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ABSTRACT OF THE THESIS

Dasign and Anslysis of Protwection Schemes
Based on the Send-Recaive Transport Mechaniam
by RAVINDERPAL SINGH SANDHU
Thasis Ditector: Professor Naftaly Minsky

in & protection mechanism based on authorization, the ability of a subject (e, a
user or a process) to operate on the system is determined by privileges in its
domain. A mechanism for trangport of privileges must accommodate a variety of
policies, while permitting analysis of the privieges which a given subject might
obtain.  The send-receive transport mechanism was desighed by Minsky with these
objectives in mind, In this mechanism, a transport operation is explicitty authorized
at both the source and destination, and the authorization is selective with respect 1o
which privileges can be transported.

Mere we study a rastricted version of this mechanism. Under our restrictions a
protected system is designed in two sgtages. Firstly, a protection schame is
defined by specifying the values of certain paramaters, which determine the static
component of every subjects domain. Secondly, the initial state is defined by
specifying the dynamic component of every subjects domain.  This state then
aevolves as perrnitted by the protection scheme.

We formulate the flow-analygis problem which is concerned with determining a
bound on the authorization for transport of privileges, given a protection scheme
and an initial state. We develop techniques for deriving and improving the dasirad
bound. The major complication in doing so is the create operation, which permits
the protection state to evolve in an unbounded manner, Wae invastigate conditions
which enable us to ighore the create operation. We also invastigate conditions
under which the initial authorization for transport of privileges remaing invariant in
every derived state.

We study additional analysis issues in the context of sub—classes of our design
framework. The gquestions raised in such detailed analysis depend onh the structure
of these sub—classaes.
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CHAPTER 1

THE PROBLEM AND ITS BACKGROUND

1.1. PROTECTION MECHANISMS

Tha discipline of protection’ in computer systems is concerned with constraining
the operations which a user (or a process) may invoke on various components of
the system. The need for such constraints arises from the sharing of information

and resources among multiple users.

A standard viewpoint is to regard a computer system as consisting of a set of
subjects and a set of objects, denoted by SUB and OBJ respectively. The idea is
that subjects model active entities such as users and processes, whereas objects
model passive entities such as text filess We assume that these two gets are
disjoint® and uge the term emntity to raefer to aither a subject or an aobject

Every subject can autonomously invoke operstions in a8 system As examples of
typical operations we have the following
& A ysger roads a text file.

= A process wakes—up another process,

* A process creates a file and authorizes another process to write into
this file.

¢ A user creates two processes and slows these processes to share
files with each other.

1Prntaction is but one aspect of the general problem of security, For a classification of the
problems in data security sas Danning and Derning [2] or Denning [31.

2Samc authors define subjects to be 2 subset of objects but we find our approach more
convenient,
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In a protected system, only those operations for which the subject has axplicit
permission will actually be executed. In a privilege based approach, the permission
to invoke operations is represented by a set of privileges possessed by the
subject and called its domain. The ability of a subject to invoke operations is then

2 function of the priviieges in the subject's domain. The set of all such domains is

called the protection state of the system

A critical aspect of protection is that certain operations change the protaction
state. Ag instances of such operations, we have the last two examples enumerated
above  These operations are themselves authorized by the protection state. The
provision of such operations raises a host of challenging problems, some of which
we investigate in this thesis.

There are then two major issues involved in the design of a protestion
mechaniem based on privileges, viz,

1. The quastion of what is a privilege and exactly how a privilege s
represanted.

2. The quaestion of dynamice, by which we mean the available set of
operations for changing the protaction state and axactly how these
operations are authorized.

in this thesis we are primarily concerned with one slement of such dynamics, which
we call the transport of privileges. This is that portion of the mechanism which
controls movement of privileges from the domain of one subject to the domain of
anothar. We will only concern ourselves with other aspacts of a protection
mechanism to the extent that they influence this movement In particular, we ighore
the issue of destruction or revocation® of privileges,

There are two fundamentally conflicting gosls in the design of a transport
mechanism:

® The mechanism must accommodate the rich variety of policias
encountered in the real world.

® The mechanism must be snalyzable so that we can determine the sat
of privileges a given subject might obtain.

3 _ . . .

By no mesnt aé we saying that these issuas are not imporiant.  Indeed, an implamentation of our
proposad mechsnism will nesd to sddress these issuss. However, in our analysis we finesss thase
izgues by adopting a conservative worst—case scenmrio throughout



The first objective calls for generality Unfortunately, excessive generality makes
analysis questions undecidable or intractable [6]. The problem then is to balance
these conflicting goals,

In this thesis. we investigate a particular approach which caters to both these
requirements. This approach is based on the dynsmics of the oparation—control
mechanism of Minsky [12, 13, 14].  Before considering the specifics of our
approach, let us first discuss what is mesnt by a privilege and how privileges are
represented.

1.1.1. The Nature of Privileges

The capability approach for reprasenting privilegas in a subject's domain has been
very popular in the context of operating systnms“. In this approach, authorization
for a subject A to invoke operations is expressed by a set of cordered pairs called
capabilities or tickets. Each capability consists of two parts as follows.

1. The first part uniquely igdentifies some subject or object in the system.

2. The second part consists of a set of rights.
The domain of a subject then consists of a set of capabilities. For a particular
subject A, we denote this set by dom(A). Possession of the capability B/x by
subject A, authorizes A to perform certain operations on the entity B as determined
by the set of rights x carried by the capability. Objects do not possess
capsbilities®. As an example, consider the following situation.

dom (A} = {D/ru, B/w}
dom(B) = {E/r, B/s}

AThu notion of a capebility waz ftirgt proposed by Denniz and Van Horn [4] and has a0 intuitive
appeal It has besn incorporated directly in the xdressing machanisms of a computer, in systems such
@z MYDRA [1, 19] and CAP [18). I has siso basn smbedded in linguigtic structures such as the
capability rmunagers of Kieburtr and Silberschatz [8].

ﬁThrnughout thizs thesis we will sssume that objects do not possess privileges. There are then two
mpects 1o the subject—object distinction, viz. that subjects are active while objects are passive, and
that subjects possess privileges whila objects do not  There are sorfme probiems In coupling both
AEPHCYs.  In particulst. we cannot classity an antity which i passive but does POssess Privileges, We
will see in section 2.4 how such entities can be accommodated in our sproach.  Intuitively, thesa
entitiss are modeled as subjects whose eapacity for sutonomous action iz nagatad by sppropriaie
xijustmant of their privileges.



Hera, subject A is authorized to read and update file D and to wake-~up process
B Process B itself is a subject, which is authorized to read file E and to put itself
to sleap.

There are two critical assumptions which underlie a capability based approsch, as
follows,

1. All addressing in the system is done via capabilities.

2. Capabilities are unforgeable in that they cannot be constructed at will
by a subject

The second assutmption raises the issue of dynamics which we will shortly illustrate
by means of the take—grant mechanism.

In his operation-control mechanism, Minsky [12, 13, 14] introduced another kind
of priviege called an activator The motivation for doing so, is to express policias
encountered in information systems. The general form of an activator is

can-do OP (p) -+ q if F(p,q)
where

OP: ig the narme of some operation
E is a vector of input patterns
g is a vector of output patterns
F: iz & predicate called the qualifier

Each input pattern has the form p1:[t/R], where ¢ is a type and R is & set of rights.
Similarly, each output pattern has the form qj:[t/R]. We say that a ticket T/R'

matches the pattern t/R if the entity T is of type® r and if R' is a subset of R The
symbois p ; 8 q p merely serve as referances for statement and evaluation of the
pradicate F.

Possession of an activator by a subject A, authorizes A to invoke the named
operation. Successful execution of the operation depends on the following
conditions.

1. Subject A must provide ticksts which match the input patterns of the
activator. The corresponding entities are then the actual arguments of
the operation.

Sln the context of objectz, the notion of type corresponds to the well known notion of a dats
tybe.  In the context of subjects, the type distinguishes various categories of subjects, e, systems
progravmers from ordinwry users. The notion of subject types is critical to our work and is
discussed at tength in chapter 2



2. The pradicate F must evaluate to true on the actusi arguments and
outputs of the oparation

3. The tickets for the outputs of the operation must match the output
patterns of the activator.

It the operation is successfully executad tickets for the actual outputs are then
placed in the domain of A

We now motivate the utility of activators by means of an exampie. Consider a
situation where a number of users access documents maintained in a liprary.
Assume that each document and each user has a security classification. The policy
regarding access to documents is that every user A can read documents whose
classification is less than or equal to the classification of A This policy can be very
simply expressad by placing the following activator in the domain of every user A.

can-do GET~READ-TICKET — g:[doc/read] W class(q) 5 class (A)
Then A can obtain tickets with the read right for all documents of the designated
classification. This activator has a special form in that there are no input patterns’.
Such activators are called demand activators, and the activator above is equivalantly
represartad as follows
can=cdemand q:[doc/read] if class(q) 5 class (A)

This example is one instance of a general class of policies called value=based
policies, where the access to objects {or more generally, to antities) is stated in
tarms of properties of objacts and subjects.

Now consider implementing the same policy by means of capabilitims atone. Wa
discuss two different approsches to doing so. In the first spproach, wa explicitly
place read tickets for all document of the appropriate classification in the domain of
every usar. The immaediate objection to doing so, is that the domsin of a user then
contains a large number of capabilities, many of which may never be used. Even if
we accept this situation, there is an additional problem in maintaining the policy as
new documents {or new users) are introduced. Whenever a new document is
created, tickets for this document must be placed in the domain of every user with
a higher classification. Doing so invoives a change in a large number of domains.

TOf ¢ourse, thera has to be some means by which A csn specify the particulsr document for which
the read ticket iz desired. However, this identification is not effectesd via a ticket



This is contrary to a fundamental principle of systerns design which, in the present

context, is stated as follows
A “small’ change in the system state should result in a "small’ change in
the protection state,

Or alternetely, with a somewhat different emphasis, this principle is stated as

foliows.
Any "frequently” ocourring event must resuft in a “"small’ change in the
protaction state.

In short, it is simply unacceptable for 8 minor and frequent event such as creation
of a document to result in a system-wide change in avery user's dotnain. So much
for the first approach.

The second approach. and the one which an experienced systems designer would
suggest. relies on mediation by a distinguished subject designated as (say) the
security officer. Every user is allowad to obtain read tickets from this security
officer, and it is up to the officer to ensure that the stated policy is enforced
Indeed, this security officer need not be a human being and may well be a system
process programmaed 1o enforce this policy. But then, the fact that users can
obtain read tickets from this subject amounts to ugers possessing the dermand
activator above; and the fact that the security officer is trusted {or programmaed) to
enforce the stated policy is reflected in the qualifier of this activator. So the
second approach is really no differant from the activator approach, and amounts to
a particular implamentation of the demand activator.

This illustration of the utility of activators is based on a fairly gimple exampie.
Minsky [12, 13, 14] discusses a variety of more sophisticated policies which are
relatively easy to enforce with activators, but are cumbersome or impossible to

anforce using capabilities alone.

1.1.2. The Take=Grant Machanism

We now illustrate the specification and analysis of a protection mechanism in the
context of the take-grant mechanism® This mechanism was proposed by Johes,

a'l‘hlrn sre actully two versions of the take—grant mechanism. We dizcuss the simpler vergion
where il subjects ae sssumed to be active entitiss. In the enhsnced varsion there is & provision for
including subjects which are passive. This enhincement does not significantly atter the properties we
discuss hare.



Lipton, and Snyder [7, 10, 17] as a simplified modal for the dynamics of capability

basad mechanisms.

The take—grant mechanism provides two rules for the transport of capabilitias

from cne subject to another, as folows.
The Grant Rule: If subject A possesses the capability B/g. then A is

authorized to transfer a copy” of any capability from domi{A) to domiB)

The Take Rule: If subject B possesses the capability A/t then B is
authorized to transfer a copy of any capability from domiA) to domiB.

We represent thess two situstions by the diagrams shown beiow'® A subject is
depicted by a labelad circle, with relevant capabilities in tha domain of the subject
shown ingside tha circle In both cases. the direction of the edge indicates the

dirgction in which transfer of capabilities is authorized.

We will use this graphical technique, for representing authorization for transport of

capabilities, throughout this thasis.

The take—grant mechanism also provides a creats rule by which new subjects may
be introduced in the system. Specifically, any subject A is authorized to create
another subject B resulting in the following situation.

B/t & dom{A)
8/g ® dom{A)

That is, immediately after the create operation there is authorization for transport of
capabilities from A to B and vice versa. In terms of a diagram, the situation after
subject A creates subject B is as follows.

9 . . ‘ . ) L
In this thesis we do not consider rules in which the transfer of Capability is atfected by
remeving it frem one domain before placing it in asother.

10 , .
Our presentation hare 5 sornewhat different from that of Jones, Lipton and Snyder [7, 10, 171,
in order 1o be consistent with the rest of the thesis. Tha notation we uze wat suggested by
Lockman and Minsky [11).



The take, grant, and create rules define the dynamics of the take—grant mechanism.
There is no provision for revocation of capabilities. Thus once a subject acquires a
capability it cannot be removed from the domain of the subject In this sense the
take—grant mechanism is monotonie, All the mechanisms we study in this thaesis are

11
mongtonic .

A major simplification in the take—grant mechanism is the lack of any selsctivity in
the transport operation Either every capability can be transported from domiA) to
dom(@) or none can be wansportad.  This is a serious limitation, since we might
want to restrict the kinds of capabilities which can be transported from one subject
to ancther. But granted this simplification. the take—grant rules seem guite natural
and almost seif—evident. Indeed these rules do model machanisms which have been
proposed and implamented. ‘

Now lat us see how a system which uses the take—grant mechanism may evolve
Specifically, consider a situation where there iz authorization for direct transport of
capabiiities from subject A to subject B. Under the take—grant rulss this
authorization can be in one of two forms. Consider first the case where the
authorization is at the source of the transport operation, so that we have the
following situation

A B/g . B

By the create ruie. subject A is authorized to create a new subject C resulting in
the situation shown below,

11 - . L
in the presenca of a tacility for revocsion of privilegas, the monolonic assumption is interpreted
ag stating that no revocation actually takes place. This is consistant with a2 worgt—cage scenario, which
wa adopt throughout this thass,



protection state.

Now capabilities can be moved from doemiB) to dormld) via subject C. Hange, the
imitial transport of capabilities from A to B has been reversed by establishing an
indirect channel for transport of capabilities from B to A

A similer phenomena arises if the . initial authorization for direct transport of
capabilitiss from A to B is at the destination of the transport operation, ie.

A et A/t B

As before, subject A can create a new subject C resulting in the situation shown
below.
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c

But then, the C/g capability can be moved to the domain of B astablishing the
following stata.

G/t Clyg Clg

c

Once again, the initial transport of capabilities from A to B has been reversed by
gstablishing an indirect channel for transport of capabilities from B to A

Every initial state can then avolve to a state where the subjects are partitioned
inte disjoint classes, such that there is no transport of capabilities between subjects
in diffarent classes, while within each class all subjects can transport capabilities,
sithar directly or indiractly, to each other'Z ©Of courss., such a state will actusaily be
realized only if the subjects cooperate in doing so. However, from a worst—case
viewpoint, such a state is feasible’'® This property of aymmatric transport sharply

imits the (worst—case) policies anforceable by the take—gramt machanism.

mExcth tor some extreme circumstancas, the situstion ig Similar in the enhanced version of the

taka—grant machanigra which incorparates passive subjects.

13Wc adopt & worst—-case viswpaint throughout this thesis, so thast for us a profection machanism
pravides security to the extent that it rulss out tha feasibility of reslizing "undesirabla” or "unsafe”
protection states.
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For the take—grant mechanism the question of whather an arbitrary protaction
state can be realized from a given initial state is efficiently decidable The basic
reason for this efficiency is the symmetric transport property, which unfortunately

also limits the policias enforceable by this mechanism

Lockman and Minsky [11] investigated the reason for this phenomena of
symmetric transport in the take—grant mechanisrm. They considered the grant-only
and take-only variations of this mechanism. Inspite of the apparent duality of these
two cases, it turns out that the symmetric transport property applies to the grant—

only machanism but not to the take—only mechanisrn ',

Perhaps, the major iesson to be drawn from these rasults is that there is a
definite nesd for cereful analysis in determining the extent to which a protection
mechanism is capable of enforcing security policies. Of course, the take—grant
mechanism is simplistic in  its major assumption of non-selective transport
Nonetheless, it does modsl maechanisms which have been proposed and implemented.
The symmetric transport property is thersby more disturbing. since it exposes &
basic flaw in these mechanisms.

1.1.3. Selectivity snd Locality

Now that we have illustratad the specification and analysis of a protection
mechanistm, let us return to the question of what are the desirsble festures of a
protection mechanism. The fundamental objective is to provide generality and
anatyzability.

The take—grant mechanism allows for efficient anelysis. However, it fails to meet
the objective of generaiity in any way. This mechanism is capable of enforging
exactly one policy where the subjects are classified into equivalence classes; such
that every pair of subjects in the same class can transport any capsbility to each
other, while it is not possible to transport capabilities between subjects in different
classes.

At the othar extrems, we have the work of Harrigson, Russo, and Uliman [6].

14Th¢ iske=only mechanism haz 8 rather differant property, which we will expisin in asction 1.2.4.
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They defined a grammar for specifying the dynamics of 8 capability based
protection mechanism'®. This grammar is capable of specifying a large number of
policies encountered in practice. Unfortunately, as they demonstrated, the generality
of their approach makes analysis issues undecidable or intractable.  Thue, we must

be careful to balance these two conflicting gosls of generality and analyzability.

Now, the objectives of generality and analyzability are not sufficiently weil-defined
to provide constructive guidelines for the dasign of a transport machanism,

Following Minsky [15], we adopt two design principles to provide such guidelines.

