INFS 766
Internet Security Protocols

Lectures 3 and 4
Cryptography in network protocols

Prof. Ravi Sandhu

CRYPTOGRAPHY
CRYPTOGRAPHIC TECHNOLOGY

SECRET KEY
Symmetric Key
Single Key
Conventional

PUBLIC KEY
Asymmetric Key
Two Key

CRYPTOGRAPHIC TECHNOLOGY

- Secret-key encryption
- Public-key encryption
- Public-key digital signatures
- Public-key key agreement
- Message digests
- Message authentication codes
- Challenge-response authentication
- Public-key certificates
CRYPTOGRAPHIC SERVICES

- confidentiality
 - traffic flow confidentiality
- integrity
- authentication
- non-repudiation

SECRET KEY CRYPTOSYSTEM

INSECURE CHANNEL

Plain-text → Encryption Algorithm E → Ciphertext → Decryption Algorithm D → Plain-text

A

Secret Key shared by A and B

K

SECURE CHANNEL

B

K

© Ravi Sandhu 2001
SECRET KEY CRYPTOSYSTEM

- confidentiality depends only on secrecy of the key
 - size of key is critical
- secret key systems do not scale well
 - with N parties we need to generate and distribute N*(N-1)/2 keys
- A and B can be people or computers

MASTER KEYS AND SESSION KEYS

- long-term or master keys
 - prolonged use increases exposure
- session keys
 - short-term keys communicated by means of
 - long-term secret keys
 - public key technology
CRYPTANALYSIS

- ciphertext only
 - cryptanalyst only knows ciphertext
- known plaintext
 - cryptanalyst knows some plaintext-ciphertext pairs
- chosen plaintext
- chosen ciphertext

KNOWN PLAINTEXT ATTACK

- 40 bit key requires $2^{39} \approx 5 \times 10^{11}$ trials on average (exportable from USA)
- trials/second time required

<table>
<thead>
<tr>
<th>trials/second</th>
<th>time required</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20,000 years</td>
</tr>
<tr>
<td>10^3</td>
<td>20 years</td>
</tr>
<tr>
<td>10^6</td>
<td>6 days</td>
</tr>
<tr>
<td>10^9</td>
<td>9 minutes</td>
</tr>
<tr>
<td>10^{12}</td>
<td>0.5 seconds</td>
</tr>
</tbody>
</table>

© Ravi Sandhu 2001
KNOWN PLAINTEXT ATTACK

- 56 bit key requires $2^{55} \approx 3.6 \times 10^{16}$ trials on average (DES)
- trials/second time required
 - 1 \hspace{1cm} 10^9 \text{ years}
 - 10^3 \hspace{1cm} 10^6 \text{ years}
 - 10^6 \hspace{1cm} 10^3 \text{ years}
 - 10^9 \hspace{1cm} 1 year
 - 10^{12} \hspace{1cm} 10 hours

KNOWN PLAINTEXT ATTACK

- 80 bit key requires $2^{79} \approx 6 \times 10^{23}$ trials on average (SKIPJACK)
- trials/second time required
 - 1 \hspace{1cm} 10^{16} \text{ years}
 - 10^3 \hspace{1cm} 10^{13} \text{ years}
 - 10^6 \hspace{1cm} 10^{10} \text{ years}
 - 10^9 \hspace{1cm} 10^7 \text{ years}
 - 10^{12} \hspace{1cm} 10^4 \text{ years}
KNOWN PLAINTEXT ATTACK

- 128 bit key requires $2^{127} \approx 2 \times 10^{38}$ trials on average (IDEA)
- trials/second time required

 | 1 | 10^{30} years |
 | 10^3 | 10^{27} years |
 | 10^6 | 10^{24} years |
 | 10^9 | 10^{21} years |
 | 10^{12} | 10^{18} years |

DICTIONARY ATTACKS

- if keys are poorly chosen known plaintext attacks can be very simple
- often the user’s password is the key
 - in a dictionary attack the cryptanalyst tries passwords from a dictionary, rather than all possible keys
 - for a 20,000 word dictionary, 1 trial/second will crack a poor password in less than 3 hours
CURRENT GENERATION SECRET KEY CRYPTOSYSTEMS

- 64 bit data block size
 - DES: 56 bit key
 - Triple DES: 112 bit key
 - Triple DES: 168 bit key
 - Skipjack: 80 bit key
 - IDEA: 128 bit key
 - RC2: variable size key: 1 byte to 128 bytes
 - many others

DOUBLE DES

- effective key size is only 57 bits due to meet-in-the-middle attack
TRIPLE DES

The effective key size is 112 bits due to the meet-in-the-middle attack.

