INFS 766
Internet Security Protocols

Lecture 1
Firewalls

Prof. Ravi Sandhu

INTERNET INSECURITY

- Internet insecurity spreads at Internet speed
 - Morris worm of 1987
 - Password sniffing attacks in 1994
 - IP spoofing attacks in 1995
 - Denial of service attacks in 1996
 - Email borne viruses 1999
 - Distributed denial of service attacks 2000
 - Fast spreading worms and viruses 2003
 - Spam 2004
 - ... no end in sight
- Internet insecurity grows at super-Internet speed
 - security incidents are growing faster than the Internet (which has roughly doubled every year since 1988)

SECURITY OBJECTIVES

- CONFIDENTIALITY
 - disclosure
- INTEGRITY
 - modification
- AVAILABILITY
 - access
- USAGE-CONTROL
 - purpose

SECURITY TECHNIQUES

- Prevention
 - access control
- Detection
 - auditing/intrusion detection
 - incident handling
- Acceptance
 - practicality

THREATS, VULNERABILITIES
ASSETS AND RISK

- THREATS are possible attacks
- VULNERABILITIES are weaknesses
- ASSETS are information and resources that need protection
- RISK requires assessment of threats, vulnerabilities and assets

RISK

- Outsider Attack
 - insider attack
- Insider Attack
 - outsider attack
PERSPECTIVE ON SECURITY

- No silver bullets
- A process NOT a turn-key product
- Requires a conservative stance
- Requires defense-in-depth
- A secondary objective
- Absolute security does not exist
- Security in most systems can be improved

CLASSICAL INTRUSIONS

SCENARIO 1
- Insider attack
 - The insider is already an authorized user
- Insider acquires privileged access
 - exploiting bugs in privileged system programs
 - exploiting poorly configured privileges
- Install backdoors/Trojan horses to facilitate subsequent acquisition of privileged access

SCENARIO 2
- Outsider attack
- Acquire access to an authorized account
- Perpetrate an insider attack

CLASSICAL INTRUSIONS

SCENARIO 2
- Outsider attack
- Acquire access to an authorized account
- Perpetrate an insider attack

NETWORK INTRUSIONS

SCENARIO 3
- Outsider/Insider attack
- Spoof network protocols to effectively acquire access to an authorized account
DENIAL OF SERVICE ATTACKS

- Flooding network ports with attack source masking
- TCP/SYN flooding of internet service providers in 1996

INFRASTRUCTURE ATTACKS

- Router attacks
 - Modify router configurations
- Domain name server attacks
- Internet service attacks
 - Web sites
 - FTP archives

INTERNET ARCHITECTURE AND PROTOCOLS

OSI REFERENCE MODEL

TCP/IP PROTOCOL STACK BASIC PROTOCOLS

- Layer 5-7: Telnet, FTP, SMTP, HTTP etc
- Layer 4: TCP, UDP
- Layer 3: IP
- Layer 2: Ethernet, Token-Ring, ATM PPP etc
TCP/IP PROTOCOL STACK

BASIC PROTOCOLS

- IP (Internet Protocol)
 - connectionless routing of packets
- UDP (User Datagram Protocol)
 - unreliable datagram protocol
- TCP (Transmission Control Protocol)
 - connection-oriented, reliable, transport protocol

TELNET: remote terminal
FTP (File Transfer Protocol)
TFTP (Trivial File Transfer Protocol)
SMTP (Simple Mail Transfer Protocol)
RPC (Remote Procedure Call)
HTTP (Hyper Text Transfer Protocol)
and others

TCP/IP PROTOCOL STACK

INFRASTRUCTURE PROTOCOLS

<table>
<thead>
<tr>
<th>layer</th>
<th>TELNET</th>
<th>FTP</th>
<th>SMTP</th>
<th>HTTP etc</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-7</td>
<td>DNS</td>
<td>TCP</td>
<td>UDP</td>
<td>RIP</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ICMP</td>
<td>IP</td>
<td>ARP</td>
<td>RARP</td>
</tr>
<tr>
<td>2</td>
<td>Ethernet</td>
<td>Token-Ring</td>
<td>ATM</td>
<td>PPP etc</td>
</tr>
</tbody>
</table>

