INTERNET INSECURITY

- Internet insecurity spreads at Internet speed
 - Morris worm of 1987
 - Password sniffing attacks in 1994
 - IP spoofing attacks in 1995
 - Denial of service attacks in 1996
 - Email borne viruses 1999
 - Distributed denial of service attacks 2000
 - Fast spreading worms and viruses 2003
 - Spam 2004
 - … no end in sight

- Internet insecurity grows at super-Internet speed
 - security incidents are growing faster than the Internet (which has roughly doubled every year since 1988)
SECURITY OBJECTIVES

CONFIDENTIALITY
- disclosure

INTEGRITY
- modification

AVAILABILITY
- access

USAGE-CONTROL
- purpose

SECURITY TECHNIQUES

- Prevention
 - access control
- Detection
 - auditing/intrusion detection
 - incident handling
- Acceptance
 - practicality
THREATS, VULNERABILITIES, ASSETS AND RISK

- THREATS are possible attacks
- VULNERABILITIES are weaknesses
- ASSETS are information and resources that need protection
- RISK requires assessment of threats, vulnerabilities and assets

RISK

- Outsider Attack
 - insider attack
- Insider Attack
 - outsider attack
PERSPECTIVE ON SECURITY

- No silver bullets
- A process NOT a turn-key product
- Requires a conservative stance
- Requires defense-in-depth
- A secondary objective
- Absolute security does not exist

- Security in most systems can be improved

absolute security is impossible does not mean absolute insecurity is acceptable
CLASSICAL INTRUSIONS
SCENARIO 1

- **Insider attack**
 - The insider is already an authorized user

- **Insider acquires privileged access**
 - exploiting bugs in privileged system programs
 - exploiting poorly configured privileges

- **Install backdoors/Trojan horses to facilitate subsequent acquisition of privileged access**
CLASSICAL INTRUSIONS
SCENARIO 2
- Outsider attack
- Acquire access to an authorized account
- Perpetrate an insider attack

NETWORK INTRUSIONS
SCENARIO 3
- Outsider/Insider attack
- Spoof network protocols to effectively acquire access to an authorized account
DENIAL OF SERVICE ATTACKS

- Flooding network ports with attack source masking
- TCP/SYN flooding of internet service providers in 1996

INFRASTRUCTURE ATTACKS

- router attacks
 - modify router configurations
- domain name server attacks
- internet service attacks
 - web sites
 - ftp archives
INTERNET ARCHITECTURE
AND PROTOCOLS

OSI REFERENCE MODEL

END USER A

Application Layer
Presentation Layer
Session Layer
Transport Layer
Network Layer
Data Link Layer
Physical Layer

END USER B

Application Layer
Presentation Layer
Session Layer
Transport Layer
Network Layer
Data Link Layer
Physical Layer

PHYSICAL MEDIUM
OSI REFERENCE MODEL

END USER A

higher level protocols

lower level protocols or network services

SOURCE NODE

INTERMEDIATE NETWORK NODE

DESTINATION NODE

END USER B

higher level protocols

lower level protocols or network services

TCP/IP PROTOCOL STACK

BASIC PROTOCOLS

layer

5-7

TELNET FTP SMTP HTTP etc

4

TCP UDP

3

IP

2

Ethernet Token-Ring ATM PPP etc
TCP/IP PROTOCOL STACK
BASIC PROTOCOLS

- IP (Internet Protocol)
 - connectionless routing of packets
- UDP (User Datagram Protocol)
 - unreliable datagram protocol
- TCP (Transmission Control Protocol)
 - connection-oriented, reliable, transport protocol

TCP/IP PROTOCOL STACK
BASIC PROTOCOLS

- TELNET: remote terminal
- FTP (File Transfer Protocol)
- TFTP (Trivial File Transfer Protocol)
- SMTP (Simple Mail Transfer Protocol)
- RPC (Remote Procedure Call)
- HTTP (Hyper Text Transfer Protocol)
- and others
TCP/IP Protocol Stack