PERFECT SECRECY
VERNAM ONE-TIME PAD

SECURE CHANNEL

Plain- text

E

D

E

K1

K2

K1

Plain- text

Cipher- text

Plain- text

Ciphertext

Plain- text

Ci

Mi

Ki

Secure Channel

Mi

Ki

Ki

Mi

Secret Key

A B A B A

0 0 0

0 1 1

1 0 1

1 1 0
PERFECT SECRECY
VERNAM ONE-TIME PAD

- known plaintext reveals the portion of the key that has been used, but does not reveal anything about the future bits of the key
- has been used
- can be approximated

ADVANCED ENCRYPTION STANDARD

- New Advanced Encryption Standard under development by NIST
 - must support key-block combinations of 128-128, 192-128, 256-128
 - may support other combinations
- selection of Rijndael algorithm announced in 2000
- will be in place in a couple of years
ELECTRONIC CODE BOOK (ECB) MODE

- 64 bit Data block
- 56 bit Data block
- 56 bit key
- 56 bit key

- OK for small messages
- Identical data blocks will be identically encrypted

CIPHER BLOCK CHAINING (CBC) MODE

- 64 bit Data block
- 64 bit Data block
- 56 bit key
- 56 bit key

⊕ is the exclusive OR operation

⊕ is the exclusive OR operation

⊕ is the exclusive OR operation
CIPHER BLOCK CHAINING (CBC) MODE

- Needs an Initialization Vector (IV) to serve as the first feedback block
- IV need not be secret or random
- Integrity of the IV is important, otherwise first data block can be arbitrarily changed.
- IV should be changed from message to message, or first block of every message should be distinct

PUBLIC KEY ENCRYPTION

INSECURE CHANNEL

Plain-text → Encryption Algorithm E → Ciphertext

A

B's Public Key

RELIABLE CHANNEL

B

B's Private Key

→ Decryption Algorithm D → Plain-text

© Ravi Sandhu 2001
PUBLIC KEY CRYPTOSYSTEM

- solves the key distribution problem provided there is a reliable channel for communication of public keys
- requires reliable dissemination of 1 public key/party
- scales well for large-scale systems

PUBLIC KEY ENCRYPTION

- confidentiality based on infeasibility of computing B's private key from B's public key
- key sizes are large (512 bits and above) to make this computation infeasible
SPEED OF PUBLIC KEY VERSUS SECRET KEY

- Public key runs at kilobits/second
 - think modem connection
- Secret key runs at megabits/second and even gigabits/second
 - think LAN or disk connection
- This large difference in speed is likely to remain independent of technology advances

RSA

- public key is \((n, e)\)
- private key is \(d\)
- encrypt: \(C = M^e \mod n\)
- decrypt: \(M = C^d \mod n\)
GENERATION OF RSA KEYS

- choose 2 large (100 digit) prime numbers p and q
- compute $n = p \times q$
- pick e relatively prime to $(p-1)(q-1)$
- compute d, $e \times d = 1 \mod (p-1)(q-1)$
- publish (n, e)
- keep d secret (and discard p, q)

PROTECTION OF RSA KEYS

- compute d, $e \times d = 1 \mod (p-1)(q-1)$
 - if factorization of n into p*q is known, this is easy to do
- security of RSA is no better than the difficulty of factoring n into p, q
RSA KEY SIZE

- key size of RSA is selected by the user
 - casual 384 bits
 - "commercial" 512 bits
 - "military" 1024 bits

DIGITAL SIGNATURES

INSECURE CHANNEL

Plaintext + Signature

Yes/No

Plain-text

Signature Algorithm S

A's Private Key

A

Verification Algorithm V

A's Public Key

RELIABLE CHANNEL

B
COMPARE PUBLIC KEY ENCRYPTION

INSECURE CHANNEL

Plain-text \rightarrow Encryption Algorithm E \rightarrow Ciphertext \rightarrow Decryption Algorithm D \rightarrow Plain-text

A \rightarrow B's Public Key \rightarrow B's Private Key

RELIABLE CHANNEL

DIGITAL SIGNATURES IN RSA

\- RSA has a unique property, not shared by other public key systems
\- Encryption and decryption commute
 \- \((M^e \mod n)^d \mod n = M \) encryption
 \- \((M^d \mod n)^e \mod n = M \) signature
\- Same public key can be use for encryption and signature
EL GAMAL AND VARIANTS

- encryption only
- signature only
 - 1000’s of variants
 - including NIST’s DSA

NIST DIGITAL SIGNATURE STANDARD

- System-wide constants
 - p 512-1024 bit prime
 - q 160 bit prime divisor of p-1
 - g \(g = h^{(p-1)/q} \mod p, 1<h<p-1 \)
- El-Gamal variant
 - separate algorithms for digital signature and public-key encryption
NIST DIGITAL SIGNATURE STANDARD