First consider the issue of generality. The subjects and objects in a given system
have various attributes essociated with them, as well as various ralations among
them. These attributes and relations correspond to attriputes and relations which
axist in the external world Policies for distribution and acquisition of privileges are
often formulated with reference to such attributes and relations. We discussed one
such exsmple in section 1.1.1, as an instance of the general class of value-based
policies. In that example, the policy for accessing an object was stated in terms of
the relative values of a subjects and cbject's classification

As another example coneider the following policy. Objects O, through C)r1 are
documents internsl to the compiler design group. Subjects A, through A are
members of this group, and subject Ao is the boss  Capabilities for an object
internal to the group may be released to subjects outside the group, only if A,
approves. The policy is an instance of the general class of cooperative policies.
Here, subjects outside the design group can obtain tickets for internal documents
only if the boss approves.

Machanisms such as the take—grant mechanism cannot support these policies, due
to lack of any selectivity in the transport operation. This leads us to the following
principle.

Principle of Salsctivity, The rules which determine how a protection
state can be changed should be selective with respect to the kinds of
privilegas to which they apply.
The exact manner in which we propose to sllow for such selectivity will be
discussed shortly.

15 i .
‘Their formulation is in terms of the sccess control matrix [5, 8},  However, it can be

equivalently viewed a5 a formulation within the capability approach.
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Another sarious flaw in the take-grant mechanism is that the control it provides
over the transport of privileges is inherently non—local. in the sense that the
movement of privileges into a given domain or out of it can be authorized solely by
privileges residing outside the domain. For exampie, for capabilities to flow into the
domain of A it suffices for some subject B to have A/g in its domain  This is
inconsistent with the concept of modularization, which requires that the designer
have some control over privileges which can flow into or out of a particular
domain. Moreover, this control should be independent of the rest of the system in

which the domain is embedded. This leads us to the following principle.
Principle of Locality The movement of privileges into a given domain
and out of it should be subject to authorization by privileges already in
this domain.

A major consequence of adopting this principle is that it is then possible to make
assertions, about privileges which might flow into or out of a given domain, which
are (largely) independent of a particular protection state.  This ghility to make
assertions, which are based on a small number of domains embedded in a larger
system, is called local analyzability (see Minsky [16]) In this thesis we are
primarily interasted in guestions of global analysis where the assertions are based
on the entire system. Somewhat fortituously, as demonstrated by Minsky [15], the
principle of locality has significant global effects on the flow of privileges.

1.2. THE SEND-RECEIVE TRANSPORT MECHANISM

The send-receive transport mechanism '

was proposed by Minsky [15] as one
mechanism which embodies both principles of selectivity and locality. Recall that, n
saction 1.1.1, we identified two kinds of privileges called tickets and activators. In
the send-receive transport mechanism we assume that the distribution of activators

7

is static while the distribution of tickets is dynamic'’. Thus the only privileges

which are transportable are tickets.

i our discussion of the take—grant mechanism, we were able to suppress

16 . . R . . . .
Our discussion of this machanism here is somewhst differant in its detsils from that of
Mirsky [ 151, 50 a8 to be consistent with the rest of the thesis

17 . . . .
in the more peneral version of operation—control the distribution of activators is alse dynamic. |In
this thesis we restrict ourseives to the simplified version.
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consideration of tickets for objects. Indeed, we were only concerned with tickets
with the take and grant rights, since the distribution of these tickets determines the
transport properties of a protection state. For the same reason, in presenting the
send-receive mechanism we will confine our attention to tickets which control the
transport operation.

In the take—grant mechanism there sre three ways by which a subjact A can obtain
a ticket

1. A may be given the ticket in the initial state.

2. A may obtain the ticket by a transport operation from the domain of
some other subject B.

3. A may obtain the ticket as a result of a create operation.
in addition to these three ways for obtaining a ticket, in the send-receive

mechanism we allow for a ticket to be obtained by a demand operation'®.

Before getting into the details of the send-receive mechanism, we first define
some basic soncepts snd conventions. We then discuss the transport, demand and
create operations. As a special case of the send-receive mechanism, Minsky [16]
defined and analyzed the uniform send-receive mechanism.  We conclude this
saction by reviewing Minsky's analysis.

1.2.1. Tickets and the Copy Flag

A ticket consists of an address and a set of right symbols. The address uniquely
identifias some entity in the system, and the right symbols authorize protected
opergtions on the entity being addressed. For the sake of our formalism, we
assume that every ticket carries exactly one right symbol This is a matter of
convenience for our exposition, and we do not suggest that tickets must indeed be
implermented with only a single right Lnder our restriction, a ticket with muitiple
right symbols is modeled as 8 set of tickets, sach of which addresses the same
entity and cerries & single right The underlying assumption here, is that two tickets
A/x and Aly for the same entity A are equivalent to a single ticket A/xy which

18 . . . .
This operstion was introduced in section 1.1.1. whare we showed why this operation is uvzeful
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carries both right symbols. This assumption can be made without any loss of
generality'®.

We assume that every right symbo! comes in two veriations with and without the
copy flag, denoted by the symbol c. The interpretation of the copy flag is that a
ticket A/xc is potentially transportablem, whareas the fticket A/x cannot be
transported under any circumstances At the same time, for all purposes other than
the transport opersgtion, the rights x and x¢ are identical. The ceopy flag allows us
to incorporate tickets which are inherently non—transportable.  Such a8 facility is
frequently provided in a protection mechanism. It serves fto provide a gross
selsctivity with respect to the transport operation’’. We have the following
cohvention.

X ~ denotes a right symbol without the copy flag
xc - depotes a right symbol with the copy flag
x:c - denotes & right symbcl with or without the copy flag

We assume that
A/xc € dom(B) == A/x €& dom (B)
Due to the role of the copy flag, this assumption does not entsil any loss of
generality. When the symbol xc occurs st two places in a single context, it is
intended that the interpretation at both places be the same. Thus the statemaent
‘[A/x:¢c € dom(B) =+ A/x:c & dom(B) U dom(C)]
has the connotation that

[A/x € dom{B) =+ A/x & dom(B) v domi(C}]
A

[A/xc & dom(B) =+ A/xc & dom(B) VW dom(C)]

This colon convention will often parmit us to write a single statement instead of
two separate statements. We refer to a ticket which carries the copy flag as being
a copiable or tranaportable ticket

19 . .
Indead, if A/xy iz not equivaient to A/x and Aly we can introduce snother symbol, say z, &
reprasent the combination xy, 3o that Afxy is aquivalant to Afz

20
In the sanse that » copy, A/xc or Afx, can ba trameported provided sl other conditions for the
transport operation sre satisfied.

21 . \ "
The send-receive transport mechanigm provides for furthar salectivity in a runner to e shortly

discussed.
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1.2.2. Tha Transport Opecation

The principle of locality requires that every movement of a ticket from, say,
domi(A) to domiB) should be authorized by the current content of both these
domains. By definition, the domain of a given subject has jurisdiction only over the
activity of this particular subject It follows that the movement of a ticket from A
to B should involve two operatiohs, viz.,

1. Some kind of send operation to be carried out by A, and which is
authorized by privilages in the dormain of A

2 Some kind of receive operation to be carried out by B, and which is
be authorized by privileges in the domain of B.

We call this the ssnd-receive protocol [15]. There are actually two aspects to
this protocol Firstly, we have the authorization aspect, which is the requirement
that every transport be authorized by the domains of both the source and tha
destination subject Secondly, we have the voliitional aspect that both the source
and destination subjects actively participate in each movernant.  In this thesis we will
insist only on the authorization aspect of the protocol The reason is that we adopt
a worst-case viewpoint in our gnalysis, so that everything which can happen will
indeed happen. We can then accommodate a variety of volitional assumptions about
the subjects involved in a transport operation??, In order to emphasize the
irralavance of volitional issues, we will treat a matching pair of send and receive
operations as a single transport operation and, for the most part, will not be
concerned with the question of whether the sender or the receiver initiates this

operation.

Now let us congider the details of the send and receive operations. For the send
operation we need to identify the ticket which is being sent and to identify tha
destination subject For the latter purpose we define the send right, denoted by
the symbol 5. The send operation then has the following form.

22 . L. .
in particular, we can mode!l the volitions! aspect of the iske—grant machanism by assuming that

svery subject in the system i a wiling sender and receiver. For instance. if A performs & receive
operstion 1o obtain a privilege from B, we sssume that B will indead parform the corresponding send
operation (provided B is asthorized to do so). Then the receive operation is volitiorsily eguivalent to
the tske operstion, although the two operstions are guite different with reaspect to the authorization
aspect.  For both operations, A does not nasd the explicit conaent of B to obtain a ticket from
B. However, the transfer will not tske place under the send—raceive protocol unless B has appropriate
anhorization. Thare iz » similer volitional equivalence bestwesn the send and grant operations.
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send C/x:c to B/s
whaere C/x:.c is a ticket to be gent and B/s is a send ticket for the destination
subjact B. The effect of this operation is that a copy of the ticket is sent to B,

leaving the origina! ticket intact in the domain of the sender.

For a subjact to perform the send operation, in addition to the tickets C/xc and
B/s. he needs an activator which allows invocation of the send operation Such an
activator is called 2 send-activetor and has the following form

can-send p:[c/x:c] to s:[6/8] IF Q(p,s)
Now consider a subject A who has this activator in his domain. By virtue of
possessing this activator, A is authorized to perform a send operation
send C/x:c to B/s
provided the following conditiohs are satisfied
1. The ticket C/xc is ih the domain of A

2 The entity C is of type” ¢
A The ticket B/s is in the domain of A
4. Tha subject B is of type &

E. The predicate Q evaluates to true when evaluated with respect to C
and B.

The copy of the ticket C/xe which is actually transported, may or may not carry the
copy flag, depending on whether the pattern ¢/xc does or does not include the
copy flag.

The counterpart of the send operation is the receive operation which has the form
receive C/x:c from A/r
whera C/xc is a ticket to be received, A/r iz a recelive ticket for the source
subject A, and r is the recaeive right The effect of this operation is to place the
ticket C/xe in the domain of the receiver,

The receive operation is authorized by a recaive-sctivator with the following

general form

23 . . .
In the context of objects, the notion of type corresponds to the well known notion of a2 dets

type. In the contaxt of subjactz, the type distinguizhez various categories of zubjects, a.g., systams
programmers from ordinery users. Wae will discuss the notion of type in further detsil in chapter 2.
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can-recsive p:[e/x:c] from s:[a/r] ¥ Q(p,s)
By virtue of possessing this activator, subject B is authorized to perform s receive
oparation
receive C/x:c from A/r
provided the following conditions are satisfiad

1. The entity C is of typs ¢
2. The tickat A/r is in the domain of B.
3. The subject A is of type a

4. The predicate O evaluates to true when evalusted with respect to C
and A

Here again, the copy of the ticket C/xc which is actually transported, may or may
not carry the copy flag, depending on whether the pattern o/xc does or does not
include the copy flag. As an example, consider the following situation

1. A and B are subjacts of type sub.

2. The ticket B/s iz in the domain of A

b

. The ticket A/r is in the domain of B

4. D,..D_ are objects of type doc. The right symbol u authorizes an
updsate operation on these objects.

5. A possessas the ticket D e

6. A possesses the single send-activator shown below.

can-nend d:[doc/u] to s:[sub/s] B class{d) < class(s)

~J

. B possesses the single receive—activator shown below,

asn-receive d:[doc/ul from s:[sub/r] if dept{s) = 'Finance'
Then, by virtue of possessing the send-activator above, whose patterns match the
tickets D /u and B/s, A can invoke the send operation

send D /u to B/s

This operation will be successful only if classiD ,) is less than class(B). Similarly, by
virtue of possessing the receive—activator above, whose patterns match the tickets
D,/u and A/r, B can invoke the corresponding receive operation
raceive 0 _/u from A/r
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This operation will be successful only if deptlA) is ‘Finance’. if both these
oparations are successfully executed, then the ticket D Ju e placed in the domein
of B

By inspection of the two activators above, the following facts can be easily
daduced, where D1_ denotes an object of type doc

1. It is not possible to transfer a ticket Di/uc from damiA) to dom(B).

2 It is possible to transfer a ticket D J/u from domiA) to domiB} only if
deptlA) iz Finance. Moreover, this is possible only if class{D ,) 18 less
than class(B).
Obsarve that there are many alternative pairs of send and receive activators which
will implement the same policy for transport of update tickets, for objects of type
doc, from A to B. Examples of such alternatives are showh balow.
1. A possesses the singie activator
can-send d: [doc/uc] to s:[sub/s] ifF class (d) < class(s)
#nd B possesses the single activator
can-reosive d: [doc/u] from s:[sub/r] if dept(s) = 'Finance’

Here A can send copiable tickets to B. However, B is still limited to
receiving non—copiable tickets.

2. A possesses the single activator
can-aand d: [doc/uc] to s:[swb/z] if true
and B possesses the single activater

can-raceive d:[doc/u] from s:[sub/r] If dept(s) = 'Finance' A
class {d) < class (B)

Here, the restriction on the clags hag been trgnzferred to the receive-
activator of B.

3. A possesses the gingle activator
can-seand d:[doc/u] to s:[sub/s)] f class{d) < class(s)
and B possesses the single activator
oan-receive d:[doc/uc] from s:[sub/r] I dept(s) = 'Finance’

Here B can receive copiable tickets from A Howaver, A cannot gend
such tickets,

Of course, these siternative formulations of the same policy for transport of update
tickets for objects of type doc from A to B, have different implications with
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respact to the policy for transport of such ticketz from A to other subjects, as
well as to B from other subjects.

Let us now return to considering the generat form of the send and receive
activators. The fact that we treat the transport operation as consisting of a
matching pair of send angd receive operations, is a direct consequence of the
principle of locality,. We provide for seiectivity in this transport mechanism in two
ways.

1. We distinguish tfransportable and non—transportabie tickets by means of
the copy flag.

2. We distinguish the kinds of tickets which can be transported in terms
of the patterns and qualifiers of the send and receive activators.

At the same time, we introduce only a single send right s, and a single receive right
r (along with the corresponding copiable versions sc and rch  Since these rights
control the transport operation, we call them the transport rights. Corraspondingly,
tickets which carry one of the 5. r. sc or rc rights are called transport tickets. Al
other right symbols are called inert rights ang are treated ag uninterpreted symbois.
Tickets which carry such rights are called inert tickets.

Now, within the sand-receive protocol, it is possible 1o introduce sny number of
send rights s 1By and sny number of receive rights r - g This facility would
allow us to specify selectivity along another dimension as, for instance, if A
possesses the following activators,

can-send d: [doc/u] to s:[sub/s1] if class (d) = 1

can-send d:[doc/ul to s:[sub/s,] if class(d) = 2
Here a destination subject B can be addressed by either of two ftickets, B/s ;o
B/s,. The corresponding activators differ in the kinde of tickets which can be sent
in the former case the class has to be 1. wheress in the latter case the class must
be 2. The decision not to provide such selectivity, in terms of differsnt send and
receive rights, is quite deliberate. The motivation is to keap the concept of a ticket
as simple as possible. Every additional right symbol we introduce places an
additional burden on the addressing mechanism Since the sand and receive
activators are capable of specifying fine distinctions with respect to the tickets
which match their patterns, there is no pressing need to introduce additional right
symbols for this purpose.
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1.2.3. The Demand and Creaste Operations

The demand operation allows a subject to obtain a ticket simply by demanding it
It is authorized by a demand-activator which has the following form.
can-demand p:[t/x:c] i Q(p)
A subject who possesses this activator can obtain & ticket T/xc for an entity of
type { provided the pradicata QT) is true. In section 1.1.1, we illustrated the utility
of this operation for obtsining tickets for objects. This operstion is alsc useful in

obtaining tickets for subjects. For example, consider the following policy.
Every pair of subjescts, A and B, in the same departrmant must be able to
transport tickets to each other (as determined by the send and receive
activators of A and B).

This policy is easily implemented by providing every subject A with the following
demand-activators, where we assume that all subjects are instances of the single
typa sub.

can~camand p:[sup/s] if dept(p) = dept (A)
catr-demand p: [sub/rd If dept (p) = dept (A)

Every pair of subjects in the same department can then obtain send and receive
tickets, for amch other, simply by dernanding them  Here again, this policy is an
instance of the general class of value—based policies.

Next congider the create operation, by means of which new objects and subjects
are introduced in a system.  There are two issues which must be addressed in
specifying this operation. The first issue is the authorization required for a creats
oparation. in the send-receive mechaniem this authorization is stated by a
crante~activetor which has the following general form.

can-ateate p:[7] if Q(p)
FPossession of this activator authorizes authorizes cre.ation of eantities of type t
which satisfy the predicate Q. For example, let subject A possesses the following
activator.
can-create p:[sub] if dept (p) = dept (A)
Then A is authorized to create a subject A' which is in the same department as
that of A Such activators provide selectivity with respect to the creste operation

The second issue is the precise semantics of the create operation. For instance,
in the asbove example we need to spacify exactly what activators and tickets the
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greated subject A' is given immediately after it has been created. For the moment,
we do not define precisely how this specification is toc be made. HMHowever, we
recognize the naed to restrict the impact of a create operation in the following
way.
Principie of Local Creastes The immediate result of a create operation
where subject A craates a subject A' shouid only involve the domains of

A and A'. Similarly, the immediate result of a create cperation whera
subject A creates an cbject O shouid only involve the domain of A

This principle is a special case of the mora general principle, introduced on page 6,
viz., that a "small” or "frequently’ occurring event should result in a "small" change in

the protection state. Creation of subjects and objects is precisely such an event

1.2.4. The Uniform Sand-Aecsive Mechanism

As a special case of the send-raceive transport mechanism Minsky [15] defined
the uniform send-recaive mechaniam. In this mechanism thare is no selectivity in
the transport of tickets which carry transport rights. In this respect it s similar 1o
the take—grant mechanism.  The uniform sand-receive mechanism is defined by
imposing the following restrictions on the send-receive transport rmachanism.

