PKCS

- Public-key cryptography standards (PKCS)
- Owned by RSA and motivated to promote RSA
- Created in early 1990’s
- Numbered from PKCS1 to PKCS15
- Some along the way have
 - lost interest
 - folded into other PKCS
 - taken over by other standards bodies
- Continue to evolve

© Ravi Sandhu 2000-2004
PKCS 1

- RSA Cryptography Standard
 - Version 2.0 onwards (1998)
- RSA Encryption Standard
 - Version 1.5 (1993)

PKCS 1

- Specifies how to use the RSA algorithm securely for encryption and signature
- Why do we need this?
 - Padding for encryption
 - Different schemes for signature
PKCS 1

- Chosen ciphertext attack based on multiplicative property of RSA
 - Attacker wishes to decrypt c
 - Choose r, compute $c' = c.r^e \mod n$
 - Get victim to decrypt c' giving $c^d.r \mod n$
 - $c^d.r.r^{-1} \mod n = c^d \mod n$

- Padding destroys multiplicative property

PKCS 1

- Version 1.5, 1993
 - Encryption padding was found defective in 1998 by Bleichenbacher
 - Possible to generate valid ciphertext without knowing corresponding plaintext with reasonable probability of success (chosen ciphertext)
PKCS 1

- Version 2.0, 1998
 - Uses Optimal asymmetric encryption protocol (OAEP) by Bellare-Rogoway 1994
 - provably secure in the random oracle model
 - Informally, if hash functions are truly random, then an adversary who can recover such a message must be able to break RSA
 - plaintext-awareness: to construct a valid OAEP encoded message, an adversary must know the original plaintext
 - PKCS 1 version 1.5 padding continues to be allowed for backward compatibility
 - Accommodation for multi-prime RSA
 - Speed up private key operations

PKCS 1

- Cryptographic primitives
- Cryptographic scheme
 - Encryption scheme
 - Signature scheme
 - Signature with appendix: supported
 - Signature with message recovery: not supported
- Encoding and decoding
 - Converting an integer message into an octet string for use in encryption or signature scheme and vice versa
PKCS 1

- **Cryptographic primitives**
 - Encrypt: $\text{RSAEP}((n,e),m)$
 - Decrypt: $\text{RSADP}((n,d),c)$
 - Sign: $\text{RSASP1}((n,d),m)$
 - Verify: $\text{RSAVP1}((n,e),s)$
- **Basically exponentiation with differently named inputs**

PKCS 1

- **Encryption scheme**
 - Combines encryption primitive with an encryption encoding method
 - message → encoded message → integer message representative → encrypted message
- **Decryption scheme**
 - Combines decryption primitive with a decryption decoding method
 - encrypted message → integer message representative → encoded message → message
- **Original version 1.5 scheme and new version 2.0 scheme**
PKCS 1

- **Signature scheme**
 - Combines signature primitive with a signature encoding method
 - message → encoded message → integer message representative → signature

- **Decryption scheme**
 - Combines verification primitive with a verification decoding method
 - signature → integer message representative → encoded message → message

- **Original version 1.5 scheme**
 - Signature with appendix

PKCS 1

- **The future**
- **Probabilistic signature scheme (PSS)**
 - Provably secure in random oracle model
 - Natural extension to message recovery
PKCS 5

- **Password-Based Cryptography Standard**
 - Version 1.5, 1993
 - Version 2.0, 1999
- Oriented towards protection of private keys
- Does not specify a standard for password format

PKCS 5

- **Password-based key derivation function**
 - Key = PBKDF(passwd, salt, iteration count)
- salt allows same password to give many keys
 - May actually have same password
 - Separate dictionary attack for every salt
- Iteration count controls complexity of dictionary attack
PKCS 5

- Version 1.5 PBKDF1
 - Key size limited to 160 bits
 - Only MD5 and SHA as underlying hash functions
 - Assumes key will be used for CBC
 - 8-byte salt
 - No security proof