Infrastructure Protocols

<table>
<thead>
<tr>
<th>Layer</th>
<th>Protocols</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-7</td>
<td>TELNET, FTP, SMTP, HTTP etc</td>
</tr>
<tr>
<td>4</td>
<td>TCP, UDP, DNS, RIP, EGP, BGP</td>
</tr>
<tr>
<td>3</td>
<td>ICMP, IP, ARP, RARP</td>
</tr>
<tr>
<td>2</td>
<td>Ethernet, Token-Ring, ATM, PPP etc</td>
</tr>
</tbody>
</table>

- **ICMP**: Internet Control Message Protocol
- **ARP**: Address Resolution Protocol
- **RARP**: Reverse Address Resolution Protocol
- **DNS**: Domain Name Service
- **RIP**: Routing Information Protocol
- **BGP**: Border Gateway Protocol
- **EGP**: External Gateway Protocol
TCP/IP Protocol Stack

<table>
<thead>
<tr>
<th>Layer</th>
<th>Protocol Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-7</td>
<td>TELNET, FTP, SMTP, HTTP</td>
</tr>
<tr>
<td>4</td>
<td>DNS, SSL, TCP, UDP, RIP, EGP, BGP</td>
</tr>
<tr>
<td>3</td>
<td>ICMP, IPSEC, IP, ARP, RARP</td>
</tr>
<tr>
<td>2</td>
<td>Ethernet, Token-Ring, ATM</td>
</tr>
</tbody>
</table>

Internet Standards Process
- **IETF**: Internet Engineering Task Force
 - Application Area
 - General Area
 - Internet Area
 - Operational Requirements Area
 - Routing Area
 - **Security Area**
 - Transport Area
 - User Services Area

© Ravi Sandhu 2000-2004
IETF SECURITY AREA
ACTIVE WORKING GROUPS

- An Open Specification for Pretty Good Privacy (openpgp)
- Authenticated Firewall Traversal (aft)
- Common Authentication Technology (cat)
- IP Security Policy (ipsp)
- IP Security Protocol (ipsec)
- IP Security Remote Access (ipsra)
- Intrusion Detection Exchange Format (ideq)
- Kerberized Internet Negotiation of Keys (kink)
- Kerberos WG (krb-wg)
- One Time Password Authentication (otp)
- Public-Key Infrastructure (X.509) (pkix)
- S/MIME Mail Security (smime)
- Secure Network Time Protocol (stime)
- Secure Shell (ssch)
- Securely Available Credentials (sacred)
- Security Issues in Network Event Logging (syslog)
- Simple Public Key Infrastructure (spki)
- Transport Layer Security (tls)
- Web Transaction Security (wts)
- XML Digital Signatures (xmldsig)

RFCs AND IETF DRAFTS

- RFCs
 - Standards
 - Proposed Standard
 - Draft Standard
 - Internet Standard
 - Informational
 - Experimental
 - Historic
- IETF drafts
 - work in progress
 - expire after 6 months
MUST, SHOULD, MAY

- **MUST**
 - mandatory, required of compliant implementations
- **SHOULD**
 - strongly recommended but not required
- **MAY**
 - possibility
 - even if not stated a may is always allowed unless it violates MUST NOT

TCP/IP VULNERABILITIES
many dangerous implementations of protocols
 - sendmail

many dangerous protocols
 - NFS, X11, RPC
 - many of these are UDP based

solution
 - allow a restricted set of protocols between selected external and internal machines
 - otherwise known as firewalls
IP PACKET

- header
- data
 - carries a layer 4 protocol
 - TCP, UDP
 - or a layer 3 protocol
 - ICMP, IPSEC, IP
 - or a layer 2 protocol
 - IPX, Ethernet, PPP