1. All tickets carry the copy flag
2. All subjects are instances of a single subject type sub.

3. Evary subject possesses the following activators,

can~send [sub/scl to [sub/s)
can-sand [sub/re] to [sup/s]
can-raceive [sub/sc] from [sub/r]
can~recelve [sub/rc) from [sub/rl

Note that thers are no qualifisrs on these activators.
4. Every subject is authorized to create new subjects.

5. The result of a create operation whaere subject A creates subject B is
that the following tickets are placed in the indicated dormains.

B/sc, B/r¢ € dom(A)
Alsc, A/rec & dom(B)

Thus immediately after the create operation there iz an authorization
for transport of ticketz from A to B and vice versa

The transport of transport tickets is then governed by the following rule.
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The Send-Receive Rule: M subject A possesses the ticket B/s and
subject B possesses the ticket A/r then a copy of any transport ticket
can be transported from dom(A) to dom(B).

The name uniform distinguishes this mechanism from the genseral case where the

transport of transport tickets is selactive.

The uniform send-receive machanism is of interast for geveral reasons Firgtly, it
is a simple version of the send-receive transport mechanism and is thus ahalyzable.
Secondly, it has the same flavor as the take-—grant mechanism and aliows for a
comperative analysis, thereby providing insight into the conseguences of adopting the
principle of locality. Finally, it serves as a theorstical tool for an approximate
analysis of the send-receive mechanism.  That is, assume the send and receive
activators are less parmissive than in the uniform case. Then, for a given initial
distribution of tickets, if a particular configuration of the protection state cannot be
raalized i the uniform case it certzinly cannot be realized in the less permissive

case.

Before reviewing the analysis of the uniform mechanism, we introduce some
notation which will be used throughout the thesis. First consider the domain of a
given subjact in the operation—control mechanism, there are two kinds of privileges
in a subjects domain, viz, tickets and activators. Sihce there is no provision for
transport of activators in the send-receive mechanism, this aspect of a subjects
dormain is determined when the subject is crested and cannot change thereafter.
However, the set of tickets in a subjects domain does change as additional tickets
are acquired by the subject Wae identify the latter set as follows.

Definition 1.1: Given a particular protection state k, dom"(A) denotas the
set of tickets in the domain of subject A in state k. -

This idea of fixing the context by a superscript will be used for all state dependent
sets, functions and relations, If the context is not relevant we simply omit the
supaerscript  Wae denote the initial state by the superscript 0 so that, for example,
dom®(A) is the set of tickets possessed by subject A in the initial state.  Next we
define the following relations.
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Definition 1.2: For every protection state k, define the associated binary
ralations

slink®, rtink®, 1ink® £ sug* X sus"
as foHows

s1ink"(A,B8) == B/s & dom® (A)
riink* (A,B) = A/r & dom* (B)
1ink"(A,B) == s1ink*(A,B) A rlink“(A,B)

We depict the existence of a link from A to B as follows

A B/s Alr B

In general, we show a subject A as a circle labeled by the letter A with relevant
tickets in the domain of A listed inside the circle. We frequently omit explicit
mention of the tickets which establish a bnk and, on such occasions, we place the

labet inside the circle, as for exampie

in such cases. the tickets required to establish the depicted finks are implicitly

' asserted to be present in gppropriate domaing. If there is a link in both directions

we show it as

or as

The existence of a link from A to B indicates the possibility of direct transport of
tickets from A to B The actual tickets which can be transported are determined by
dom{Al, the send activators of A and the raceive activators of B. In the special case
of the uniform send-receive mechanism, existence of a link from A to B sufficas

w0 authorize transport of transport tickets from domiA} to domiB).

The following relation expresses the possibility of an indirect transport of tickets
from one subject to another.



25

Definition 1.3: For every protection state k, define the associated binary
relation

path® £ sug® X supk
by path“A B} if and only if

1. tink*(4,B)
or 2. There exists a sequence of subjects C1,...,Cn such that

(a) link® (a,c)

() Tinkk{C ,C ) i=t,...,n-1
() link"(c_,B)
n
Here again, for the uniform send-—receive mechanism, existence of a path from A to
B suffices to authorize an indirect transport of transport tickets from domiA) to

dem(B). We can similarly define the spath" and rpath" ralations,

For the analysis of the uniform send—receive mechanism the following relation is
of particular importance.
Definition 1.4. For a given initial state define the binary relation
path” € sus® X sug®

by path (A B) if and only if there is a protection state h derived from the

initial state, by a sequance of transport demand and Create operations,

such that pathh(A,B). .
Thus, path (A B) expresses the feasibility of there ever being & channel for transport
of tickets from A to B. For the special case of the uniform mechanism, pnth*(A,E) if
and only if transport tickets can indeed be transported from domiA} to dom(B).

Let us now consider computation of the path’ ralation from the initial state. Since
the protection state can evolve in a unbounded manner by successive creation of
new subjects, it is not immadiately apparent how to compute this relation Indeed, it
i3 not ciear whether this relation is computable. For the uniform send-receive
machanism, Minsky proved that the creste operstion can be ignored in computing
the path’ reiation, as indicated below.



Definition 1.5: For s given initial state define the binary relation
path” § suB® X sus®

by path”(AB) if and only if there is a protaction state h derived from the

initial state without the use of any create operations such that path™(A,B). s
Thaorem 1.1: For the uniform send-receive mechanisrm

(v<A.8> & SUB® X SUB?) [path™ (A,B) == path”(A,B)]
Proof: Minsky [15]. -

268

In this sense the uniform mechanism iz oreate-invariant The create—invariant

property insures that the computation of the path* ralation reduces to a finite

probiem.  We will study a similar property in chaptar 4 in the context of a non-

uniform mechanism A critical step in Minsky's proof is the following notion,
Definition 1.6: An initial protaction state is said to be & seif-refersnce
state provided

(va € SUB®) [A/s & dom®(A) A A/r & dom®(4))

Mingky established the foilowing lemma
Lamma 1.2; For the uniform gend-receive mechanism it can be assumadg,
without any loss of generality, that the initial state is a self-reference
state. :
Proof: By the create rule any subject A can creats a subject B resufting
in the following situation.

B/se

()
B/re

But then the tickets A/sc and A/rc can be transported from domiB) to
domiA). Since the self-refarence tickets can always be acquired by any
subject in this manner, there is no loss of generality in assuming that
these tickets are present in the initial domain of every subject ]

The notion of a self-referance state is then used to show that the path” relation

can be computed without considering the create operation

Minsky additionally established the following raesult.
Theorem 1.3: For the uniform send-receive meachanism

(v<A.B> & 5UB° X 5UB®) [path™ (A,B) ~ rpath®(A,B)]
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This result is particularly useful in the context of an initial state which satisfies the
following constraint
Pefinition 1.7: An initial state is said to have no dangling rlinks provided

(v<A,B> & SUBY X SUB®) [A/r € dom®(B) =+ 8/5 & dom®(A)]

The corollary below follows immadiataly.

Corollary 1.3.: For the uniform send-raceive mechanism it is the case

that for every initial state with no dangling riinks

(v<a,B> € SUBY X SuB®) [path” (A,B) ==+ path®(A,B)]
n
We call this the flow-invarisnt property. This property ensures that the path
relation set up in the initial state remains invariant in all subsequent states. It is then
a8 ftrivial matter to compute the path' relation. Note that, even though the path
relation cannot change, it is still possible to establish links which did not exist in the
initial state.  We will study a similar property in chapter % in the context of a non-
uniform mechanism.  As specific examples of an initial state with no dangling rlinks
we have the foliowing situations.
1. Every subject in the initial state is given send tickets for every subject,
ie.
(v<A,B> & 5UB° X SUB®) [B/s & dom® (A)]

This distribution models the tske—only maechanism of Lockman and
Minsky [11]. It foliows from corollary 1.3.1 thet the take—only
machanism is flow=inveriant, This contrasts with the symmetric
transport property exhibited by the take—grant and the grant—only
mechanisms (ses page 10).

2. The initial state is belsnced in the following sense

(v<A,B> & SUB® X SuUB%) [B/s & dom®(A) = A/r e dom®(B)]

For a balanced state there are no stray tickets so that the initial state
is designed in terms of links rather than individual tickets.



28

1.3. OBJECTIVES AND OUTLINE OF THE THESIS

Qur objective in this thesis is to continue investigation of the send-receive
transport mechanism.  We will study a selsctive version of this mechanism. This
contrasts with earlier analysis of protection mechanisms, viz. the take—grant
mechanism of .Jones, Lipton, and Snyder [7, 10, 17], its variations due to Lockman
and Minsky [11). and the uniform send-receive mechanism of Minsky [15]. In
these mechaniems the transport operation is non—selective, at least, with respect to
transport of transport tickets.

The general version of the send-receive transport mechanism is too complex to
attack straightaway. Hence, we make some simplifying assumptions. These
assumptions are stated in chapter 2. Under thase assumptions wa find it useful to
depart from the activator formulation for expressing selectivity in the transport,
demand and create operations Instead we develop an abstract framework for
specifying this seiectivity. While we do not address implementation issues in this

thesis we do believe that this framework can be efficiently implemented.

in chapter 3 we identify a basic property of a protection state calied the flow
function Wae then formulate the flow-snalysis problem which is concerned with
determining bounds on the value of this function in every protection state. In a
sense, this problet is a generalization of the safety problem. There are several
approaches to the flow-analysis problem.  We investigate these approaches in
chapters 3, 4, and 5. In chapter 6 we investigate some analysis issues other than
the fiow-analysis problem. In chapter 7 we summarize our results and prasent
further questions which must be pursued to better understand the protection
mechanism studied in this thesis.

We caution the reader that we will be introducing a fair amount of notation.
There iz no escape from notation in a formal traatment, however. wa are aspeacially
handicapped due to the recent smergence of the problems discussed in this thesis.
For lack of historical precedsnt, most of this notatioh is of our own creation. For
convenient reference. in appendix A we provide a list of the major terms and
symbols defined through the course of this thesis along with the page numberls)
where they are defined Certain aspects of our notation have besen spacifically
designed to clarify the role of various symbols. The reader will benefit by paying
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attantion to these conventions, which are summarized in appendix B, Finally, we

have isolated the presentation of algorithms and analysis of their cost in appendix C.
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CHAPTER 2

SELECTIVE SEND-RECEIVE PROTECTION SCHEMES

In this chapter we define a restricted version of the send-raceive transport
mechanism,  Stated informally, owr restrictions amount to the reqguirement that
properties of a subject. which occur in the quaiifisrs of send, receive, damand and
create activators, are determined when the subject gets created and remain constant
thereafter. These properties strongly influence the operations which 8 subject can
successfully invoke. We find it useful to consider such propertias as part of the
domain of the subject This is a reascnable extension of the notion of a domain,
since these properties do confer privieges on a subject Then, under our
restriction that these properties be static, the dormain of a subject comprises two
components, as follows.

1. A static component consisting of the properties meantioned above and
the activators possessed by the subject

2. A dyngmic component consisting of the set of tickets possessed by
the subject

We say that two subjects are of the same type if the static components of their
domains are identical. We motivate this definition of a subject type in section 2.1.
Once this connection between the activator formulation and types is introduced, it is
convenient 1o conceive the design of a protectsd systam directly in terms of types.
The desigh of a protected system then involves two steps, as follows.

1. Specifying the set of types, as well as specifying. for each subject
type, the static component of the domain of every instance of this
subject type.

2. Specifying the initial set of subjects and objects, and the initial
distribution of ticketz for these subjects and objects.

In order to emphasize this fact, we call the result of the first step as a selective
send-receive protaction scheme, or simply a protection schama.
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The specification of a protection scheme implies that the designer must think in
terms of types. For this reason, in sectioh 2.2 we depart from the activator
formulation and define design parameters, for spacifying gelectivity in the transport,
demand and create operations, diractly in tarms of types.

We conclude this chapter by considering a number of miscelisneous issuss  In
section 2.3 we define the notions of a state transition and s transition sequence, in
order to talk about the evolution of & system from its given initial state. in
section 2.4 we show how entities which possess privileges but are passive, in the
gsense that they cannot autonomously invoke operations, ¢an be accommodated in
our design framework in a straightforward manner. Finally, in section 2.5 we outline
our conventions for naming the sets, functions, and relations introduced throughout

the thesis. The reader will benefit graatly by paying attention to thase conventions.

21. TYPES OF OBJECTS, SUBJECTS AND TICKETS

The concept of type is famiiar in the context of data structures. The type of a
given data structure determines the set of operations which are mesningful Thus
push and pop are meaningful operations on a stack but not on a gquaue. The
concept of an objact type corresponds to this familiar notion.

A subject is an active entity in the systarn. Thare are operations which can be
performed on a subject For example, & process might be put to sleap or
awakened. However, the more significant aspect of a subject is that a subject can
autonomously invoke operations. For subjects we extend the notion of type to
rmodel both aspacts, as follows.

1. The operations which are meaningful on a given subject are deterimined
by the type of the subject

2. The operations which a2 particular subject may invoke are also
determined by the type of the subject

Thus, for instance, a subject of type “ordinary user’ cannot invoke certain sansitive
operations which # subject of type "system manager” is allowad to invoke.

Let us see how this notion of a subject type relates to our earlier discussion of

the send—receive transport mechanism. Now, the occurrence of types in the
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patterns of an activator is a matter of convenience' which can be easily eliminated
by treating the type of an entity as another attribute, similar to attributes such gs
class and dept For ingtance, the activator
can-send p:[c/x:c] to s:[b6/5] i Q(p,s)
canh be equivalently replaced by the activator
can-send p:[c/x:c] to s:[sub/s] If Qlp,s) A type(s) = p

In this manner, we can eliminate any prior notion of subject types. so that there is
no loss of generality in assuming that all subjects are instances of a8 single type sub.
We will now reintroduce the notion of a subject type, s0 as to modal the two

aspects mentionad above. In order to do so, we define the following notion,
Definition 2.1: Given any finite set of activators, the properties of a
subjact A which occur in the qualifiers of these activators are called the
facade of the subject A m

For instance, the facade of a subject A might be as follows.

facade(A) = {class(A) = 3, dept{A) = '‘Marketing'}
Once the facade of a subject is known, it can be determined exactly which
activators, and thereby which operations, can be successfully invoked with reference
to this subject Our first criterion for detarmining 8 subject type is that all subjects
which are instances of the same type should have an identical facads. By this
criterion, exactly the same set of operations can be invoked with respect to

subjects of the same type.

To model the second aspect, we need to consider the operations which a giv&m
subject might invoke. By definition, the exact set of operations which a given
subject is authorized to perform are determinad by the activators and tickats in the
domain of this subject However, the activators themselves specify the genaral
pattern of these operations. Our second criterion for determining & subject type it
that all subjects of the same type should possess exactly the same set of

activators. We then have the following notion of subject types.
Definition 2.2: Two subjects are said to be instances of the same
subject typa if and only if the facade of both subjects is identical and
both subjects possess the same set of activators. "

Ot course, it is also a recognition of the importance of this concept in modern methodotogies for
design of systems.
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Now that we have indicated how the type of a subject is determined from its
facade and the activators possessed by this subject, we will assume that a desigher
dpproaches the design of a system by thinking of subject types in this mapner. The
most basic design parameter is then the set of types. We require that this set be

specified as the first step in designing a system, as follows.
Definition 2.3: The designer of a system specifies a finite set of
subject types. denoted by the symbol T.. and a finite set of object

types, denoted by the symbol T, These two sets must be mutually
exclusive, so that TS n TO = ¢. We denote the union of these two sets
by the boldface symbeol T, ie, T = T, VT, -
We will frequently need to refer to the type of an entity and introduce the
t function in order to do so conveniently. This function simply returns the type of
its argumant subject or object, ie,
t: 5UB UOB) — T
Here we are assuming that every entity is an instance of exactly one type. There is
no less of generality in this assumption For instance, consider a gituation where
entities of type 2 are also instances of type £ but not vice versa. That is, a is a
sub-type of the type 5 This situation can be modeled under our assumption by
ensuring that, for exarnple, if the following activator
can-send p:[b/x:c] to s:[sub/s] If Q(p,s)
is in the domain of a subject A, then the activator
can-send p:[a/x:¢) to s:[sub/z] If §(p,s)
is also in the domain of A

Due to the distinction batween subject types and object types, we can further

state that

t: 5UB Ts

ry 0OBJ — Tn
We assume the t function is computationally efficient, in thet the type of a given
subject or object can be quickly determined from its name. Since all addressing is
done via tickets, this requires that the type be encoded into every ticket in some
way. This assumption would be required anyway to facilitate type checking at run
time.

We dencte subject types by lower case italicized letters from the beginning of
the alphabet Thus the letters s, 4, ¢, o denote specific subject types. We denote
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subjects by upper case letters from the baginning of the alphabet Thus the letters
A, B, C. D denote specific subjects. For the most part, we will ensure that the
type of a subject is the corresponding lower case italic latter; so that #A) = & and
U8l = L We rarely introduce specific object types and specific objects in our

discussion. Whan we do so, we adopt a similar naming convention,

Since the authorization for the transport operation is controlled by the send and
receive rights, we call these rights the transport rights. In combination with the
copy flag we then have four transport rights denoted as follows.

R, = {s, r, sc, rc}
All other rights are called inert rights. For our purpose, inert rights are treated as

uninterpreted symbols, specified as follows.
Definition 2.4: The designer of a system specifies a set R, of inert
rights. The set of rights R is then R = Rx u H'r' L]

We extend the notion of type 1o apply to tickets as follows.
Definition 2.5: Define the set of ticket types T X R, by saying that the
ticket A/xc is of type tHA)/xc. =

That is. the type of a ticket is an ordered pair whose first element is the type of
the entity being addressed and whose second element is the right symbol carried by
the ticket’. Modulo our assumption about the efficient computation of the ¢
function, the type of a given ticket can be efficiently determined. The set T, X R,
of transport tioket types is of particular significance.