PKCS 5

- Version 2.0 adds PBKDF2
 - Arbitrary length key
 - Any underlying hash function, most likely with HMAC
 - Salt not fixed at 8 bytes
 - Provable security in random oracle model
PKCS 5

- **Encryption schemes**
 - PBES1
 - PBKDF1 with DES or RC2 in CBC
 - PBES2
 - PBKDF2 with some underlying encryption scheme
- **MAC scheme**
 - PBMAC1
 - PBKDF2 with some underlying MAC scheme

PKCS 10

- Certification Request Syntax Standard
- Specifies format of unsigned certificate requested to be signed
- Does not specify format of returned signed certificate
PKCS 10

- Version 1.0, 1993
 - In widespread use
- Version 1.5, 1998
- Version 1.7, 2000
 - Minor changes such as references to PKCS 6 replaced by references to X.509v3

PKCS 10

- CertificationRequestInfo
 - version
 - subjectName
 - subjectPublicKeyInfo
 - attributes
PKCS 10

- CertificationRequest
 - certificationRequestInfo
 - signatureAlgorithm
 - signature
- Signed with private key corresponding to public key in request
 - very RSA specific
 - IETF RFC 2511 defines a different format: certificate request message format

PKCS 8

- Private-Key Information Syntax Standard
 - Version 1.2, 1993
PKCS 8

- `PrivateKeyInfo`
 - `version`
 - `privateKeyAlgorithm`
 - `privateKey`
 - `attributes`

PKCS 8

- `encryptedPrivateKeyInfo`
 - `encryptionAlgorithm`
 - `encryptedData`
 - `privateKeyInfo` BER-encoded and encrypted
 - Usually encrypted using PKCS 5
PKCS 12

- Personal Information Exchange Syntax Standard
 - Version 1, 1999
- Builds on PKCS 8
- Further evolution PKCS 15

PKCS 12

- 6 types of information
 - PKCS 8 shrouded key
 - Private key
 - Certificates
 - X.509v3
 - SDSI
 - CRLs
 - X.509
 - Secret
 - Whatever
 - Recursive composition of these
PKCS 12

📍 Each of these can be
 ➢ Plaintext
 ➢ Enveloped
 • Encrypted using a secret key which is encrypted using a public key
 ➢ Encrypted
 • Secret key encrypted
 • Usually password derived
 – Use PKCS 5 and a password formatting standard which is part of PKCS 12

PKCS 12

📍 The entire stuff is then either
 ➢ Signed
 • And accompanied with signing certificate
 ➢ MAC’ed
 • PKCS 5 based and accompanied with salt and iteration count

📍 Notice: opposite of usual sequence
 ➢ Encrypt and then authenticate, versus
 ➢ Authenticate and then encrypt
PKCS
DISCONTINUED OR DISINTERESTED

- PKCS 2
 - discontinued, incorporated into PKCS 1
- PKCS 3
 - Diffie-Hellman Key Agreement, 1993
- PKCS 4
 - discontinued, incorporated into PKCS 1

PKCS
TAKEN OVER BY OTHERS

- PKCS 6
 - Extended Certificate Syntax Standard
 - Taken over by X.509v3
- PKCS 7
 - Cryptographic Message Syntax Standard
 - Taken over by IETF PKIX CMS
PKCS 9

- PKCS 9
 - Selected Attribute Types
 - For use in PKCS 6, 7, 8, 10

PKCS 11

- PKCS 11
 - Cryptographic Token Interface Standard
 - API used by Netscape (pre 6.0)
 - Microsoft CSP (Cryptographic Service Provider) is a competitor
PKCS IN DEVELOPMENT

- PKCS 13 (new, in development)
 - Elliptic Curve Cryptography Standard
 - There are IEEE standards, so not clear why
- PKCS 14 (new, in development)
 - Pseudorandom Number Generation Standard
- PKCS 15 (new, in development)
 - Cryptographic Token Information Format Standard
 - Crypto API neutral

PKCS 11 vs PKCS 15

- Crypto Application (Browser, email client etc)
- Standard Crypto API (PKCS 11, CSP, etc)
- Cryptographic Token Information Format Standard (PKCS 15)