- to sign message m: private key x
 - choose random r
 - compute \(v = (g^r \mod p) \mod q \)
 - compute \(s = (m+vx)/k \mod q \)
 - signature is \((s,v,m) \)
- to verify signature: public key y
 - compute \(u1 = m/s \mod q \)
 - compute \(u2 = v/s \mod q \)
 - verify that \(v = (g^{u1}y^{u2} \mod p) \mod q \)

signature does not repeat, since r will be different on each occasion
- if same random number r is used for two messages, the system is broken
- message expands by a factor of 2
- RSA signatures do repeat, and there is no message expansion
DIFFIE-HELLMAN
KEY ESTABLISHMENT

\[y_A = a^{x_A} \mod p \quad \text{public key} \]
\[y_B = a^{x_B} \mod p \quad \text{public key} \]

private key \(x_A \)

private key \(x_B \)

\[k = y_B^{x_A} \mod p = y_A^{x_B} \mod p = a^{x_A x_B} \mod p \]

system constants: \(p \): prime number, \(a \): integer

security depends on difficulty of computing \(x \) given \(y = a^x \mod p \)
called the discrete logarithm problem
CURRENT GENERATION PUBLIC KEY SYSTEMS

- **RSA (Rivest, Shamir and Adelman)**
 - the only one to provide digital signature and encryption using the same public-private key pair
 - security based on factoring
- **ElGamal Encryption**
 - public-key encryption only
 - security based on digital logarithm
- **DSA signatures**
 - public-key signature only
 - one of many variants of ElGamal signature
 - security based on digital logarithm
CURRENT GENERATION
PUBLIC KEY SYSTEMS

- DH (Diffie-Hellman)
 - secret key agreement only
 - security based on digital logarithm
- ECC (Elliptic curve cryptography)
 - security based on digital logarithm in elliptic curve field
 - uses analogs of
 - ElGamal encryption
 - DH key agreement
 - DSA digital signature

ELLIPTIC CURVE
CRYPTOGRAPHY

- mathematics is more complicated than RSA or Diffie-Hellman
- elliptic curves have been studied for over one hundred years
- computation is done in a group defined by an elliptic curve
160 bit ECC public key is claimed to be as secure as 1024 bit RSA or Diffie-Hellman key

good for small hardware implementations such as smart cards

ECDSA: Elliptic Curve digital signature algorithm based on NIST Digital Signature Standard

ECSVA: Elliptic Curve key agreement algorithm based on Diffie-Hellman

ECES: Elliptic Curve encryption algorithm based on El-Gamal
PKCS STANDARDS

- de facto standards initiated by RSA Data Inc.

MESSAGE DIGEST

- original message: no practical limit to size
- message digest algorithm
- message digest: 128 bit/160 bit
- easy
- hard
MESSAGE DIGEST

- for performance reasons
 - sign the message digest
 - not the message
- one way function
 - \(m = H(M) \) is easy to compute
 - \(M = H^{-1}(m) \) is hard to compute

DESIRE CHARACTERISTICS

- weak hash function
 - difficult to find \(M' \) such that \(H(M') = H(M) \)
- given \(M \), \(m = H(M) \) try messages at random to find \(M' \) with \(H(M') = m \)
 - \(2^k \) trials on average, \(k = 64 \) to be safe
DESired CHARACTERISTICS

- **strong hash function**
 - difficult to find any two M and M' such that $H(M') = H(M)$
- try pairs of messages at random to find M and M' such that $H(M') = H(M)$
 - $2^{k/2}$ trials on average, $k=128$ to be safe
 - $k=160$ is better

CURRENT GENERATION MESSAGE DIGEST ALGORITHMS

- **MD5 (Message Digest 5)**
 - 128 bit message digest
 - falling out of favor
- **SHA (Secure Hash Algorithm)**
 - 160 bit message digest
 - slightly slower than MD5 but more secure
MESSAGE AUTHENTICATION CODES

INSECURE CHANNEL
Plaintext + MAC

Plain-text → MAC Algorithm M → Verification Algorithm V

A

MAC = MD of plaintext + K

K

B

Yes/No

CURRENT GENERATION MAC ALGORITHMS

- HMAC-MD5, HMAC-SHA
 - IETF standard
 - general technique for constructing a MAC from a message digest algorithm

- Older MACs are based on secret key encryption algorithms (notably DES) and are still in use
 - DES based MACs are 64 bit and not considered strong anymore
HMAC

- HMAC computation
 - $\text{HMAC}_K(M) = h(K \oplus \text{opad} \| h(K \oplus \text{ipad} \| M))$
 - h is any message digest function
 - M message
 - K secret key
 - opad, ipad: fixed outer and inner padding
- HMAC-MD5, HMAC-SHA

SAFE CRYPTOGRAPHY

- Secret-key encryption
 - 128 bit or higher
- Public-key
 - 1024 bit or higher
- Message digests
 - 160 bit or higher
- A large portion of what is deployed is much weaker
STRONG AUTHENTICATION
CHALLENGE RESPONSE