Observe that by our definition, the tickets A/x and A/xc are of differant types;
the former ticket being of type rlAl/x while the latter is of type HAlxc. This is a
usaful distinction, since the latter ticket can potentially be transported while the
former ticket can never be transported.

In general. most of the rights will be type specific in the sense that the operation
authorized by a particular right symbol x will be meaningful only if it is parformed
oh an entity of a given type. For example, the authorization to perform a push is
meaningful only if the object on which the push is performed is of type stack.
Due to the type specific interpretation of rights, certain ticket types will correspond

zﬁﬂﬂlﬂ that on page 14 we limited a ticket to carying exactly one right symbol, and indicatad how
this ggsumption doas not anteil any loss of genarality
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to tickets which do not arige in practice. Hence, the size of the set T X R will
gererally be larger than the set of ticket types actually encountered.  This fact
should be kept in mind while interpreting the complexity of our algorithms.

2.2. A PROTECTION SCHEME AND ITS PARAMETERS

We are now ready to state the most important restrictions we impose on the
version of the send-receive transport mechenism investigated in this thesis. These
restrictions are as follows.

1. Every subject is an instance of exactly one type. The type is specified
when the subject is creatsd and thersafter cannot change. That is, the
typing of subjects is static.

2 The set of types, T = T_ U T_, cannot be changed at “run time". Thus

types can only be introduced at "compile time’ {ie. when a system s
defined).

3. Similarly, the set of inert rights R cannot be changed at "run time"

Thus, inert rights can only be introduced at "compile time” It
immediately follows that the set of ticket types. T X R, alsc cannot be
changed at "run time".

As indicated in section 2.1, the type of a subject is determined by its facade and
by the set of activators that the subject possesses. In the send-receive transport
mechanism, the latter set is assumed to be static. Our assumption of static typing
of subjacts then amounts to additionally assuming that the facade of every subject
is static.

Now consider the nature of the protecticnh state under these assumptions. As
defined eariier, the domain of a subject consists of the tickets and activators
possessecd by the subject Let us additionally consider the facade of a subject 1o
also be part of its domain. Since the facade of a subject influences the set of
operations which a given subject can invoke, this is a2 reasonabls extension to the
notioh of a domain. Then. the domain of & subject consists of two componants, as
follows.

1. A static component consisting of the facade of the subject anc the
activators possessad by the subjact By definition, this component is
determinag by the type of the subject
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2. A dynamic component consisting of the set of tickets possessed by
the subject

Correspondingly, the design of a system congists of two steps as follows.

1. Spacifying the set of types and inert rights, as well as specifying, for
all subject types, the facade and activators in the domain of every
inctance of this subject type. Thig spacification datarmines the static
component of every subject's domain.

2. Specifying the initial set of subjects and objects, and the initial
distribution of tickets for these subjects and objects.

Since the selactivity in the transport, demand and create operations is deterrmined by
the facadse and activators of the subjects, many policy decisions are made when the
first step is completed In order to emphasize this fact, we call the result of the

first step as a protection scheme or simply a gchems.

The specification of a protection scheme implies that the designer must think in
terms of types. For this reason, we depart from the activator formulation and
define design parsmeters, for specifying selectivity in the transport. demand and
create operations, directly in terms of types. The most basic design parameters are
the sets T, T and R,. These sets serve as the foundation on which the remaining
parameters are defined The following four sub-sections, respectively, discuss the
design peramaters which control the transport, demand, and create operations, and
constrain the initial state. The section concludes by summarizing our fremawork and

providing examplas of specific schames.

There is an interesting analogy between our framework for spacifying a protection
schame and the notion of a data model in the litarature on data base systems, as
foilows.

s The design framework, to be shortly defined, corresponds to the
notion of a data model. A data model determines what can and what
must be specified while defining 2 particslar schema  Similarly, our
design framework determines what can and what must be specified
while defining a particular scheme.

e Defining a protection scheme by specifying the parameters of the
design framework corresponds to defining a particular schema within
the scope of a given data model

e Constructing an initial state for a given protectioh scheme corresponds
to constructing a particular data base for a given scherna
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Indesd, this analogy motivates our choice of the name protection scheme.

2.21. The Direct Flow Limit Function

We begin by reviewing the authorizstion required for a ticket to be transported
from the domain of one subject to the domain of another. Specifically. consider
subjects A and B and some ticket C/xcc. The most basic requirement for this ticket
to be transported from A to B, is that A must possess the ticket C/xc.  For
example, if the domain of A contasing the tickets C/xc, D/x and E/y, then it is not
possible to transport the tickets D/x or E/y to the subject B. But it might be
possible to transport the tickets C/x or C/xc to the subject B, provided that

1. There is a link from A to B

2. A and B respectively possess a suitable send and a receive activator.
In our restricted version of the send-receive transport mechanism. the latter aspect
is determined by the types of the subjects A and B, and by the type of the ticket

C/xc. We require that this aspect be specified in the following manner.
Detinition 2.6: The designer of a scheme specifias a function called the
direat flow limit function

difs T, X T, = power-set (T X R)

which limits the types of tickets which can be transported over a link in
the manner discussed below. -

The o#/ function is best viewsd as a fiiter which applies after the basic conditions
for trangport have been satisfied

As before, et us indicate the tickeis in the domain of a subject A by dom(Al
We illustrate the role of the &f/ function in the comtext of the following situation

dom(a) = {C/xc, D/x, E/y, B/s}
dom (B) = {A/r}

There is a link from A to B and, since C/xc is in the domain of A, the basic
conditions for transport of C/xic to B are met The transport of the ticket C/xc
from domi{A) to domiB) is then permitted if and only if

t(CY/x:e & dfi{t(A),t(B))
Observe, in particular, that the of/ function may allow the transport of the ficket
C/% but not the ticket C/xe, as shown below.

t(C)/x & ofi{t(A),t(B))
t(C) /xc ¥ F{t(A) .t(B))
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in such a case, the ticket C/x can be moved from the domain of A to the domain
of B but no further.

Lest there be any misunderstanding, we remind the reader at this point that the
transport is effected by making a copy of the ticket possessad by subject A and A

retains possession of the ticket C/xc.

Next we illustrate a specific example of a df/ function. Wa bagin by defining the

sat of types as follows.

T, = {s,8}

T, = {o}
The set of trangport rights is fixed as a basic component of our framework but we
do nesd to spacify the set of inert rights. Assume that there are actually some
undetermined number of inert rights, but the only selectivity we wish to impose 1]
in tarms of two major categories called u (for updatel and p (for preserve) in
order to distinguish protected operations which may or may not alter the state of
the object being addressed. Then the set of inert rights can be represented as
follows,

R, = {uc, u, pe. p}

We might define the ¢f/ function to have the following values.

dfl (a,a) = {b/sc, b/s, of/pc, o/p, ofuc, o/ch
dfi{a,b) = {6/s, o/pc, ofp, ofu}

dfi (b,a) = {b/sc, b/s, o/pc, o/p, o/u}

afl (b, 0) = {o/p}

Let us examine the value of df/laa). This set describes the types of tickets which
can be directly transported between two subjects of type & provided the basic
conditions are satisfied Sihce b/sc is in this set, send tickets with the copy flag
for subjects of type & can be directly transported between two subjects of type a.
It is then reasonable to permit transport of A/s tickets alsoc, and observe that b/s is
in the set of/(5.4). Indeed. by our earlier convention
B/s¢ € dom(A) == B/s & dom(A)

We can then assume, in general, that

c/xc € dff {a,h) == c/x € dff (a,h)
This helps reduce the verbosity in listing the values of a df/ function, since we can
omit mention of ¢/x if ¢/xc appears in df/{g.b). By this convention, the of/ function
defined above can be rewritten as follows.
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dfl la,a) = {b/se. o/pe, ofuel
dfi(a,bn) = {b/s. o/pe, o/u}
dfi (b,a) = {b/sc, o/pe, o/u}
dfi (b,5) = {o/p}

The converse neesd not be true; observe that the ticket type olu is in dfitabl
whareas ofuc is not in df/ab). This alows for a subject of type a to trangport an
update ticket for an object to a subject of type 0 butr the transported ticket cannot
carry the copy flag

A natural representstion for a df/ function is a graph which wa call a dfl graph
The nodes of this graph are subject types, and there is an adge from node # to
node & if and only if dffialt » ¢. Every such adge is labeled by the value of
dffia,b). The graph corrasponding to our example Jf/ function is then as shown

below.

{b/s, ofpec. olul

oY TEL)

{b/se, olpe, olul

Ohserve that a particutar df/ function can be represented in terms of activators in
a variety of ways. Wae leave it as an exercise for the reader to devise alternate

representations of our axample &7/ functicn in terms of activators.

2.2.2. The Demand Function

The demand operation allows for acquisition of a ticket merely by requesting it
There are two aspects to this operation, ViZ.
1. Qbtaining tickets with inert rights.
2. Obtaining tickets with transport rights.
By definition. inert rights do not authorize operations which change the protection
state. Wa do not explicitly model the authorization for obtaining tickets with inert

rights via a demand operation, singca the specific manner in which this is done does

not influence our analysis.

Clearly transport tickets are crucial in determining the authorization for changing
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the protection state. For this aspect of the demand operation, we raguire the

suthorization to be in terms of types by providing the following design parameter.
Definition 2.7: The designer of a protection scheme specifies a damand
function

demand: T, -+ power-sat T, X R)
which authorizes acquisition of transport tickets on demand so that
b/%:c & demand (a)

authorizes every subject A of type & to obtain the ticket B/xc for every
subject B of type & The only reguirement is that both A and B must
exist -

A possible use of this feature is to allow certain types of subjects to establish
links between themselves. For example, if we have

a/s € demend{a)
a/r € demand (&)

then two subjects of type & can establish links in both directions by demanding the
send and receive tickets for sach other. Whenever a new subject of type & 18
introduced, it can be linked in both directions to every existing subject of type & by
use of the demand operation. Thus a policy that any two users of type a can
directly transport tickets to each other, is enforced in a straightforward manner.
Similarly, & policy that every user of type & can directly transport tickets to a user
of type &, but not necessarily vice versa, is enforced as follows.

b/s & demandd (&)
a/r & demand (b)

The ability to obtain transport tickets on demand also allows us 1o model
degenarate cases of our send-receive framework in a straightforward  way.
Spacifically, consider the following situations.

1. Tha demand function authorizes subjects of every typa to obtain a
send tickaet for subjects of every type, ie,

(V<a,b>) [b/s & demand (a)]

For such schemes the distribution of send tickets is of no
consequence, since these tickets can be obtained simply by demanding
them. The transport operation is then effectively controlled by the
distribution of receive tickets.

2. Similarly at the other extreme, the demand function authorizes subjects

of svery type to obtain a raceive ticket for subjects of every type,
ia., )
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(vV<a,b>) [b/r € demand (a)]

For such schemes the distribution of receive tickets is of no
consequence, since these tickets can be obtained simply by demanding
them, The transport operation is then effectively controlied by the
distribution of send tickets.

3. It is also possible to completely eliminate the demand opaeration, for
transport tickets, by specifying that

(va) [demend {(a) = ¢]

2.2.3, The Can-Create Relation and Create=Rules

There are two aspects to the create operation, viz, crestion of objects and
creation of subjects. By dafinition, objects are passive entities incapable of any
autonomaous action. Moreover, objects are not permitted to possess tickets. Hence,
crestion of objects does not present any major problem in analysis. We do nhot
explicitly tmodel the authorization which controls creation of objects. since the

specific manner in which this is done does not influence our analysis.

Creation of subjects introduces a major complication in analysis, gince then thare
is potentially an infinite sat of subjects all of which are capable, in principie, of
transporting tickets to sach other. There are two issues which have to be
addressed,

The first issue is the authorization required for a create operation. In line with
our general theme, we require that the authorization be expressed in terms of types

as foliows.
Definition 2.8: The designer of a protection scheme specifies a
can-create relation ‘

can-create © Ts X Ts

which authorizes creation of subjects so that a subject of type & can
create a subject of type b if and only if can-crestela.b). : .

The second issue is the precise sementics of the creste operation. Consider the
creation of subject B by subject A A reasonable semantics for this operation might
be to require that immediately after the creation of B there is a link from A to B
and vice versa as shown below.
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This would authorize transport of tickets in both directions as parmitted by the df/
function. Estabiishing these links raquires placing transport tickets for A and B so
That

B/t = dom(A) A/s e dom(B)
B/r & dom (A} A/ & dom(B)

Now there is an additional question as to whether any of these tickets should carry
the copy flag Since A is the creator of B, it might be useful to give A fransport
tickets for B with the copy flag so that the tickets B/sc and B/rc are placed in the
domain of A Then A can propagate these tickets to other subjects in the systam.

On the other hand it may not be desirable to give A copiable transport tickets for
B. For axample, we might want 1o allow an ordinary user the ability to create a very
powerful subject provided the created éubject can be igolatag from the rest of the
system.  The ordinary user might use this very powerful subject to create 23
subsystem for his own personal exparimants. In such a case it might even bHe
dasirable to give the creatsd subject copisble transport tickets for itself as this
csould aid in constructing a subsystem,

The point is that we must face several issues asbout the precise semantics of
creation. In line with the theme of types we require the semantics for creation to
be spacified in terms of types The dasigner of a scheme must specify the result
of a subject of type & creating a subject of typa 5 For a given pair of subject
types <a.b> we call this specification the <ab> create-rule. As examples of create
rujas, we hava the two cases mentionad eariier ang repeated below.

1. If a subject A of type & creates a subject B of type & then
immediately after the create operation hags occurred

B/s & dom(A) A/s & dom(B)
B/r & dom(A) A/r & dom(B)

2 If a subject A of type 2 creates a subject B of type 6 then
immediataly aftar the create opaeration has occurred

B/sc = dom(A) A/s = dom{8)
B/rc & dom (A) A/r & dom (B)

Although wa are willing to provide flexibility in the specification of creata-rules, we
do impose one major raestriction as follows.
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Definition 2.9: The operation of subject A creating subject B is local if
the (immediate} impact is only on the domain of A and the domain of B
in tarms of transport tickets for A and B. .

We intend to rule out a situation where some other subject C might be given a
transport ticket for the croasted subject B as an immadiate result of the creata
operation. We aisc rule out a situation where B is given some tickets other than
tha transport tickets for A and B. This later task can be accomplished after the
create has occurrad by & transport operation or by B demanding such tickets. The
rastriction that create—rules must be local embodies a fundamental principle of
sygtems design, which we encountered earlier on page 8, viz, that any “small” or
"frequent” avent in tha system state should result in a "gmail" change in the

protaction stata,

The designer of a protection scheme then specifies the semantics of the create
opearation as follows.

- Dwefinition 210 Eor avery <ab> ® can-creste the designer of a
protection scheme specifies a create-rule. This rule must be iocsl and
determines the (immediatel consequence of a create operation, where a
subject of type a creates a subject of type b, =

Observe that the designer is allowed to specify different create—rulas for aevery pair
in the can-create relation. Of course, the dasigner may choose to specify the same
craate-rute for every par. We now single out a particular create-rule which we
use extensively in our axamples.

Dafinition 211: The seif=copy craate-rule specifies that immediately
after a subject A creates a subject B

1. The tickets B/s, B/r are placed in dom(A}L
2. The tickets A/s. A/r, B/sc. B/rc are placed in domiB).

In tarms of a diagram, the situation immediately after A creates B is as
follows. '

B/s

Alr

B/sc

B/r

A/s  B/re

Linlasgs otherwige mentioned, we will use thiz rule in our examplas. This saves us
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the task of specifying create-rules svery time we discuss an example involving
creates.

2.2.4. Constraints on thae Initial State

A particular system state is determined by the following aspects.
1. The set SUB of subjects.
2 The set OBJ of objects.
3. The distribution of tickets for subjects and objects.
By definition, cbjects play a limited role and we can ignore their axistence in our
anglysis. We are interestad in the foliowing aspacts of a systam state.
1. The set SUB of subjects.
2. The distribution of transport tickets.

We will refer to this portion of a system state as the protection state.

in our framework, the designer of a particular system approaches this task in two
stages. First he has to come up with a protection scheme by specifying the
perameters defined in the previous thrae sections. Then he has to specify an initial
state by defining the initial set of subjects, the initigl set of objects, and the initial
distribution of tickets.

In certain cases we will find it useful to constrain the nature of this initial state. It
is convenient to consider such restrictions as part of the protection scheme itself.
Adopting a specific scheme limits the range of policies. Restricting the Initial state
has & similar effect Of course, these constraints appiy only to the initial state and
nead not be frue in subseguant states.

Abstractly, a constraint is simply some predicate which evaluates to true or false
for a given protection state. Let us consider what kind of constraints® might be
imposed on the initial state. There are two independent aspects to the initial
distribution of tickets. One aspect is the distribution of send and receiva tickets.
We might require that if a subject A is given a send ticket for subject B then B
must also be given a receive ticket for A, ie.

3l\dh:m ot the constraints discussed here ware esrlier sncountered in our discussion of tha unitorm
sond=receive machanism in saction 1.2.4.
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(v<a,B> € SUB® X SUB®) [B/s & dom®(A) += A/r € dom®(B)]
This assurnption forces the design of an initial state to be in tarme of links without

introduction of stray tickats We refer to this constraint as the balanced
Etate requirement

A gecond aspect of the initial state, is the occurrence of tickets with the copy

flag We will find the foliowing assumption useful.