TCP INSIDE IP

```
+---+     +---+
| IP |     | TCP |
| HEADER |   | HEADER |
```
IP HEADER FORMAT

- version: 4bit, currently v4
- header length: 4 bit, length in 32 bit words
- TOS (type of service): unused
- total length: 16 bits, length in bytes
- identification, flags, fragment offset: total 16 bits used for packet fragmentation and reassembly
- TTL (time to live): 8 bits, used as hop count
- Protocol: 8 bit, protocol being carried in IP packet, usually TCP, UDP but also ICMP, IPSEC, IP, IPX, PPP, Ethernet
- header checksum: 16 bit checksum
- source address: 32 bit IP address
- destination address: 32 bit IP address

options

- source routing
 - enables route of a packet and its response to be explicitly controlled
- route recording
- timestamping
- security labels
TCP HEADER FORMAT

- source port number
 - source IP address + source port number is a socket: uniquely identifies sender
- destination port number
 - destination IP address + destination port number is a socket: uniquely identifies receiver
- SYN and ACK flags
- sequence number
- acknowledgement number

TCP 3 WAY HANDSHAKE

initiator

SYN(X)

SYN(Y), ACK(X)

ACK(Y)

responder
TCP SYN FLOODING
ATTACK

- TCP 3 way handshake
 - send SYN packet with random IP source address
 - return SYN-ACK packet is lost
 - this half-open connection stays for a fairly long time out period
- Denial of service attack
- Basis for IP spoofing attack

IP SPOOFING

- Send SYN packet with spoofed source IP address
- SYN-flood real source so it drops SYN-ACK packet
- guess sequence number and send ACK packet to target
 - target will continue to accept packets and response packets will be dropped
TCP SESSION HIJACKING

- Send RST packet with spoofed source IP address and appropriate sequence number to one end
- SYN-flood that end
- send ACK packets to target at other end

SMURF ATTACK

- Send ICMP ping packet with spoofed IP source address to a LAN which will broadcast to all hosts on the LAN
- Each host will send a reply packet to the spoofed IP address leading to denial of service
ULTIMATE VULNERABILITY

- IP packet carries no authentication of source address
- IP spoofing is possible
 - IP spoofing is a real threat on the Internet
 - IP spoofing occurs on other packet-switched networks also, such as Novell’s IPX
- Firewalls do not solve this problem
- Requires cryptographic solutions

FIREWALLS
WHAT IS A FIREWALL?

- all traffic between external and internal networks must go through the firewall
 - easier said than done
- firewall has opportunity to ensure that only suitable traffic goes back and forth
 - easier said than done
ULTIMATE FIREWALL

- internal network
- Air Gap
- external Internet

BENEFITS

- secure and carefully administer firewall machines to allow controlled interaction with external Internet
- internal machines can be administered with varying degrees of care
- does work
BASIC LIMITATIONS

- connections which bypass firewall
- services through the firewall introduce vulnerabilities
- insiders can exercise internal vulnerabilities
- performance may suffer
- single point of failure

TYPES OF FIREWALLS

- Packet filtering firewalls
 - IP layer
- Application gateway firewalls
 - Application layer
- Circuit relay firewalls
 - TCP layer
- Combinations of these
PACKET FILTERING FIREWALLS

- IP packets are filtered based on
 - source IP address + source port number
 - destination IP address + destination port number
 - protocol field: TCP or UDP
 - TCP protocol flag: SYN or ACK

FILTERING ROUTERS

- internal network
- packet filtering router
- external Internet
- mail gateway
- i-nw-to-router
- router-to-i-nw
- e-nw-to-router
- router-to-e-nw
PACKET FILTERING FIREWALLS

- drop packets based on filtering rules
- static (stateless) filtering
 - no context is kept
- dynamic (statefull) filtering
 - keeps context

- Should never allow packet with source address of internal machine to enter from external internet
- Cannot trust source address to allow selective access from outside
FILTERING ROUTERS

- **internal network 1**
- **internal network 2**
- **packet filtering router**
- **external Internet**
- **mail gateway (internal network 3)**

FILTERING HOST

- **internal network**
- **packet filtering firewall host**
- **external router**
- **external Internet**

- one can use a packet filtering firewall even if connection to Internet is via an external service provider

© Ravi Sandhu 2000-2004
PACKET FILTERING FIREWALLS

- packet filtering is effective for coarse-grained controls
- not so effective for fine-grained control
 - can do: allow incoming telnet from a particular host
 - cannot do: allow incoming telnet from a particular user