Internet Control Message Protocol (ICMP)
Address Resolution Protocol (ARP)
Reverse Address Resolution Protocol (RARP)
Domain Name Service (DNS)
Routing Information Protocol (RIP)
Border Gateway Protocol (BGP)
External Gateway Protocol (EGP)

TCP/IP PROTOCOL STACK

SECURITY PROTOCOLS

<table>
<thead>
<tr>
<th>layer</th>
<th>TELNET</th>
<th>FTP</th>
<th>SMTP</th>
<th>HTTP etc</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-7</td>
<td>DNS</td>
<td>SSL</td>
<td>TCP</td>
<td>UDP</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ICMP</td>
<td>IP</td>
<td>IPSEC</td>
<td>ARP</td>
</tr>
<tr>
<td>2</td>
<td>Ethernet</td>
<td>Token-Ring</td>
<td>ATM</td>
<td>Token-Ring</td>
</tr>
</tbody>
</table>

INTERNET STANDARDS PROCESS

- IETF: Internet Engineering Task Force
 - Application Area
 - General Area
 - Internet Area
 - Operational Requirements Area
 - Routing Area
 - Security Area
 - Transport Area
 - User Services Area
IETF SECURITY AREA
ACTIVE WORKING GROUPS

- An Open Specification for Pretty Good Privacy (openpgp)
- Authenticated Firewall Traversal (aft)
- Common Authentication Technology (cat)
- IP Security Policy (ipsp)
- IP Security Protocol (ipsec)
- IP Security Remote Access (ipsra)
- Intrusion Detection Exchange Format (idwg)
- Kerberized Internet Negotiation of Keys (kink)
- Kerberos WG (krb-wg)
- One Time Password Authentication (otp)
- Public-Key Infrastructure (X.509) (pkix)
- S/MIME Mail Security (smime)
- Secure Network Time Protocol (stime)
- Secure Shell (secsh)
- Securely Available Credentials (sacred)
- Security Issues in Network Event Logging (syslog)
- Simple Public Key Infrastructure (spki)
- Transport Layer Security (tls)
- Web Transaction Security (wts)
- XML Digital Signatures (xmldsig)

RFCs AND IETF DRAFTS

- RFCs
 - Standards
 - Proposed Standard
 - Draft Standard
 - Internet Standard
 - Informational
 - Experimental
 - Historic
- IETF drafts
 - work in progress
 - expire after 6 months

MUST, SHOULD, MAY

- MUST
 - mandatory, required of compliant implementations
- SHOULD
 - strongly recommended but not required
- MAY
 - possibility
 - even if not stated a may is always allowed unless it violates MUST NOT

TCP/IP VULNERABILITIES

- many dangerous implementations of protocols
 - sendmail
- many dangerous protocols
 - NFS, X11, RPC
 - many of these are UDP based

BASIC TCP/IP VULNERABILITIES

- solution
 - allow a restricted set of protocols between selected external and internal machines
 - otherwise known as firewalls
IP PACKET

- **header**
- **data**
 - carries a layer 4 protocol
 - TCP, UDP
 - or a layer 3 protocol
 - ICMP, IPSEC, IP
 - or a layer 2 protocol
 - IPX, Ethernet, PPP

TCP INSIDE IP

<table>
<thead>
<tr>
<th>IP HEADER</th>
<th>TCP HEADER</th>
</tr>
</thead>
</table>

IP HEADER FORMAT

- version: 4bit, currently v4
- header length: 4 bit, length in 32 bit words
- TOS (type of service): unused
- total length: 16 bits, length in bytes
- identification, flags, fragment offset: total 16 bits used for packet fragmentation and reassembly
- TTL (time to live): 8 bits, used as hop count
- Protocol: 8 bit, protocol being carried in IP packet, usually TCP, UDP but also ICMP, IPSEC, IP, IPX, PPP, Ethernet
- header checksum: 16 bit checksum
- source address: 32 bit IP address
- destination address: 32 bit IP address