(vA € SUB®) [A/sc & dom®(A) A Afrc & dom® {4) ]
We refer to this as the self-refarance assumption. We say that the ftickets A/sc
and A/rc are the self-raference tickete for the subject A The self-reference
assumption allows each subject a degree of sutonomous contro! over tickets for
itself. More importantly, it will anable us to ignore the create operation under
certain conditions investigated in chapter 4. Thus it has a definite impact on the
complexity of analyzing the behavior of a particular system Moreover, this
assumption can be made without substantial loss of generality. Indeed, we can
effectively eliminate these tickets from the domain of a particular subject A by
ensuring that
(Yo & T )[r(A) /x:c & df/ (t(A) ,5)]

Further, note that every initia! state can be augmaented to be a self-reference state
simply by introducing the self-reference tickets in the domain of every subject
Hence, the self-reference assumption serves as a useful theoretical tool for an
Approximate analysis‘.

In chapters 5 and 6 we will go one step further and stipulate that the only tickets
in the initial state with the copy flag are those required by the self-referance
assumption, ie.,

(ven,B> € SUB® X SUB®) [A/sc & dom®(B) ++ A = B]

(v<a,B> € SUB® X SUBY) [A/rc & dom®(B) ++ A = B
We refer to this as the self-copy sssumption This is a major restriction and to
single out its importance we will name the class of schemes after this particular
constraint. The ides here is that there should be a single source from which all

4lr\ the following senze: if 2 particular configurstion of the protection stmte caonot be reslized
starting from #n initisl state which hes been sugmanted to setisfy the self-refarence asgumption, then
the configurstion certainly cannot be reslized starting from the actuel initial state.
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copies of a ticket are obtained, so that mechanisms for revocation of thase copies

can be easily implamantad.

For the sake of uniformity, in our axampies wa always begin with a balancad initial
state which satisfies the self-copy assumption. This reduces our task in specifying
an initial state, since it then suffices to show the initial set of links The initial
distribution of transport tickets can be easily deduced from the mitial set of links,
as foliows.

* By the self-copy requirement, all links in the initial state are established
by tickets without the copy flag.

# By the self-copy (and, hence, self-refsrence)l requirement, svery
subjact possesses the self-reference tickets for itsalf.

s By the balanced requirement, there are no tickets other than those
reguired to establish the links and the salf-refarence tickets

For example. consider the following initigl state,

(2 ®

If this state satisfies the balanced self-copy requirement, it is implicit that transport

tickets in this state are distributed az follows,

dom®(A) = {A/se, A/rc} W {C/r, B/r}
dom®(B) = {B/s¢, B/re} U fA/s}
dom®(C) = {C/sc, C/rc} u {A/s}
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225 Summary and Examples

In the preceding sections we have defined a8 framework for the design of a
protection scheme. Certain assumptions are basic to the framework and apply to
any specific scheme. The most significant assumptions are as follows.

1. Every subject is crested to be of a specific type and its type cannot
change. '

2. New types cannot be introduced at run time.

3. Selectivity in the transport, demand and create operations is determined
by the types of subjects and tickets involved.

We defined a number of parameters which must be specified in order to define a

particular scheme. These parameters are summarized below.
Definition 2.12: A selective send-receive protection scheme (or simpiy
scheme} is defined by spacifying

H

. The set of types T
The set of rights R = R U R where R_ = {s, r. sc, rcl.
The function o7/ T N X T5 — power-set(T X R).

Ts u Tn where Ts n ‘I'D =

il

The function demand: T, — power=-set(T s X R
. The relation can-creste S "l's X Ts'

A local create—rule for every pair <a b> & can-create.

SUNE- S B R SO

. Constraints on the initial state.

[ ]
The firgt five parameatars are each formalized in terms of a set. function, or relation.
The precise definition of the last two parameters has been delibarately laft open but
we have indicated the scope we have in mind,

Let us consider some exarmples of schemes which can be defined using this
framework. For simplicity, assurme that, unless otherwise stated, the create—rule is
the self—copy rule and thers is no constraint on the initial state.

Exampie t For our first example we specify the desigh parameters as follows,
1. T, = {8}, T = {o}
2. R = {fpe, p. we, ul
3. dfi{a,a) = T XR
b, demand (a) = ¢
b. can-create = {<g, a>}
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For this scheme there iz a single subject type & and a single cbject type 6. ‘The set
of inert rights distinguishes two kinds of rights interpreted as follows.

p: authorizes oparations which praserve the internal state of the antity
u authorizes operations which update the internal state of the antity

The df/ function allows all types of tickets to be transported.  The demand
function does not aliow transport tickets to be obtained by & dermand operation.
The can-create relation authorizes subjects 1o create other subjects.

We can also accommodate several variations of this scheme. For instance we can

modify the demand function so that

demand (g) = {a/s}
Then any subject can obtsin a send ticket for another subject meraely by demanding
it, and the transport operation is effectively controlled by receive tfickets. Similarly,
it we modify the demand function so that

demand (8) = {a/r}
any subject can obtain a receive ticket for another subject merely by demanding it,
and the transport operation is effectively controlied by send tickets.

Example 2. For our next example we specify the design parameters as follows.
1. Ty = a8, T = {0}

2. R = {pec, p, uc, ul

3.df (a8 =T XR

dfi(a,b) = TXR
dfi{t,a) » TXRHR
dfi{b.b) = ¢

L, demand (a} = ¢
demand (B) = ¢

E. can-create = {<a,s>, <a,b>}
Now there are two subject typas a and b The df/ function allows for transport of
all types of tickets between all pairs of subjects, unless both subjects are of type
£ We can also consider variations of this example along the lines of the variations
considered for example 1.

These two examples indicate the kinds of schemas which can be accormmodated in
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our framework. In both cases there is a considerable amount of policy built into

the schema. We will consider tmore complex structures as we develop our analysis.

Finally, consider how the uniformm send-receive mechanism, reviewad in
section 1.2.4, can be modeled in our framework. Wa can eliminate the role of the
copy flag as follows.

1. Require that every ticket in the initial state carries the copy flag.

2. Let the create—rule specify that immediately after & subject A, creates
subject A2 the sgituation is

B/se e/ A/TC

A ( B
B/re A/sc

The fact that tranmsport tickets are universally transportable is easily expressed by
the foliowing requirament

(v<a,6>[T, X R, & df/{s,0)]
Any scheme which satizfies thesa requiremants will, naturafly, be called a uniform

schema.

2.3. TRANSITION SEQUENCES

There are several ways by which the protection state can change. Evary state
transition will be caused by one of the following operations.

1. A transport operation which moves a copy of a transport ticket from
the domain of ohe subject to the domain of another.

2. A create operation which introduces a new subject in the systam.

3. A demand operation which places a transport ticket in the domain of
seome subjaect

It is the rasponsibility of tha protection mechanism to aensure that there is proper
authorization for avery state transition. We say that a state transition is
legal provided there is appropriate authorization for the operation which causes the
state  transition. A sequence of legal state trangitiong is callead a transition
zaguance.
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We will denote a transition sequence by upper case lettars from the middie part
of the alphabet, such as H and G Unless otherwise mentioned, a transition segqueance
is applied to the initial state The state resulting after all opergtions in the sequance
have been exacuted will be denoted by the corrasponding lower case letter, such as

h and g respectively. Any state established by a transition seaquence is called a
derived state.

Tha reader may have observed that the authorization for create and demand
operations is more or lass indepandent of a particular protection state. If a subject
A is allowed to create a subject B the requirements are

1. The subject A must exist
2. <t(A).t1(B)> & can-create

The state dependent requirement that A must exist is relatively trivial Similarly if A
is authorized to demand a ticket B/xc the regquirements are

1. The subject A must exist
2. The subject B must exist
3., t(BY/x:c & demand (E(A))

Once again, the state dependent requirement that A and B must exist is relativaly

trivial.

R will occasionally be conveniert for us to assume that the three kinds of state
transitions occur in a particular order. Specifically, that all the creste operations
occur first, followed by all the demand operstions, and finally followed by all the
transport operations. We say that a transition sequence with this structure is in
canonical form. Due to the (almost) state indaspendent nature of authorization for
create and demand operations, this assumption does not entail any loss of generality.

Specifically, we have the following lemma

Lemma 2.1: For every transition sequence H establishing state h, there is
£ trangition sequence H' in canonical form which establishes stats h

Proof. Meodify H to obtain H' by rearranging the operationg in H to
conform to the canonical form, while preserving the reistive order of
each kind of operation. Since the relative order of the create operations
is pregerved, the creats opsrations in H' are legal. Since all subjects
have heen created prior to any demand operation, these operations are
legal in H'. The transport operations in H' are in the same relative order
as in H and agre preceded by all the create and demand operations and,
hence, are legal in H'. Since H' consists of exactly the same operations
as H, the state h' resulting from H' is identical to the state h resulting
from H ]
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We can then assume, without loss of generality, that any derived state is established
by a transition sequence in canonical form.

2.4. MODELING PASSIVE SUBJECTS

Let us review the subject object distinction®. There are two independent aspects
to this distinction as follows,

1. Subjects may possess tickets while objects cannot possess tickets.

2. Objects are passive and cannot execute any operations in the systam,
whereas subjects are active and can autonomously exacute various
operationz ih the system

There is @ slight problem in coupling both these aspects. Consider a directory of
fites, in a ticket based approach, a directory is naturally viewed as 8 set of tickets
with one or more tickets for each file in the directory. Since a directory contains
tickets, it must be modeled as a subject At the same time, a directory is a passive
entity which does not match the active character of a subject

This problem is not peculisr to cur framework and will arise in any capability
based scheme. Our approach is to relax the assumption that all subjects are active.
We then have two categories of subjects, such that an sctive subject is capable of
independently initiating actions in the system whereas a passive subjmct js not
capable of doing so. in our framework, it is possible to model passive subjects by
limiting the authorization of such subjects for imnvoking operstions.  First, consider
the operation of transporting a ticket from subject A to subject B. There are four
cases here.

1. Let A and B both be active subjects. The authorization for a direct
transport of tickets from A to B is expressed by the requirement
B/s « dom(A) A A/r & dom(B)
and is the same whether A or B initiates the operation. In such a case
we assume that either A or B can initiste the transport operation. In
either circumstance, both A and B must act to ensura that the
trangport operation is successful

2 Let A be an active subject while B is a passive subject By definition

5Thisn section may be skipped on a first reading.



operation,
be empty if subjects of type & are passive.

demnand(s) iz empty if subjects of type 2 are passive.

only A can initiste the transport operation We simply assume that B
is 8 willing recaiver and will execute any action required to enable the
transport operation. Such actions can be automatically executed on
behalf of B. in particular, if

A/r & dom(B) A t(A)/r & demand (t(B))

then the demand operation to obtain the A/r ticket should be
automatically executed on bshalf of B

. Let A be a passive subject while B is an active subject  This situation

is similar to the previous situation. Here, we assurne that A is a willing
sender and will execute any action requirad to enable the transport
opeargtion, in particular, if

B/s & dom(A) A t(B)/s & cdemand (t(A))

then the demand operation to obtain the B/s ticket should be
automatically executed on behalf of A

. Let A and B both be passive subjects. By definition, neither A nor B

can initiate a transport operation. We model this case by requiring that
arfi(e(a) ,t(B)) = ¢
Then there is no authorization for transport of tickets from A to B

and, aven if one of them was an active subject, the transport
operation would not be successful.

cases of our send-receive framework,

1. A situation where the transport operation is controlled by a receive

ticket alone and which is modeled in cur framework by regquiring that
(V<5,b>) [b/s ® demand (a)]

2. A situstion where the transport operation is controlled by a send ticket

alone and which is modeled in our framework by requiring that
(v<a,b>) [6/r & demand (a)]

B2

in our discugsion above, we zssumed that a demand operation can be automatically
executed, on behalf of a passive subject, when required for enabling a transport
The reader may wonder why we did not simply require that demandia)
Obsarve that cur approach does hot
preclude the latter requirement, and the designer is free to ensure thet indeed
At the same time, our

approach allows us to accommodate passive subjects in the foliowing degenerate
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It remains to consider the create operation. In order to model the passive nature
of subjects, it suffices to ensure that <ab> is in the can-create relation only if
subjects of type & are active.

Our approach to modeling passive subjacts will work provided subjects of a given
type are either all passive or all active This is not a rmajor restriction and is
consistent with the notion of a type. Example 2 on page 48 illustrates a scheme
for which subjects of type b can be interpreted as being passive,

2.6. NAMING CONVENTIONS

We conclude this chapter by apologizing to the reader for the variety of notation
wea have had to introduce, while cautioning that there is still more to come as we
formulate analysis questions. Thera 18 nho escaps from potation in a formal
treatment, but we are especially handicapped by the lack of standard terminology

due to the recent emergence of the problems being addressed in this thesis.

Certain aspects of our notation have been deliberately designed to help in
distinguishing the role of various symbols. In particular, we have foliowed the
conventions stated below.

1. There are two basic 88ts which pervade the entire discussion, viz,
SUB: the current set of subjects
T, the set of subject types
Members of T. are denoted by lower case italicized letters such as a,

b, ¢. Mambers of SUB are denoted by upper case letters such as A,
B, C. To the extent possible, we ansure that the type of a subject is
the corresponding lower case italic letter.

2. Any relation which is 8 subset of Ts X Ts is namad using itelic script
Similarly, a function with domain T_ or T, X T, is named using itaiic

script. As examples of this convention we have the can-create
relation; and the demand and df! functions

3. Any relstion which is a subset of SUB X SUB is named using normal
script.  Similarly, a function with domain SUB or SUB X SUB is named
uging normal script As an exampla of this convention we have the
link relation,

4. Wa have made one axception to these rules in naming the ¢ function,



which tells us the type of a given subject According to our stated
convention, its ngme should be in normal seript; since its dormain is the
set SUB. We have deviated from this convention to ensure that every
member of T. appears in italic script; aither directly as & 4, ¢ stic, or
indiractly, via an application of t, as tA), #B), #C) ete. The net resuit is
that any function or relation with an italicized name must have italicized
arguments.

Our methodology for naming is discussed in further detail in appendix B.
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CHAPTER 3

THE FLOW-ANALYSIS PROBLEM

In this chapter we discuss a basic analysis question called the flow—analysis
problem. We begin by defining the flow function in section 3.1. For avery pair of
subjects A and B, in a given state, this function expresses the authorization for
transport of ticket types from the domain of A to the domain of B accounting for
indirect as well as direct transport The values of this fumction may change as the
protection state eavolves. In saction 3.2 we discuss an example to demonstrate the
nature of this change.

Stated broadiy. the flow—-analysis problem is to characterize properties of the flow
function. In section 3.3 we formalize this probiem and discuss a2 number of
approaches to its solution. These approaches are then invastigated in the remainger

of this chapter and in the next two chapters.

3.1, THE FLOW FUNCTION

We motivate the definition of the flow function by an example. Consider a
schema with the of/ function shown below.

afl (a,8) = {a/sc}
Cdfl (a,h) = {b/sec}
gri{b.a) = {H/s}
dfl{b,.b) = ¢

The df/ graph for this function is as follows.

{h/sc}
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Lat A ] and A2 be subjects of type 3, and B a subject of type 4 Assume that we
have the following situation.

The State k

Consider the nature of tickets which can be transported from A to A o Thera is a

link from A , 10 A in conjunction with the Jf/ function, this link authorizes

transport of tickets 2? type a/sc directly from A to A, Similariy. it is possible to
directly transport tickets of type bHrsc from A1 to B While it is not possible to
transport tickets of type b/sc directly from B to A, it is possible to transport
tickets of type /3. But then, tickets of type A/s can be indirectly transported from
A, to Az' via the subject B. The net authorization for transport of ticket types from

A , © A2 in gtate k can then be expressed as foliows.

flc::w"(A1.A2) = {a/sc, b/s}
This set specifies the types of tickets which can be transported, either diractly or
indiractly, from A , 1o A2 in thae state k.

To formally define the flow function, it is useful to introduce the following notion

of a path.
Definition 3.1: Wa say there is a path from subject A to subject B in
state k provided

1. link" (A,B)

or i. There exists a sequence of subjects C .....Cn such that

1
(a) tink" (a,c))

(b) linkk(ci.t ) =i, ..., n-1

i*1
() link"(C_,B)

in the latter case we say that tha path consists of the sequence of
subjects C ...C . »
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Given a link from A to B, the types of tickets which can be directly transported
from A to B is expressed by the set of/(HA)#B). Consider a path from A to B
which consists of more than one link, for axample,

Now a ticket of type J/xi& ean be transported from A to B over this path provided

1. A ticket of type d/xc can be directly transported from A to C , and
from C:1 10 Cz.

2. A ticket of type o/x:c can be directly transported from C2 to B
in terms of the of/ function these two conditions are expresszed as follows
[o/xc & dfi{t(n) (L)) N df(e(C),2(C,))]
A
[d/x:c & dff (t(cg) J(B})]

Thig jeads to the following definition,
Dafinition 3.2: We say there is asuthorizatiom to transport tickets of
type d/x:ic over a spacific path from subject A to subject B if

1. The path consists of a singie link from A to B and
dix:e & dff(t(A),¢(B))
or 2. The path consists of a saquence of subjacts C 4G, and

[cd/xc & gt/ (t{A) ’t(CT)) n ... 0 d¥il (t(Cn__!) .t(CH))J
A ‘
[d/x:c & gfi(2(C),t(B))]

The definition of the flow function is then as follows. ‘
Definitlon 3.3: For overy state k., define tha associated flow function

flow": SUB* X SUB* — power-set(T X R)

by ¢/xe € flow"(A.B) if and only if

1.A =8
or 2. There exists a path from A to B in state k for which therae is
authorization to transport tickets of type ¢/x:c

u
The first condition merely ensures that. for every subject A and every state k, we
have flow"(A.Al = T X R This is a matter of conveniance for our exposition and is
consistent with the intuition behind the flow functionn The second condition is the
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interasting one. it ensures that for two distinct subjects A and B, the value of
flow*(8,B) summarizes the authorization for transport of ticket types over all paths,
in state k, from A to B.

