.509 identity certificate

general

public-key

X.509 CERTIFICATE

<table>
<thead>
<tr>
<th>VERSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERIAL NUMBER</td>
</tr>
<tr>
<td>SIGNATURE ALGORITHM</td>
</tr>
<tr>
<td>ISSUER</td>
</tr>
<tr>
<td>VALIDITY</td>
</tr>
<tr>
<td>SUBJECT</td>
</tr>
<tr>
<td>SUBJECT PUBLIC KEY INFO</td>
</tr>
<tr>
<td>SIGNATURE</td>
</tr>
</tbody>
</table>
X.509 CERTIFICATE

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1234567891011121314</td>
<td></td>
</tr>
<tr>
<td>RSA+MD5, 512</td>
<td></td>
</tr>
<tr>
<td>C=US, S=VA, O=GMU, OU=ISE</td>
<td></td>
</tr>
<tr>
<td>9/9/99-1/1/1</td>
<td></td>
</tr>
<tr>
<td>C=US, S=VA, O=GMU, OU=ISSE, CN=Ravi Sandhu</td>
<td></td>
</tr>
<tr>
<td>RSA, 1024, xxxxxxxxxxxxxxxxxxxxxxxxxxxx</td>
<td>SIGNATURE</td>
</tr>
</tbody>
</table>

CERTIFICATE TRUST

- how to acquire public key of the issuer to verify signature
- whether or not to trust certificates signed by the issuer for this subject
PEM CERTIFICATION GRAPH

Policy Certification Authorities (PCAs)

HIGH ASSURANCE
- MITRE
- Abrams

MID-LEVEL ASSURANCE
- Certification Authorities (CAs)
- GMU
- ISSE
- Sandhu

RESIDENTIAL
- Virginia
- Fairfax
- Sandhu

PERSONA
- Anonymous
- LEO

Internet Policy Registration Authority

CRL FORMAT

- SIGNATURE ALGORITHM
- ISSUER
- LAST UPDATE
- NEXT UPDATE
- REVOKED CERTIFICATES
- SIGNATURE
- SERIAL NUMBER
- REVOCATION DATE
PGP BOTTOM UP
TRUST MODEL

How does Alice get Bob’s public key
- directly from Bob through some secure channel (e.g., post, phone, floppy)
- from Chuck, who is known to both Alice and Bob and introduces Bob to Alice
- from a trusted certifying authority

PGP has mechanisms to support these, and related, alternatives

X.509 CERTIFICATES

X.509v1
- very basic
X.509v2
- adds unique identifiers to prevent against reuse of X.500 names
X.509v3
- adds many extensions
- can be further extended
SEPARATE KEYS FOR SEPARATE PURPOSES

- RSA is the only known public-key cryptosystem in which the same public-private key pair can be used for
 - digital signatures
 - encryption
- perceived as a major advantage

SIGNATURE KEYS

- private key: must be private for entire life, may never leave smart card
 - needs to be securely destroyed after lifetime
 - no need for backup or archiving (would conflict with above)
 - no need to weaken or escrow due to law
- public key: must be archive possibly for a long time
ENCRIPTION KEY

- private key: backup or archive required for recovery
 - should not be destroyed after lifetime
 - may be weakened/escrowed due to law
- public key:
 - no need to backup RSA or other encryption keys
 - need to backup Diffie-Hellman key agreement keys

X.509 INNOVATIONS

- distinguish various certificates
 - signature, encryption, key-agreement
- identification info in addition to X.500 name
- name other than X.500 name
 - email address
- issuer can state policy and usage
 - good enough for casual email but not good enough for signing checks
- limits on use of signature keys for further certification
X.509v3 EXTENSIONS

- X.509v3 same as X.509v2 but adds extensions
- provides a general extension mechanism
 - extension type: registered just like an algorithm is registered
 - standard extension types: needed for interoperability

CRITICALITY

- non-critical: extension can be ignored by certificate user
 - alternate name can be non-critical
- critical: extension should not be ignored by certificate user
 - limit on use of signatures for further certification
X.509v3 EXTENSIONS
CRITICALITY