WORK STATION "NETWORK" HOST

User ID

Challenge

Response

CHALLENGE RESPONSE

Secret Key

Encrypt

Challenge

Response
CHALLENGE RESPONSE

SECRET KEY

HMAC

CHALLENGE

RESPONSE

TIME SYNCHRONIZED

WORK STATION

NETWORK

HOST

USER ID

ONE TIME PASSWORD
TIME SYNCHRONIZED

Secret Key
\[\rightarrow \text{Time} \]
\[\rightarrow \text{HMAC} \]
\[\rightarrow \text{One Time Password} \]

PUBLIC KEY SIGNATURE BASED

Private Key
\[\rightarrow \text{Sign} \]
\[\rightarrow \text{Challenge} \]
\[\rightarrow \text{Response=signed(challenge)} \]
PUBLIC KEY SIGNATURE BASED

\[\text{Private Key} \rightarrow \text{Sign} \rightarrow \text{Response} = \text{signed}(\text{Time}) \]

PUBLIC KEY ENCRYPTION BASED

\[\text{Private Key} \rightarrow \text{Decrypt} \rightarrow \text{Challenge} = \text{Encrypt}(\text{Response}) \]
PUBLIC KEY ENCRYPT BASED

Private Key

Time

Decrypt

verify

Encrypt(Decrypted(Time))

Response=Decrypted(Time)

PUBLIC-KEY INFRASTRUCTURE
PUBLIC-KEY CERTIFICATES

- reliable distribution of public-keys
- public-key encryption
 - sender needs public key of receiver
- public-key digital signatures
 - receiver needs public key of sender
- public-key key agreement
 - both need each other’s public keys

X.509 CERTIFICATE

<table>
<thead>
<tr>
<th>VERSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERIAL NUMBER</td>
</tr>
<tr>
<td>SIGNATURE ALGORITHM</td>
</tr>
<tr>
<td>ISSUER</td>
</tr>
<tr>
<td>VALIDITY</td>
</tr>
<tr>
<td>SUBJECT</td>
</tr>
<tr>
<td>SUBJECT PUBLIC KEY INFO</td>
</tr>
<tr>
<td>SIGNATURE</td>
</tr>
</tbody>
</table>
X.509 CERTIFICATE

<table>
<thead>
<tr>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234567891011121314</td>
</tr>
<tr>
<td>RSA+MD5, 512</td>
</tr>
<tr>
<td>C=US, S=VA, O=GMU, OU=ISSE</td>
</tr>
<tr>
<td>9/9/99-1/1/1</td>
</tr>
<tr>
<td>C=US, S=VA, O=GMU, OU=ISSE, CN=Ravi Sandhu</td>
</tr>
<tr>
<td>RSA, 1024, xxxxxxxxxxxxxxxxxxxxxxxxxxxxx</td>
</tr>
<tr>
<td>SIGNATURE</td>
</tr>
</tbody>
</table>

CERTIFICATE TRUST

- how to acquire public key of the issuer to verify signature
- whether or not to trust certificates signed by the issuer for this subject
PEM CERTIFICATION GRAPH

Policy Certification Authorities (PCAs)

HIGH ASSURANCE

MITRE

Abrams

Certification Authorities (CAs)

MID-LEVEL ASSURANCE

GMU

ISSE

Sandhu

Residential Certification Authorities (CAs)

RESIDENTIAL

Virginia

Fairfax

Sandhu

PERSONA

Anonymous

LEO

Internet Policy Registration Authority

CRL FORMAT

SIGNATURE ALGORITHM

ISSUER

LAST UPDATE

NEXT UPDATE

REVOKED CERTIFICATES

SIGNATURE

SERIAL NUMBER

REVOCATION DATE
X.509 CERTIFICATES

- **X.509v1**
 - very basic
- **X.509v2**
 - adds unique identifiers to prevent reuse of X.500 names
- **X.509v3**
 - adds many extensions
 - can be further extended

X.509v3 CERTIFICATE INNOVATIONS

- distinguish various certificates
 - signature, encryption, key-agreement
- identification info in addition to X.500 name
 - internet names: email addresses, host names, URLs
- issuer can state policy and usage
 - good enough for casual email but not for signing checks
- limits on use of signature keys for further certification
- extensible
 - proprietary extensions can be defined and registered
- attribute certificates
 - ongoing work
X.509v2 CRL INNOVATIONS

- CRL distribution points
- indirect CRLs
- delta CRLs
- revocation reason
- push CRLs

GENERAL HIERARCHICAL STRUCTURE
GENERAL HIERARCHICAL STRUCTURE WITH ADDED LINKS

TOP-DOWN HIERARCHICAL STRUCTURE
FOREST OF HIERARCHIES