By defining the flow function in terms of ticket types, we avoid considaration of
individual tickets in our analysis. In particular, tickets for objects do not infiuence
the fiow function in any way. By developing our analysis in terrns of the flow

function. we can simply ignore such tickets.

For a given state the flow" function can be computed from the link* relatien in a
straightforward manner. As discussed in appendix C.3. this computation has a cost
of O(T X R|=|SuB*|3,

3.2. EVOLUTION OF THE FLOW FUNCTION

In this section we discuss an axample which dernonstrates how the flow funetion
may evolve from a given initial state. The concepts. which are informally introduced

nere, will be formalized in section 3.3

The scheme for our example has the following df/ function

gri (a,a) = {&/s¢}
dft (a,b) {8/sc}
afl (b, a) {8/3c}
afl (6.8 )

with the associated of/ graph

{b/sel

e XD

{&6/sc}

There are two subject types 2 and 4. The only tickets which can be moved are of
type bH/sc and such tickets can potentially be transportad batween all pairs of
subject types except for the pair <b6,6> Wa spacify the demand function to be

demand (a) = {a/r, &8/r}
demand (&) = {a/r, b/r}

Any subject can then obtain a receive ticket for another subject simply by
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demanding it and, hence, the transport operation is effectively controliad by sand
tickats,

For the moment we do not allow any create oparation Now consider the
tollowing balanced self-copy initial state’, where subjects A , and A, are of type a
while subject B, is of type &

(0 O,

The only iinks in the initial state are from A to A and from B, to A . Both these

Tha Initiai State

links are directed towards A . The d// function authorizes transport of the ticket
type b/sc over each of these links. Hence, the initial flow of tickets from A, 10
A, and from B to A, is {b/sc}. There are no links directed towsrds the subject
A, Hence, the initial flow from both A and B, to A, is the smpty set Similarly,
there are no links directed towards the subject B, and the initial flow from A , and

A, 1 B is the empty set By convention, the flow from every subject to itself is

the entire set of ticket types T X R Thus the flow® function, for this mitial state,
is ag follows.

'See page 46
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A TXR ¢ $
A fhise} T XR )

B {67sc) ¢ TXHR

Tha Flow® Function

Consider how this system may evoive from the initial state without any create
oparationz.  The only tickets which can be transported are tickets of type f/sc and
there is ohly one subject Ei1 of type b By the self-reference assumption, 31
possesses the ticket B 1/5&: and, hence, this ticket can be transported to the domain
of A Since a/r € demand(t, B, can obtain the ticket A /r by demanding it These
two operations will establish a link from A, to B, resulting in the state shown

below.

Tha State k

The only ticket which can be moved is still the ticket B ,/sc. But there is no point
in trangporting it to the domain of B , oF A since both subjects already possess
this ticket Thus, in the absence of a create operation, no furthar linke can bae
introduced and the maximum possibie flow, between all pairs of subjects, has been
realized in state k. We will gall such s state a maximal state without crestes, and

denote the corresponding flow function as flow”.

It is a8 simpie matter to compute the flow” function for our axampie. The link
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from A , @ B, enables transport of tickets of type b/sc tickets from A , @ B
Since there is already authorization for transport of tickets of type b/sc tickets
fram A, to A by ftransitivity tickets of type b/s¢ can be transported from A, to
B , Hence, the flow from both A , &nd A2 to B ] is {b/sct. However, there ara
still no links directed towards A2 and the flow from both A  and B , © Az is still

the empty set Thus, we arrive at the foilowing values for the flow” function.

A, A, B,

A TXR ¢ {b/8c}
A foisel} T X R {b/sc)

B {b/sc} # TXHR

The Flow” Function

We now consider how the flow function may further evolve in the presence of
create operations. We authorize subjects of type 8 to create subjects of type 5.
ia,

can-create = {<3, b}

It is then parmissible for the subject A, to create a subject B, of typa 6 This

resuits in the following state.

© .

A Create QOperation
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The ticket” B /sc can be moved to the domain of A ;- Since there is a link from B,
to A2 and a link from A:e to A, where both thess links are authorized by the of/
function to transport tickets of type &4/sc. The subject Bz can obtain the ticket
A ,/r by a demand operation. Hence, it is possible to establish a link from A , o B2
az shown below.

The State n

. In this state tickets of type £H/sc can be transported from A, to A via the subject

B, Hence, the value of flow (A A s {t/sc}. Since tickets of type &/sc could

aready flow from B to A ,+ by transitivity the value of flow (B RENNL {s5/se}. The
flow” function is then as follows.

A TXR {b/3c} [#H/sel
A {b/se} T X R {bisel

B, | {b/scl {&/se} T X R

The Fiow"” Function

By examining the of/ graph on page 58, it is evident that only tickets of type

2Ev the self-copy cresta=-rule, which is the usad in all our axamples, 32 is crested with lesc in

ity domain,



63

b/sc can be transported. It follows that the maximum value of the flow function,
between two distinct subjects, is {6/scl. But this is exactly the value of the flow"
function for every pair of digtinct subjects. Hence, the maximum value of the flow
function, between subjects which were pressnt in the initial gtate, has been realized
in state n. We will call such a state 2 maximal state, and denote the corresponding

flow function as flow'. We now formaiize these concepis in the next section,

3.3. THE FLOW-ANALYSIS PROBLEM

There are two kinds of changes in the flow function, that occur ag the protection
state evolves. Firstly. the domain of the flow function changes as new subjects are
created. Secondly, for a given pair of subjects, the value of the flow function
changes as new links gre established. In our analysis we will for the most part,
focus on the latter kind of change  Indesed, analysis questions with respact to
subjects creatad subsequent to the initial state, can onhly be answered indirectly, as
for example:

For every pair of subjects A' and 8', which are descendants of A and B
respectivaly, there exists a derived stete k such that for all derived states
h wa have

flow"(A',B') £ Flow"(A,B)

That is, if a flow can be reslized betwesn two descendants of A and B
it can also be realized batween A and B.

We will obtain such resutis as corollaries to our main theme of analysis. which
focuses on the initial set of subjects.

Since there iz no provision for deletion of subjects, the initial set of subjects
continue to exist in all derived states., In order to focus on changes in the flow

function with respect to this set, we introduce the following notion.
Definition 3.4: For a given scheme and initial stste, we say that a
derived state m is a maximal siate if it is the caze that for all derived
gtatas h

(v<A,B> & SUB® X SUB®) [fiow"(A,B) £ Flow"(A,B))
[
We will shortly show that maximal states exist for every scheme and every initial
state. For the moment, let us assume that thic has been accomplished and consider
why we should be interasted in maximal states. By definition, in 2 maximal state the
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maximum possible vaiue of the flow function between avery pair of subjects, which
weare present in the initial state, has been realized Indewad, this iz the motivation for
introducing this notion and leads us to the following definition.

Definition 3.5: For a given scheme and a given initial state, define the

associgted maximal flow function

flow : 5UB° X 5UB° — power-set (T X R)
by restricting the domain of the flow function in a maximal state to the
initial get of subjects, ie,
(veA,B> & SUB® X SUB®) [fiow" (A,B) = flow™(A,B)]

where m is a maximal state, =
Clearly, a protection scheme constraing the evolution of an initial state only to the
extant determined by the flow™ function Of course, the actual flow function in 2
derived state may be considerably less permissive, as determined by the actions
undertaken by individual subjects. However, under a worst case scenario, the flow”
functioh is useful in answering questions about fickets which can be acquired by a
given subject In particular, consider the zafety problem of Harrison, Russo and
Uliman [€]. This problem poses the following question Is it possible for subject A
to acquire the ticket B/xc? Under the asswnptiona that the only copiable tickets
B/xc are those imtroduced in the initial state, this question can be formulated in
terms of the flow" function, as follows: Does there exist s subject C, who
possesses the ticket B/xc in the initial state and #B)x:c is in flow (CAR

Now let us raturn to the question of establishing the existence of maximal states
Due to the create operation, in general there are an infinite number of derived
stmtes. However, as far as the flow function betwesn subjects present in the initial
state is concerned, we can classify these states into a finite number of equivatence

states as follows
Definition 3.6: For a given scheme and initial state, two derived states g
and h are said to be equivaient (with respect to the initial set of
subjects) provided

(v<A,B> & SUB® X s5UBY) [flow¥ (A,B) = flow (A,B)]

SWe will dizcuss what happsns under the more gensral situstion, wheare copisbis tickets csn be
obtsined by » demand operation, on pags B85,
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This notion of equivalence is clearly reflexive, symmetric and transitive, thereby
partitioning the set of derived states into equivalence classes. Moreover, as argued
below, there are a finite number of such classes.

Lemma 3.1: For evary scheme and avery initial state, there are a fihite
numbar of aquivaience classes of derived states.

Proof. By examining the range of the flow function, it is evident there

are at most |SUB®|*x|power-setT X R)| distinct equivalence classes of
derived states. This is clearly a finite number. -

Consider any pair, g and h, of derived states established by the transition
saquences G and H respectively. By gefinition, H is a transition sequence which gan
be applied to the initial state. However, H can also be applied to the state g The
fact that the state transitions of G have occurred is of no consequence as far as
the legality of the state transitions in H are concerned. This property is crucial for

establishing the existence of maximal statas and is formalized below,
Lemma 3.2: Given a scheme and an initiai state, then for every pair of
derived states, g and h, there exists & derived state n such that

(V<A,B> € SUBY X SUB®) [flow?(A,B) U flow" (A,B) € flow"(A,B)]

Proof: Let the derived states ¢ and h be established by the transition
sequences G and M respectively. By lemma 2.1 on page 50, we can

assume, without any loss of generality, that G and H are in canonical

form® Construct a sequence N of state transitions, in canonical form, as

follows®:

1. The create oparations of N are the creaste operations of G
followed by the create operations of H, except that any create
operation of H which duplicates a create operation of G is
eliminatad.

2. The demand cperations of N are the demand operations of G
foliowed by the dermand operations of H,

3. The transport operations of N are the transport operations of G
followed by the transport operations of H

‘A transition seQuence is in canonical form if all greate operations precede sl demand operations
which in turn precedsa all transport operstions.

®There wre several alternate ways by which N cen be constructed from G and M. Somewhat trivialiy,
we can switch the rolss of G and M in the construction. More significantly,. we can interleave the
operstions of G and H in any ranner a3 long a5 the roistive order of the operetions of G and of the
oparations of H is preserved, Indeed, thera is no nesd for any of G. H or N to be in canonical form,
excapt that it doet maks the statement of the proot s little sasier,



We nesd to show that N is a fransition sequence, ie, eavery state
transition in N is legal The authorization for the create and demand
operations iz determined by the types and is independent of the

protection state except for an axistence ruquimmunts. The legality of
the creste and demand operations of N follows immaediately from the
legality of these operations in G and in H The transport operations of N
consist of two parts:

1. The transport operations of G

2. The transport operations of H.

Once the create and demand operations of G have occurred, the
trensport operations of G are legal The fact that there ares some
additional create and demand opaerations does not affect the legality of
these operations. Similarly, onhce the create and deamand operations of H
have occurred, the transport operations of H are legal The fact that
there are some additional create., demand, and trangport operations does
not affect the legality of these operations. Hence, all operations in N are
legal.

Now, consider the state n established by the fransition sequence N It is
evident, from the construction, that any path in state g from a subject A
to a subject B is duplicated in state n. Similarly, sny path in state h from
a subject A to a subject B is duplicated in state n The lemma foliows
immediataly. -

states.

Lemma 3.3: Given a scheme and an initial state, then for every finite
collaction § of derived states there exists a derived state m such that

(vs & %) (v<A,B> & $UB® X SUB®) [Flow® (A,B) & fiow"(A,B)]

Proot; The proof is by induction on the sire of 5. For the basis case
let & be empty. The lemma is then trivially true, since the initial state
meats the requirements for the state m Assume, as an induction
hypothesis, that the lemma is true for all § of size k. Consider the case
where tha size of § is k+1, Then, § can be axpressed as

$=5"U {n}
where S' is of size k By induction hypothesis, there exists a state n
which satisfies the reguirements of the lemma for the sot §'. But then,
by applying lemma 32 to the states n and h, there exists a state m
which satisfies the requirements of the lemma for the set S =
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It iz a simple matter 10 extend this union property to any finite collection of derived

GTl'm iz, if A creses B then A must exict; and if A demands B/x:c then both A and B must axist
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We are now ready to prove the existence of maximal states

Theorem 3.4: For every scheme and avery initial state, there exists a
maximal state; ie. there exists a derived state m such that for avery
darived state h

(v<a,B> & SUB° X SUB®) [fiow"(A,B) & fiow™(A,B)]
Proof: By lemma 3.1, we know there are a finite number of equivaience
classes of derived states. Let S be a collection of derived states such
that S contains exactly one member of each equivalence class. Clearly S
is finite. By lemma 3.3, there exists a derived state m such that

(Ve & S) (v<A,B> & SUBY X SUB®) [Flow® (A.B) € flow"(A,B)]

By definition of S, for every derived state h there is a member of S
which is equivalent to h The theorem foliows from this fact and the
above equation. -

We saw in section 3.2 that the flow" function is sensitive to the craate operation.
The exampie we prasented was carefully designed so the that the maximum flow
achievable under the constraints of the ¢f/ function was quickly arrived at Clearly
this situation does not qualify as & generally applicable termination condition for
computing the flow" function The existence of a create oparation allows tha set
of subjects to evolve in an unbounded manner. in our research we have not been
able to formulate a suitabie termination condition to determine whether creating
more subjects might or might not affect the flow function OQur conjecture is that

tha flow™ function is computable, but for now this i an opsn duestion

Due to our inability to compute the flow" function, we introduce the following

notion.
Definition 3.7: For a given scheme and a given initial state. we say that
a function
flow': SUB® X SUB® — power-set (T X R)

iz an {upper] bound on tha flow function if
(v<A,B> & SUB® X SUB®) [Flow" (A.B) S flow! (A,B)]

Woe say that a bound is realizable if it is identical to the flow™ function
]

It is useful to introduce the foliowing notion #s a theoretical device in obtaining a
bound on the flow function,
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Definition 3.8: For a given schems and a givan initiai state. define the
associated maximal flow funotion without orestes

flow’: SUB° X SUB° — powsr-set (T X R)

to be the flow’ function which results from the same initial state, but
with the given scherfme modified by setting can-creste = ¢ while laaving
all other parameters unchanged =

Since the set of subjects cannot change, the flow” function can be computed in a
straightforward manner. This computation iz described in appendix C4, whaere it is
shown that the cost is no worse than O(|5UB°|5).

it follows wnmediately from the definitions that for every pair of subjacts, A and

B, which were present in the initial state

Flow®(A,B) S flow’ (A,B) € flow" (A.B) & flow! (4,B)
This sequance of inclusions leads us to three different approaches to the flow-—
analysis problem, briefly sketched out below.

in this chapter we investigate two different techniques for obtaining a bound on
the flow function Due to the role of the df/ function, it it possible to obtain a
bound on the flow function without considering the structure of a given initial state
Wa derive this bound in section 34. Such a bound is useful, since it can be
computed quickly and applies to avery initial state. Howaever, since the structure of
the initial state 5 hot taken into account, this bound may be too permissive. In
section 3.5 we develop e technique for computing and refining a bound on the
fiow function, which takes into consideration the given initial state . The basic idea
is to reduce this problam to computing the flow” function. In order to do so, we
augment the initial state by introducing a finite number of new subjects. Wa show
that the flow” function which results from such an augmentsd initial state provides
the desired bound. Our construction demonstrates that the impact of created
subjects can be accounted for by introducing a finite pumber of subjects in an

appropriate manner.
In chapter 4, we discuss the notion of creste-invariamt schamas. These schemes
are defined by the requirement that for all initial states
(v<A,B> & SUB® X SUB®) [flow (A,B) = flow” (A,B)]

For such schemaes, computation of the flow™ function reduces to a finite problerm.
Our analysis provides guidelines by which a designer can guarantee this property.
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in chapter 5, we discuss the notion of flow-invariant schemes. These schemes
are dafined by the requiremant that for all initial states

(v<A,B> & SUB° X 5UB%) [flow" (A,B) = flow®(A,B)]
For such schemas, the initial authorization for transport of tickets can never change.
Once again, computation of the flow~ function reduces to a finite problam and our

analysis provides guidelines by which a designer can gusrantes this property.

3.4. THE INDIRECT FLOW LiMIT FUNCTIGN

The of/ function imposes a jimit an the types of tickets which can ba directly
trangporied between two subjects. It also implicitly limits the types of tickets which
can be indirectly transported. In this section we deriva the indirect flow limit
function. denoted as /f/. to express the iimit on hoth indirect as well as direct
transport of ticket types.

We first gefine the mediated flow limit function, dencted as mf/. This function
takes into account the actual path which might be invoived in an indirect transport
of tickets. For our immadiate purpose, it serves as a convenient notation which
assists in expresging a formal definition of the /#/ function. However, the mf/
function will be é useful ool in the analysis of chapters 5 and 6.

Consider an axample where we danota subjects of type & by A . and subjects of
type b as B - The situation below depicts a path from subject A , subject El1 vig
the subjects Az‘ 52 and Aa_ .

There is authorization to transport tickets of type c/xc from the domain of A, to
the domain of B, over this path if and only if

1. Tickets of type o/xe can ba moved from dom(A ,} 1o domia ).

2 Tickets of type o/x¢ can be movad from demiA ) to domiB ).
Tha first condition can be written in terms of the &7/ function as

c/xe & gff(a,a) N dfta,b) 0 dff(b,a)
The second condition is simply that
c/xic & dff (8, b)

Since tha spacific identity of the subjects involved in the path is not relevant. there
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is exactly tha same authorization for transport of ticket types over the following
path from A, to B, '

What is relevant is the type of the subjects i the path

in order to avoid writing out a long seguence of intersections, we will introduce
the mf/ function so that, for the above exarnpie.