TCP HEADER FORMAT

- source port number
 - source IP address + source port number is a socket: uniquely identifies sender
- destination port number
 - destination IP address + destination port number is a socket: uniquely identifies receiver
- SYN and ACK flags
- sequence number
- acknowledgement number

TCP 3 WAY HANDSHAKE

- Initiator
 - SYN(X)
 - SYN(Y), ACK(X)
 - ACK(Y)

- Responder
TCP SYN FLOODING ATTACK
- TCP 3 way handshake
 - send SYN packet with random IP source address
 - return SYN-ACK packet is lost
 - this half-open connection stays for a fairly long time out period
- Denial of service attack
- Basis for IP spoofing attack

IP SPOOFING
- Send SYN packet with spoofed source IP address
- SYN-flood real source so it drops SYN-ACK packet
- guess sequence number and send ACK packet to target
 - target will continue to accept packets and response packets will be dropped

TCP SESSION HIJACKING
- Send RST packet with spoofed source IP address and appropriate sequence number to one end
- SYN-flood that end
- send ACK packets to target at other end

SMURF ATTACK
- Send ICMP ping packet with spoofed IP source address to a LAN which will broadcast to all hosts on the LAN
- Each host will send a reply packet to the spoofed IP address leading to denial of service

ULTIMATE VULNERABILITY
- IP packet carries no authentication of source address
- IP spoofing is possible
 - IP spoofing is a real threat on the Internet
 - IP spoofing occurs on other packet-switched networks also, such as Novell's IPX
- Firewalls do not solve this problem
- Requires cryptographic solutions

FIREWALLS
WHAT IS A FIREWALL?

- All traffic between external and internal networks must go through the firewall
 - Easier said than done
- Firewall has opportunity to ensure that only suitable traffic goes back and forth
 - Easier said than done

ULTIMATE FIREWALL

- Secure and carefully administer firewall machines to allow controlled interaction with external Internet
- Internal machines can be administered with varying degrees of care
- Does work

BASIC LIMITATIONS

- Connections which bypass firewall
- Services through the firewall introduce vulnerabilities
- Insiders can exercise internal vulnerabilities
- Performance may suffer
- Single point of failure

TYPES OF FIREWALLS

- Packet filtering firewalls
 - IP layer
- Application gateway firewalls
 - Application layer
- Circuit relay firewalls
 - TCP layer
- Combinations of these
PACKET FILTERING FIREWALLS

- IP packets are filtered based on
 - source IP address + source port number
 - destination IP address + destination port number
 - protocol field: TCP or UDP
 - TCP protocol flag: SYN or ACK

FILTERING ROUTERS

- Should never allow packet with source address of internal machine to enter from external internet
- Cannot trust source address to allow selective access from outside

PACKET FILTERING FIREWALLS

- drop packets based on filtering rules
 - static (stateless) filtering
 - no context is kept
 - dynamic (statefull) filtering
 - keeps context

FILTERING ROUTERS

- internal network
- packet filtering router
- external network
- mail gateway
- i-nw-to-router
- router-to-i-nw
- e-nw-to-router
- router-to-e-nw

PACKET FILTERING HOST

- one can use a packet filtering firewall even if connection to Internet is via an external service provider
PACKET FILTERING FIREWALLS

- Packet filtering is effective for coarse-grained controls.
- Not so effective for fine-grained control.
 - Can do: allow incoming telnet from a particular host.
 - Cannot do: allow incoming telnet from a particular user.

APPLICATION GATEWAY FIREWALLS

- Internal network → Application gateway → Firewall host → External router → External Internet.
- Simplest configuration.

APPLICATION PROXIES

- Have to be implemented for each service.
- May not be safe (depending on service).