APPLICATION GATEWAY FIREWALLS

SIMPLEST CONFIGURATION
APPLICATION PROXIES

- have to be implemented for each service
- may not be safe (depending on service)

CLIENT-SIDE PROXIES

Internal-Client External-Server

- allow outgoing http for web access to external machines from internal users
- requires some client configuration
SERVER-SIDE PROXIES
External-Client Internal-Server

- allow incoming telnet for access to selected internal machines from selected external users
- requires some cryptographic protection to thwart sniffing and IP spoofing
- becoming increasingly important for
 - electronic commerce
 - VPN
 - remote access security

FIREWALL ARCHITECTURES
DUAL HOMED HOST

Diagram showing the relationship between router, intranet, and internet with a bastion host (application gateway) and another bastion host (external service).
FIREWALL ARCHITECTURES
SCREENED SUBNET

INTERNET

Router

Packet Filter

Bastion Host (External Service)

INTERNET

Router

INTRUSION DETECTION
RELATED TECHNOLOGIES

- Intrusion detection
- Vulnerability assessment
- Incident response
- Honey pots
- Sniffer probes

INTRUSION DETECTION TECHNIQUES

- **Policy detection (or knowledge-based)**
 - **default permit**
 - attack-signature based detection
 - also called misuse detection
 - **default deny**
 - specification-based detection
- **Anomaly detection (or behavior-based)**
 - requires user profiling
 - requires some learning capability in the system
- **Combinations of these**
INTRUSION DETECTION
DATA SOURCE

- network-based intrusion detection
 - multiple sensor points
- host-based intrusion detection
 - multi-host based
- application-based intrusion detection
- combinations of these

ATTACKER

- Outsider
 - easier
- insider
 - harder
INTRUSION DETECTION ISSUES

- effectiveness
- efficiency
- security
- inter-operability
- ease of use
- transparency

INTRUSION DETECTION CHALLENGES

- False alarm rate
- Performance and scalability
Test for a disease is 99% accurate
- 100 disease-free people tested, 99 test negative
- 100 diseased people tested, 99 test positive

Prevalence of disease is 1 in 10,000
Alice tests positive
What is probability Alice has the disease?

False alarm rate: 99 in 100 !!!!!
BASE RATE FALLACY

BAYE’S THEOREM

- population: 1,000,000
- diseased: 100
- disease free: 999,900
- false positive: 9,999
- true positive: 99
- Alice’s chance of disease:
 \[
 \frac{99}{9,999 + 99} = \frac{1}{100}
 \]

BASE RATE FALLACY

99.99% ACCURACY

- population: 1,000,000
- diseased: 100
- disease free: 999,900
- false positive: 99.99
- true positive: 99.99
- Alice’s chance of disease:
 \[
 \frac{99.99}{99.99 + 99.99} = \frac{1}{2}
 \]
NETWORK-BASED INTRUSION DETECTION SIGNATURES

- port signatures
- header signatures
- string signatures

NETWORK-BASED INTRUSION DETECTION ADVANTAGES

- Complements firewalls
- broad visibility into network activity
- no impact on network performance
- transparent installation
NETWORK-BASED INTRUSION DETECTION DISADVANTAGES

- False positives
- miss new unknown attacks
- scalability with high-speed networks
- passive stance
- emergence of switched Ethernet

HOST-BASED INTRUSION DETECTION

- host wrappers or personal firewalls
 - look at all network packets, connection attempts, or login attempts to the monitored machine
 - example, tcp-wrapper
- host-based agents
 - monitor accesses and changes to critical system files and changes in user privilege
 - example, tripwire
INTRUSION DETECTION
STANDARDS

- None exist
- Ongoing efforts
 - CIDF: common intrusion detection framework for sharing information
 - IETF Intrusion Detection Working Group just started

INTRUSION DETECTION

- Needs to integrate with other security technologies such as cryptography and access control
- One component of defense-in-depth layered security strategy
- Incident-response and recovery are important considerations