¢/xic € mfl(a,aba,b)
e

[c/xc & off(s,a) n df/”(a.b) a dfi(b,a)] A [efxic & gfl{a,h)]
The mff function takes three arguments. The first argument is the type of the
subject at the source of the path. The third argument is the type of the subject at
the dastination of the path. The second argumant is a string which represents the
typas of the subjacts encountered while traversing tﬁe path from tha source to the
daestination. Tha special case whan the second argument iz the empty sgtring, quite
naturatly, accounts for the case whare a path consists of a singie link By
definition, the &7/ function specifias the authorizatien for transport of ticket types
over a‘singlu link. Hence,
mif{a,A,b) = dri(a,b)
whara A danoctes the empty string.

Lat T; denota the Kiegene closura of Ts: and lowar case Greak |atters, such as «

and B, denote strings from tha set T;. The mf/ function is then defined recursivaly

as follows.
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Definition 3.8: For every df/ function, define the associated madiated
flow limit function
mff: T, X T2 X T, — powsr-set (T X R)
by
1. For the empty string A
mf/(a,h,b) = dfi{a,b)

2. For a string of the form ad

c/x:c & mfl{a,ad,b)
L

[c/xc & mf/(a,a, )] A [c/x:c & dfl{d.D)]

The mi/ function expresses the authorization for transport of ticket types over a
path consisting of a particular sequence of types of subjects. The limit on
transport of tickets over any combination of paths is then captured by the foliowing

definition.
Definition 3.10: For every Jf/ function, define the associated indirect
flow limit function

i T X T, — power-sat (T XR)
by
c/xic & iff{a,b) == (Ia) [c/x:c € mffla,x,b)]
]

Thus ¢/x:c € if/la.by if and only if it is possible for a ticket of type ¢/xc to be
transported, either directly or indirectly, from a subject of ‘typa.a to a subject of

type O.

For the sample of/ function, whose graph is shown helow

{b/s. olpe, olu}

{t/sc, afpc, ofuct .o.o. {o/pl

{b/se, ofpe, ofu}

the associated /f/ function is
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it (a,a) {6/sc, o/pc, ofucl
ifi(a,b) = {b/s, o/pc, o/u}
AN {t/sc, o/pe, ©/u}
it {h,b) fb/s, o/pcl

Now consider two subjects B, and B, both of type & The following facts can be

daduced from the value of if/(b.5.

1. It might be possible to transport a ticket of type o/pc from B to B,
aven though this transport cannot be directly from B ] to B:‘

2. A ticket of type b/sc can never be transported from B, to Bz.

3. It might be possibla to transport a ticket of type b/s from B, to B,
evan though this transport cannot be directly from B, to B,

It follows immediately from the definition that the values of the flow function are
constrained by the /f/ function as stated below.
Theorem 3.8: For evary scheme and every pair of distinct subjects A
and B, in avery state k
Flow (A,B) G /f/ (t(A) ,t(B))
]
The if/ function then provides an upper bounhd on the flow function independent of
the particular initial state. As discussed in appendix C.2, the /f/ function can be
computed from the df/ function in a streightforward manner with a cost of
ol T X R|#|T_|%

3.5. THE AUGMENTED FLOW FUNCTION

in this section wa develop a technique for computing an upper bound on the flow
function accounting for the structure of a particular initid state.

Let us refer to subjects not present in the initial state as created subjects. Every
created subject has & unique crestor. Thus, for every crested subject there is
some uhique ancestor which was present in the initia) state. For a created subject
A we call this unique ancestor the originator of A, written as org(Al For thosa
subjects A which were present in the initil state, we define orglAl to ba A itself.
The org function is formally defined below.
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Definitlon 3.1 For every derived state k, define the associated
origimtor’ function
org: SUB¥ — suB®
as follows
1. If A € SUB® then org(A) = A.
2. If B was created by A then org(B) = org(A).

A subject B such that orgB) # B is called a crestad subject A created
subject B such that org®) = A is called a descendant of A, ]

Every subject can potentially spawn an unbounded number of descendants. We
will simulate the impact of this unbounded set of subjects by augmenting the initial
state. Specifically, we will introduce a finite number of new subjects in such a way
that the actions of any descendant can be simulated by the actions of one of the
subjects in the augmented initial state. We say that these subjects act as surrogates
for all possible descendants.

We iliustrate this construction by means of an example, before defining it formally.
Consider 2 scheme with four subject types so that
T = {8,b,c,d}
lLet the can-create relation be
can-create = {<a,b>, <b,8>, <b,c>, <c,c>, <d,d>}
The trangitive closure of this can-create relation is the set
{<a,a>, <a, b>, <a,c», <b,8>, <b,b>, <b,c>, <¢,c>, <d,d>}
Now consider any subject A of type & present in the initial state. Tha pairs in the
transitive closure of the can-creste relation with & &s the first element are
<g, 8>, <a,lb>, <a,cr
Hence, any descendant of A will be of type a 5, or ¢ We will augment the initial
state by introducing two new subjects, say B and C, of type / and ¢ respectivaly.
The idea is that

s The presence of any type 2 descendant of A will be simulated by the
presence of subject A itself,

TSinca the org function is sssocisted with 8 particulsr gtate, tha astute resder may wonder why wa
have not indicated this by s explicit superscript.  We have omitted doing 50, bacauze of the nature
of this function. Specifically, once s subjagt A has been crested orglA) iz defined and remains
constant thersafter.
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s The presence of any type b descendant of A will be simulated by the
presence of subjact B.

e The prasance of any type ¢ descendant of A will be simulated by the
prasance of subject C
Dua to their intended role we say that the subjects A, B, and C are, raspeactively,

the & b, and ¢ surrogates of A In order to achieve the desired effact, we
distribute transport tickets for the subjects A, B. and C as determined by the

following rule.
For every pair of subjects

<X,Y> & {A, B, C} X {a, B, c}
such that .
<t (X) ,t(Y)> & gan-creste

introduce all tickets required by the create-rule by pretending that
subject X creates subject Y. The paire which satisty this requirement are

<A,B>, <B,A>, <B,C», <C,C>
Observe, in particular, occurrence of the pair <C.C> in the above rule. Now, of
course, C cannot craate itself. Mowever, we do introduce all tickets required by the

<¢.0> create—rdle in the domain of C itself.

Now, consider specifically the craate—rule of seif-copy craeates. The tickats

distributad would then result in the following links

These links would be established by tickets without the copy flag. Additionally the
self-reference tickets would be given to each of these subjects so that

A/sc, A/rc & dom(A)
B/sc, B/rc ® dom(B)
C/s¢c. C/rc € dom(C)

We refer to this construction as appending surrogates to the subject A The
augmented initial state is constructed by appending surrogates to every subject

present in the initial state. We now defing these terms formaily.
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Definition 3.12: By the term mppend surrogstes 1o subject A, we mesn
that a given state is augmanted as follows.

1. Dencte subject A as A and its type #(A) a5 2,

2 For every subject type a ¢ a_  such that <a s > is in the

i o o
transitive closure of can-create, introduce a new subject A \ of

type a_.

3. Refer to A as the a, surrogete of A Let the a, surrogate af A
be the subject A itself.

4 For every pair <A 1,ﬁ\ _1} of surrogates of A, such that <s ;8 j:- is

.8, > create—rule

in can-create, place all tickets required by the <, f

by pretending that subject A creates subject AJ.

o
Definition 3.13: The augmented initial stste iz obtained by appending
surrogates to every subject in the initial state. We denote the set of

subjects in the augmented initial state by SUB™“Z. )

Next, we define a mapping from the set of subjects in any derived state to the
set of subjects in the augmented initial state

Definition 3.14: For every derived state- k, define the surrogate®
funetion

surr: SUB® — syg*-®
by

surr (A) = r(A) surrogate of org(A)

in particular, observe that
1. Every subject present in the initial state is mapped to itself.
2. Two created subjects B, and B, both of type & such that
orgB )} = orgB,) are mappad to the same surrogate subject in the

augmented initial state.

3. The surrogate function preserves typaes, in the sense that

aS-n the footnote on page 73, in the contaxt Of the org function, for an explanation a3 to why
the surr function is not defined with an explicit superscript to identify the siate.



76
t(surr(A)) = t(A)

We are now ready to prove that the augmented initial state serves as a basis for

computing an upper bound on the flow function. We need one final definition.
Definition 3.15: For a given scheme and initial state, define the
associated sugmaentad flow function

flow': SUB*9 X SUB™® — powar-set(T X R)

to be the flow” function {ie. the maximal flow function without creates)
for the same scheme and the augmented initial state. =

t

The following theorem establishes that the flow' function is an upper bound on the

flow function. The proof demonstrates that the impact of any subject A can be

simulated by tha presence of surr(A)
Theorem 3.6: For every scheme and every initial state, it is the case
that for every derived state h

(V<A,B> & SUB" X SUB") [flow"(A,B) € flow! (surr (A),surr (B))]
Proof: Consider any transition sequence H which applied to the initial
state results i state b We will modifyg H to obtain a transition sequance

G, with no creates, such that G applied to the augmented initial state
establishes state g with the property that

flow" (A,B) £ Tlow? (surr (A),sure (B))

Since our construction of G is for an arbitrary H, we will have

establishad the desired result It will ba convenient for us to assume that

H iz in cenonical form'® and, by lemma 21 on page 50. we can do so

without any loss of generality. G is obtained from H as follows.
1. ignore all create operations in H
2. Raplace all demand operations in H as follows.

A demands B/x:c in H
becomes ©
surr (A) demands surr (B} /x:c in G

HTM ides behind this conztruction vwas first used by Minzky [15] in the context of the uniform

sand—-racaiva schema,

“:’A tranzition zequence H iz in canonical form if all create operations precede all demand

operations which in turn precege all trenzport operstions.



4. Replace all trangport cperations as follows.

move A/x:c from dom(B) to dom(C) in H
becomes
move surr (A) /x:c from dom(surr(B)) to dom(surr(C}) in G

in the first part of the proof, we will establish the following facts.

1. G is a transition sequence”

2. A/x:c € dom' (B) == surr (A)/x:c @ com® (surr (8))

it follows immaediately from assertion 2 that

1ink" (A,B) == 1ink® (surr (A) ,surr (B))

We will use this consequence of assertion 2 in the sscond part of tha
proof. The two assertions above are provad by induction on the number
of transport operations in H

Basis Case: For the basis case let the numbar of trangport operationg in
H be QO The sequence H then consists of a sequence of creata
operations followed by a sequence of demand operations, while G
consists of a sequence of demand operations.

Assertion 1: In the construction of G the replacement for the demand
operations is that
A demands B/x:c in H

becomes
surr (A) demands surr (B) /x:c in G

The authorization for demand operations is in terms of subjsct types and
is independant of the particular state, except for the reguirement that the
subjects must exist'>, By definition, the surr function preserves the
subjact type. By construction, surr(A) and surr(B) exist in the augrmented
initial state.  But then, since the demand operation in H is legal the
corresponding demand operation in G is alsc legal

Assertion_2: Since there sre no transport operations, there are only
three ways by which the tickat A/xc can appear in dom™(B).
Case (i The ticket A/x:c is in the initial domain of B. This is
possible only if A and B are in the initial set of subjects. But
then, surr(A) = A and surr(®) = B, and assertion 2 becomes

"

i2

That is, avery atate trangition in G iz legal.
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‘That is, i A demands B/x:¢ in state k then both A and B must exist in stete k for the opsration
to be memingful.



A/xic € dom®(B) == A/x:c ® dom®(B)
This is trivially true.
Case (il The ticket A/xc appears in the domain of B due to a
creste operation. But then, by construction of the augmented

initial state, the ticket surr(Al/x:c is placed in the domain of
surr(B).

Case (i The only other way for the ticket A/xic to appear in

dom™B) is via a demand operation. But then, the
corresponding demand operation in G ensures that assertion 2
is true.

Thus, for the basis case where H has no transport operations, both
assartions are trua

Induction Step: Assume, as an induction hypothesis, that the assertions
zre true for every transition sequence H with k transport operations.
Consider the case of & ftrangition sequence H with k+1 transport
operations.  Then, H consists of an initial sequence H' with k transport
operations followed by a single transport operation. Let the state
established by the transition sequence H' be denoted as hk. Let ' be
the required modification of H', and let the state established by G' be
danoted as gk. By ihduction hypothesis G' is a transition sequence. Lwet
the k+1%*% transport operation of H be

move A/x:c from dom(B) to dom(C)

Assertion 1 In order for the k+1%% transport operation of M to be legal,
we must have
1. A/xc € dom™ (B)

2. 1ink™ (B,C)
3. t(A) /x:c & gfi{t(B),t(C))

By induction hypothesis 2, we then have

A/xc & dom™ (B) == surr (A) /xc & dom®™ (surr (B))
1ink™ (B,C) == 1ink® (surr(B),surr(C))
Since the surr function preserves types, we have

t(A) /x:c & gff(t(B).t{C)) ==
t{surr (A)) /x:c &= of/ (t{surr (B)) ,t{surr {L}))

But then, the three conditions required to asuthorize the corresponding
transport operation in G are true.

Assertion 2: The state h differs from tha state hk at most by
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A/x:c & dom” (C)
But then, the corregponding trangport operation in G ensures that

surr (A) /x:c = dom® (surr (C))

This completes the induction step and we have established both
aggertions.

It now remaing to show that for every derived state h
(v<A,B> € SUB™ X SUBM) [fiow”(A,B) € flow! (surr (A),surr (8))]

Let pathh and path¥, respectively, denote a path in state h and in state

g Given any path" from A to B, we will show there is a puth° from
surr{d) to surr(B) with at least the same authorization for transport of

ticket types as the path” from A to B. The proof is by induction on the
number of links in the path” from A to B For the basis case, consider a

path” from A to B of length 1, ie, the path consists of a single link, By
assertion 2, we have

tink"(A,B) == 1ink?(surr (A),surr (B})
Since the surr function preserves types, the Jf/ function authorizes
exactly the same transport of ticket types for both these links and the
basis case is true. Assume that the hypothesis is true for every path”
of length k, and consider a path” from A to B of length k+1. Then
there is some subject C, such that there is path” from A to C of length
k and link"(C.B). By induction hypothesis, there is a path® from surr(A) to
surr(iC) with at least the same authorization for transport of ticket types
as the path” from A to C. By assertion 2, there is a link? from surr(C) to
surr(B). Again, sihnce the surr function preserves subject types, the
authorization for transport of ticket types across this link? is the same as
that for link™C.B).. But then, there is a path? from surr(A) to surr®) with
the same authorization for transport of ticket types as the path" from A

to B. This establishes the induction step and concludes the proof of the
theorem. L]

function. Specifically,

1. We show that the flow' function provides a sharper bound than the
if! function.

78

inh appendix C.5 we show that the cost of computing the ﬂc:ow‘r function is neo
worse than O(]T_|®¢|SUB°|®. This computation may clearly be expensive in the
worst case, but nevertheless it is tractable. Wea now consider an exampls to

illustrate several sspects shout this technique for computing 2 bound on the flow
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2. We show that the flow! function may not be realizabie and, hence, the
bound may be too permissive.

3. Finally, we demonstrate that a sharper bound can be obtained by
modifying the construction of the augmented initial state.

The scheme for our axample has the df/ function shown beiow.

a b c

& faire} {a/rcl lcircd
b ¢ ) {a/re}
¢ {c/re} é é

{eirc)

{a/rc}

The Dfl Function

Let the authorization for the demand operation be

demand{a) = {a/s. b/s, c/s}
demand (b} = {a/s, b/s, c/s}
demand (¢} = {a/s, b/s. c/s}

Then, every subject can obtain a send ticket for any subject by demanding it and
the transport operation is effectively controllad by the distribution of receive tickets.
Let the authorization for the craeate operation be
can-create = {a,b,ct X {a,b,c}

so that every subject is authorized to create subjects of every type. Finally, lat the
semantics of the create operation be as specified by the seif-copy create rule (see
definition 2.11 on page 431 and assume that the intial state is constrained to be a
balanced selif-copy state (see page 46).
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Consider the initial state below with two subjects A , and A:z' both of type &, such
that there is a link from A ; 1 A, but not vice versa

©

Tha Initial Stata

Since there is only one link, the flow® function is trivial to compute and we have
the following values

flow’ (A ,A) = {a/rc}

flowo(Az,AT) = ¢
The augmented initial state is obtained by appending surrogstes to A and A2
resutting in

The Augmentad initial State

The fiow' function can then be computed by the algorithm developed in
appendix C.4 or simply by constructing all possible links by inspection. In particular,
the self-reference ticket A Jre can be moved from the domain of A , o the domain
of C2 by usir}g the path via A2 and Bz. A\1 can acquire the ticket szs by a demand
operation, hence, establishing link(A1,C1). This resuits in the following stata.

It turns out that the other jinks which can be established are irrelevant to computing
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the flow'r function with respect to A , and A, Thase links are link(A Bk
link(C A L and linkiC,.C ). None of these links establishes a path from A_to A
Hence, there is still no flow from A  te A The path from A , to A, via C can

be used to transport tickets of type c/rec from A | to Az' The ﬂowf function is
then as follows.

flowT(A“A:) = {a/rc, cfrc}

‘r -
flow (A ,A ) = ¢

By inspaction of the Jf/ graph on page BO, it is evident that
ifi(a,8) = {8/rc., c/rc}

Howaever, the flowf function specifies an empty fiow from A, to A  and hence,
provides a better bound than the 77/ function.