CLIENT-SIDE PROXIES

- Internal-Client External-Server.
- Allow outgoing http for web access to external machines from internal users.
- Requires some client configuration.

SERVER-SIDE PROXIES

- External-Client Internal-Server.
- Allow incoming telnet for access to selected internal machines from selected external users.
- Requires some cryptographic protection to thwart sniffing and IP spoofing.
- Becoming increasingly important for:
 - Electronic commerce.
 - VPN.
 - Remote access security.

FIREWALL ARCHITECTURES

- Dual homed host.
- Bastion Host (Application Gateway) → Internal network → Router → Internet.
FIREWALL ARCHITECTURES

SCREENED SUBNET

- Router
- Packet Filter
- Bastion Host (External Service)
- Router

INTRUSION DETECTION

RELATED TECHNOLOGIES

- Intrusion detection
- Vulnerability assessment
- Incident response
- Honey pots
- Sniffer probes

INTRUSION DETECTION TECHNIQUES

- Policy detection (or knowledge-based)
 - default permit
 - also called misuse detection
- default deny
 - specification-based detection
- Anomaly detection (or behavior-based)
 - requires user profiling
- Combinations of these

INTRUSION DETECTION DATA SOURCE

- network-based intrusion detection
 - multiple sensor points
- host-based intrusion detection
 - multi-host based
- application-based intrusion detection
- combinations of these

ATTACKER

- Outsider
 - easier
- Insider
 - harder
INTRUSION DETECTION ISSUES

- effectiveness
- efficiency
- security
- inter-operability
- ease of use
- transparency

INTRUSION DETECTION CHALLENGES

- False alarm rate
- Performance and scalability

BASE RATE FALLACY

- Test for a disease is 99% accurate
 - 100 disease-free people tested, 99 test negative
 - 100 diseased people tested, 99 test positive
- Prevalence of disease is 1 in 10,000
- Alice tests positive
- What is probability Alice has the disease?

BASE RATE FALLACY

- Test for a disease is 99% accurate
 - 100 disease-free people tested, 99 test negative
 - 100 diseased people tested, 99 test positive
- Prevalence of disease is 1 in 10,000
- Alice tests positive
- What is probability Alice has the disease?
 - 1 in 100
- False alarm rate: 99 in 100 !!!!!

BASE RATE FALLACY

- population: 1,000,000
- diseased: 100
- disease free: 999,900
- false positive: 9,999
- true positive: 99
- Alice’s chance of disease:
 $$\frac{99}{(9,999+99)} = \frac{1}{100}$$

BASE RATE FALLACY

- population: 1,000,000
- diseased: 100
- disease free: 999,900
- false positive: 99.99
- true positive: 99.99
- Alice’s chance of disease:
 $$\frac{99.99}{(99.99+99.99)} = \frac{1}{2}$$
NETWORK-BASED INTRUSION DETECTION SIGNATURES

- port signatures
- header signatures
- string signatures

NETWORK-BASED INTRUSION DETECTION ADVANTAGES

- Complements firewalls
- broad visibility into network activity
- no impact on network performance
- transparent installation

NETWORK-BASED INTRUSION DETECTION DISADVANTAGES

- False positives
- miss new unknown attacks
- scalability with high-speed networks
- passive stance
- emergence of switched Ethernet

HOST-BASED INTRUSION DETECTION

- host wrappers or personal firewalls
 - look at all network packets, connection attempts, or login attempts to the monitored machine
 - example, tcp-wrapper
- host-based agents
 - monitor accesses and changes to critical system files and changes in user privilege
 - example, tripwire

INTRUSION DETECTION STANDARDS

- None exist
- ongoing efforts
 - CIDF: common intrusion detection framework for sharing information
 - IETF Intrusion Detection Working Group just started

INTRUSION DETECTION

- Needs to integrate with other security technologies such as cryptography and access control
- one component of defense-in-depth layered security strategy
- incident-response and recovery are important considerations