- criticality is flagged by certificate issuer
 - certificate user may consider non-critical extensions more important than critical ones
 - certificate user may refuse to use certificate if some extensions are missing
- critical extensions should be few and should be standard

X.509v3 NAMES

- internet email address
- internet domain name
- web uri (url's are subset of uri)
- IP address
- X.400 email address
- X.500 directory name
- registered identifier
- other name
X.509v3 STANDARD EXTENSIONS

- Key and policy information
- Subject and issuer attributes
- Certification path constraints
- Extensions related to CRLs
 - will be discussed with CRLs

KEY AND POLICY INFORMATION

- **key usage**
 - critical: intended only for that purpose, limits liability of CA
 - non-critical: advisory to help find the correct key, no liability implication
- **private-key usage period**
 - certificate valid for 2 years for verifying signature
 - key valid only for one year for signing
- **certificate policies**
 - for CAs
SUBJECT AND ISSUER ATTRIBUTES

- Subject alternative names
- Issuer alternative names
- Subject directory attributes
 - whatever you like
 - position, phone, address etc.

CERTIFICATION PATH CONSTRAINTS

- Basic Constraints
 - can or cannot act as CA
 - if can act as CA limit on certification path
 - limit=1 means cannot certify other CAs
- Name Constraints
 - limits names of subjects that this CA can issue certificates for
- Policy Constraints
 - concerned with CA policies
CERTIFICATE REVOCATION LISTS

- CRLs issued periodically as per CA policy
 - off-cycle CRLs may also be needed
 - blank CRLs can be issued

CERTIFICATE REVOCATION LISTS

- CRL distribution
 - pull method
 - push method
- DMS example
 - pull method with push for compromised key list (CKL) which is broadcast via secure email, single CKL for entire system
CERTIFICATE REVOCATION LISTS

- immediate or real-time revocation
 - needs query to CA on every certificate use
 - maybe ok for small closed communities

REVOCATION TIME-LINE

- Issue Of CRL 1
- Revocation Request
- Issue Of CRL 2

Compromise Event

Revocation Time
OCSP
ON-LINE CERTIFICATE STATUS PROTOCOL

- consult authoritative server
- the server in turn can look up CRLs

SHORT-LIVED CERTIFICATES

- Authorization certificates can be short lived
 - minutes, hours, days instead of
 - months, years
X.509 CRL EXTENSIONS

- General Extensions
- CRL distribution points
- Delta-CRLs
- Indirect-CRLs
- Certificate Suspension

GENERAL EXTENSIONS

- Reason Code
 - Key Compromise
 - CA Compromise
 - Affiliation changed
 - Superseded
 - Cessation of operation
 - Remove from CRL: defer till Delta-CRL
 - Certificate hold: defer

- Invalidity Date
CRL DISTRIBUTION POINTS

❖ CRLs can get very big
 ➢ version 1 CRL (1988, 1993)
 • each CA has two CRLs: one for end users, one for CAs
 • end user CRL can still be very big
 ➢ version 2 CRL
 • can partition certificates, each partition associated with one CRL
 • distribution point
 • also can have different distribution points for different revocation reasons

CRL DISTRIBUTION POINTS

❖ certificate extension field, says where to look
❖ CRL extension field
 ➢ distribution point for this CRL and limits on scope and reason of revocation
 ➢ protects against substitution of a CRL from one distribution point to another
DELTA-CRLs

- Delta CRL indicator
 - only carries changes from previous CRL
- Remove from CRL reason code causes purge from base CRL (stored at certificate user)
- removal due to expiry of validity period or restoration of suspension

INDIRECT-CRL

- CRL can be issued by different CA than issuer of certificate
 - allows all compromise revocations to be on one list
 - allows all CA revocations to be on one list (simplify certificate chasing)
CERTIFICATE SUSPENSION

- Certificate hold reason code in CRL
- Supporting CRL entry extension
 - Instruction code: instructions on what to do with held certificate
 - call CA, repossess token

GENERAL HIERARCHICAL STRUCTURE
FOREST OF HIERARCHIES