On the other hand, the flow'r function aliows for a flow of afrc and c/rc tickets
from A1 to A2. The fiow of #/rc tickets was already authorized in the initial state,
but it is not ciear whether the flow of c/rc tickets from A , W A, can actualiy be
attained. Indeed, we will shortly show that the latter flow cannot be achisved and,
hance, the flow.r function is too permissive. In doing 50, we demonstrate & general
technique which can be used to obtain a sharper bound on the flow function than

-'.

providad by the flow' function

Lot us reconsider the motivation for appending surrogates to every subject in the
initigl gtate. By appending surrogates to a particular subject A, the idea was to be
able to simulate all possible subjects that A rmight originate by mapping such
subjects to one of the surropates of A Now the subjects originated by A, form a
trae with A at the root and each created subject as a child of its creator. The
mapping defined by the surrogate function treats subjects at all levels of this tree
uniformly. Since there is no bound on the depth of such a tree, at some point we
need to tfreat all levels uniformly. However, we might be able to improve our
bound if we treat the first few levele of the tree differently.

in particular, consider the first ievel of the tree. The subjects at this level are all
directly created by A Assume that the can-creste relation authorizes A to create
subjects of type & Now, consider that A crestes two subjects B , and B, both of
type £ Since the perameters of any scheme sre defined in terms of types, it is
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intuitively rsasonable to expect that any impact that the presence of B, may have on
the flow™ function can as wall be achisved by the presence of B , Indeed, the

prasgnce of B2 can be simuiated’? gimply by pretending that the subject B , 18
actually two subjects B , and EZ. By extension of this argumant, 31 can simulate the

presence of any number of direct descendants of A which are of type b

Wa use this idea to introduce the netion of an unfolded state We say that the
subject A is unfolded one leval if A creates one subject of typa & for every
subject type b that A is permitted to crsate. Going back to our example initial
state, raproduced below |

O, ()

The Initial State

we can unfold A one level by assuming that A, creates subjects A, B, and C_ of

types a &, and ¢ respectively. This resuits in the following state

An Unfolded Initial State

Wa can now apply the technique of appending surrogates to this unfolded initial
state. However, there is no need'® to append surrogates to A, because the direct
creates of A, are already accounted for by the unfolding of A, and the indiract

creates will be accounted for by the surrogates of Aa' B. and Ca' This

3
construction then resuits in the foliowing state.

1 . . .
3Jf\ tormal proaf of this fact can be obtained by an induction similar 10 that used in the pronf of
thecrem 3.6 on pags 76.

%a formal proot of this fact can be obtsined by an induction similer to that usad in the proof of
thaoram 3.6 on page 76.



The Augmeanted Unfolided Initial State

As bafore, Iet us denote the flow” function (ie. the maximal fiow function without
creates! for this augmentsd_ initiat state by flow . We can compute this function by
the technigue discussea in appendix .4 or, simply, by constructing all possibia links
by inspaction.  This set of links is somewhat messy to show and perhaps. the

ragder will accept our ciaim'® that
flow'r(A1.A2) = {a/rc}
T -
flow (A,.A) &
By our earlier discussion, we know that the flc:w* function provides an upper bound
on the flow function in this particular case. the f|ow+ function happens to be

igantical to the flow® function and, hence, provides an exact vaise for the flow”

funstion.

For this exampie a single unfolding of one subjact yielded an axact value for the
flow™ function. In general, this unfolding technique can be applied for several laveis
of the create tree and to saversl subjects in the initial state in an attempt to obtain

a sharper bound.

Every unfolding increases the number of subjects in the unfolded initial state. This
incraase is reflected in the corresponding augmented unfolded initial stata. At the

same time, avery unfolding may improve the bound on the fiow functien. There is

1
5Tha crucial point is that it is not possible to establish 2 link from A1 to CB'
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an chvious tradeoff invoived here. An important open guestion ig to investigate the
nature of this tradeoff, as well as to develop a systamatic method for unfolding

which progressively improves the bound

Wae conclude this section by returhing to the question of how the safety problem
of Harrison, Russc, and Uliman [6] can be reduced to questions about the How '
function, This problem poses the following question: s it possible for subject A to
acquire the ticket B/xxc? We observed, on page 64, that under the assumption that
the only copiable tickets B/xc are those introduced in the initial state, this question
can be formulated in terms of the flow" function, as follows: Does there exist a
subject C, who possesses the ticket B/xc in the initial state and #B)/xc is in
flow™ (C.A? In a more general situation, copiable tickets can also be obtained by a
demand operation. At first thought, it seems that we can account for this simply by

translating the safety problem as follows.
Does there axist a subject . who either pogsesses the ticket B/xc in
the initial state or who can obtain it by a demand operation. and B)Y/xc

is in flow (C,A)?
Howavar, this formulation does not account for the possibility that 2 crested subject
might obtain the ticket B/xc by a demand operstion. In order to account for this
possibility, we nesed some characterization of the flow function for such subjects
Fortunately, we have such 8 characterization in theorem 3.6 which states that for
svery derivad state h

(v<A,B> & SUB" X SUB™ [flow" (A,B) & flow' (surr (A),surr (8))]

In ling with our basic theme of types it is reasonable to assume that the ability to
obtain tickets by means of a demand operation is determined by the type of a given
subject’®.  Modulo this assumption, the safety problem can be formulated as
follows.

Does there exist a subject C in an augmented unfolded initial state, who

either possesses the ticket B/xc or can obtain it by a demand operation,

and tB)/xc is in flow (C.AR

Of course, since the fiow! function may not be reslizable, an affirmative answer to

this question does not necessarily imply an affirmative answer to the corrasponding
safety problem. At the same time, a negative answer to this question does imply a
negative answer to the corresponding safety problem.

16 .
In our design framework, we have made this sgsumption with respect 10 demanding trangport

tickets. Here. we ara extending it to cover all tickets.
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3.6. SUMMARY

in section 3.1 we defined the flow" function to express the authorization for
transport of tickats from domi{A) to domiB), in state k, accounting for indiract as
wall as direct transport In section 3.2 we discussed an example to demonstrate

how the flow function may evolve from a given initial state.

in section 3.3 we introduced the notion of a maximal state, which is & derived
state ih which the maximum possible value of the flow function, between subjects
present in the initial state, has been attained. We showaed that a maximal state
exists for every scheme and every initial state We then defined the flow™ function
to be the flow function in 2 maximal state, but with the domain restricted to the
inmal set of subjects. A protection scheme congtraing the evolution of an initial
state only to the extent determined by the flow" function. The create operation
presents a major complication in computing this function, since the protection state
can evolve in an unbounded manner. Wea were not able to arrive at an aigorithm
for computing the flow™ function or demonstrate that it is not computable.  We
introduced the hotion of a bound flow’

that

on the fiow function, by the requirement

(v<A,B> & 5UB° X SUBY) [flow  (A.B) & flowf(A,B)]

We also defined the flow” function to be the fiow™ function which would result if
the create operation was eliminated Since the set of subjects does not change the
flow” function is easily computed

Stated broadly. the flow-analysis problem is to detarmine propertiss of the flow
function in derived statas. It immediately follows from our definitions, that for
avary pair <A B> of subjects present in the initial state

flow®(A,B) € Flow* (A.B) & flow* (A,B) € flow! (A,B)
This sequence of inclusions leads us to three different approaches to the fliow-—
analysis problem as follows.

1. Develop techhiques for computing 8 bound on the flow function Two

such techniques, viz, tha /// function and the flow* function, were
discussad in this chapter,

2. Investipate conditions under which the flow~ function is identical to the



flow* function Schemes with this property are said to be create—
invariant and are studied in chapter 4.

3. Investigate conditions under which the flow™ function is identical to the
flow? function Schemes with this property are said to be flow—
invariant and are studied in chapter 5.

In gection 3.4 we derived the /f/ function which provides a bound on the flow
function without considering the structure of a particular initial state. This function
is defined in terms of the Jf/ function and can be computed with a cost of

3
ofT X R|*1T5| L

In saction 35 we developed a technigue for compuiing a bound on the flow
function tsking into account the particular initial state. This technique augmented the
initial  state, by introducing a finite number of new subjects for avery subject
present in the initial state. We proved in theoram 3.6 that the flow” function which
results from an augmentad initial state provides a bound on the flow function. This
bound can be computed with a cost no worse than O(|T5|5*|SU°|5). Wae then
demonstrated by means of an example that

1. This tachnique provides a sharpsr bound than the 77/ function.

2. The bound may not be reaslizable.

3. The bound can be improved by unfolding the initial state
It is an open gquestion to determine the tradeoffs involved in improving the bound in
this mannar. ‘



88

CHAPTER 4

CREATE-INVARIANT SCHEMES

The major complication in computing the flow™ fumction arises from the create
operation. In the previous chapter we showed that the impact of any number of
cragted subjects could be accounted for by augmenting the initial state by
introduction of a finite number of surrogate subjects. This enabled us to computs

an upper bound on the flow function

in this chapter we congider another method for simulating the impact of created
subjects. The idea is that every subject wili be abie to simulate the actions of its
descendants. To this end we define the following notion of a create—invariant
schema.
Dafinition 4. A scheme is create-invariant if for every initial state it
is the case that
(v<A,B> & SUB® X SUB®) [flow™ (4,8} = flow” (A,B)]
]
For a create—invariant scheme computation of the flow~ function reduces to a finite
problem which has a straightforward solution with a cost no worse than O(| SUB® | ™)

Minsky [15] demonstrated that the uniform send-receive scheme s
create—invariant’.  In this chapter we will generalize this result The sexample
discussed in section 3.2 demonstrates that our framework admits schermes which
areé not cresta-invariant Our strategy here, is to devise constraints on the initial
state and the can-create relation which enable us to ighore the effect of created
subjects.

1For the uniform gcheme the create—invariant property smounts (o requiring that plth‘(A.E) it and

only if path#(A,B). Sas theorsm 1.1 on page 26
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Let us first consider the initial state. As shown in lemma 1.2 on page 26, for a
uniform scheme there is no loss of generglity in assuming that every initial state

satisfies the self-reference assumption, ia.,

(VA = 5UB®) [A/sc € dom®(A) A A/rc & dom® (A)]
This aspect is crucial in establishing the create-invariant nature of this schema. In
particutar the self-reference tickets for a subject A are used to simulate tickets for

ahy descendant of A,

In this chapter we will impose the self-reference assumption as a constraint on
the initial state. If this assumption is not true then the the initial state can be
augmentad by introducing the seif-reference tickets in the domain of every subject
The resulting flow” function will then provide an upper bound on the flow function
rather than an exact value of the flow” function The cost of computing this bound
i5 no worse than O(lSUBDIE) in contrast to the possibility of an C}([TS[BHSUBOIE)
cost for computing a bound via the technique of section 35. Hence, the results of
this chapter are useful even if the self-reference assumption is not true. Moreover,
this technique for obtaining a bound can be used after one or more subjects in the
initial state have been unfoided ona or more isvels, as discussed on page 83 in the
previous chapter. Then the self-reference tickets need not be introduced in tha
domains of subjacts which have been unfoided. Thus, the sslf-reference
agsumption allows us a quicker technique for obtaining and refining a bound
provided the scheme is create—invariant under this assumption

in saction 4.1 we propose a definition of weak creates and show that any scheme
for which the can-create relation is constrained in this manner is create—invariant for
seif-reference initial states. This definition of weak creates, at the least. allows
every subject A to create subjects of the same type az A and, hence, always
admits a non—empty can-create relation.

Qur definition of wesk creates has four conditions. in section 4.2 wae
demonstrate that dropping any ome of these conditions allows for schemes which
are not create—invariant In this sense, the four conditions proposed in saction 4.1
are all required. In section 4.3 we discuss a particular class of schemes, calied
hierarchical schemes, to demonstrate the kind of situation for which weak craastes
ara useful
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4.1. SCHEMES WITH WEAK CREATES

It is appealing to consider a situation where g subject A is allowed to create s
subject A' only if A' is "no more powerful than" subjact A If the notion of “no
more powerful than" has baen correctly formuilated, any scheme constrained in this
manner should be create—invariant; since presumably the impact of a subject's
actions cenhot be amplified by creation of new subjects. This is the basic intuition
underlying the developments of this chapter. For stylistic simplicity we shell use the
term “wepker” to refer to the idea of "no more powerful than” even though the
simpler term migses the connotation of possible equivalance. Tha problemn then, is
te formulate an appropriate notion of "weakaer”. Our approach is to formalize this
notion in terms of properties of the df/ and demand function

First consider the of/ function For a given subject 'typa &, this function iimits the
tickets which can be transported to and from any subject of type & Additionally, it
also limits the manner in which tickets of type a/xc can themselves be transported.
Both these aspects must be accounted for in determining whether a2 subject of type

b s deemed to be weaker than a subject of type a.

Now clearly the ability of a subject of type & to acquire tickets from a subject of

type ¢ is weaker than the ability of a subject of type & to do the same provided

dff (e, b) & dfl{c,a)
Simitarly, the ability of a subject of type & to dispense tickets to a subject of type
¢ is wesker than the ability of a subject of type a to do the same providad

dfl (b,0) & dfi{a,c)
Then our first criterion for saying that subjects of type & are weaker than subjects
of type # is as follows.

(Vo) [ari{b,c) € dfia,c) A dfi(e,b) € df! {c,a)]

We next gccount for the mobility of tickets of a type a/xic. Specifically consider
two limiting cases.

1. (V<c,0%) [a/x:c & dftic,d)]
2. (V=ec,d>) [a/x:ic & dfile,d)]

in the first case tickets of the type a/xc are universally mobile whereas in the
second case such tickets sre completely immobile. Now in the first case there is
ample scope for establishing links to and from a subject of type & In the latter
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case this scope is considerably diminished. It is then raasonable to say that the
scope for establishing links with a subject of type # is waaker in the second case.
Based on this idea, our next criterion for saying that a subject of type b is weakar
than a subject of type & is that a ticket of type a/xc is at Isast as mobile as a
ticket of type &/xc, ie.,

(Vec.d>) [b/x:c & df/ (c,d) =+ a/xic & dfi(¢,d) ]

We must also consider the demand operation while assessing the ability of a
subject.  Clearly, the ability of a subject of type b to obtain tickets on demand is
wegker than the ability of a subject of type 2 to do so provided

demand (b) & demand (a)
For the same reason that we took into account the mobility of a subject type in the
contaxt of the of/ function, we must additionally consider that a subject of type ¢
can obtain transport tickets for subjects of type 4 and type & on demand The
shility of a subject of type ¢ to demand tickets for subjects of type b is weaker
than its ability to demand tickets for subjects of type a provided

b/x:e & demand (c) = a/x:c © demand (o)

We are then led to formulste the following notion of weaker.
Definition 4.2: The subject type & it said to be weaker than the subject
type a if and only if

1. VoY Bdf/ (e, b) & dff(c,a) A dfi{b,e) € dff (a,c)]
2. (v<c,d>) [b/x:c & dfi(e.d) = a/x:ic & df! (c.aN]
3. demand (b} < demand (&)

k. (Vo) [6/x:c & demand (c) == a/x:c & demand (¢) ]

Subject B is said to be weaker than subject A if and only if #B) isg
weaker than HA). .

Definition 4.3: For a given pair of of/ and demsnd functions, define
the wesk can-creste relation by

<8,b> € cati~create == b i% weaker than a8

We say that a scheme with a weak cen-create relation has wesk creates,
»

By ihspection of these definitions, it is evident that every weak can-create ralation
is refiexive and transitive. The reflaxive proparty ensures that a weak can-crests
relation will be non—empty end, hence, non—trivial. Thus a weak can-creste relation

will at lsast authorize every subject to creste subjects of its own type. Indeed, sny
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notion of weaker for which this is not true would be suspect, since the paramaters
which define a scheme are specified in terms of subject typss.  In section 4.3 we
will discugs a weak can-creste raelation which includes pairs other than those that are
raflaxive.

In the remainder of this section we establish that any scheme with wesk creates is
create—invariant for self-reference initial states. The proof is by an inguction,
similar 1o that used to prove theorem 3.6 on page 76, where we showed that the
fliowT function provides an upper bound on the flow function. In the proof of
theorem 3.6, the impact of eny subject A was simulatad by presence of the subject
surrfAl.  In the present context, we will simulate the impact of any subject A by

presence of the subject? org(A). In order 1o do so, we nead the following resuit
Lemma 4.1: For every scheme with weak creates it is the case that for
every triple of subjects A, B, and C

1. df/(t(A) ,t(B)) € ofl{tlorg(a)) ,tlorg(B)))

2. t(C) /e & Jf/{1{A) ,t(B)) wa
tlorg(C)) /x:c & gf/(t{org(A)) ,t{org(B)))

3. t{R) /x:c € demand (t(B)) ==
t{org(A}) /x:ic & demand (t(org (B)))

Proof: It follows from the reflexive and transitive nature of a weak
can-create relation that every subject is weaker than its originator, ie, D
is weaker than orgiD). This fact is useful in proving the three assertions
of the jemma

Assertion 1: Since A is weaker than orgiA), we have
(Vo) [ars(t(A) ,e) € dff(t{org(A)).c}]
Since B is waaker than org(Bl, we have
{va) [df/(d,1(B)) & dff(d.tlorg(B)))]

In particular, then for ¢ = #B) and & = forglAl), the two equations above
becorne

dff (t(A) ,t(B)) & df/(tlorg(A)),t(B))
dfl (t(org(A)) ,t(B)) & of/(t(org(A)) .t(org(B)))

Assertion 1 follows by composing these two aquations.

2Racl|| that the org tunction mapz (1) sach subject present in the initial state to itsalf, and (2} each
craated subject 1o its {(uniQue) ancestor which was preégent in the initial state. See definition 3.11 on
page 73.



Assertion 2: Since C is weaker than orgiC), we have for avery pait of
subject types <ab> that

t(C)/xic & df/(a,6) = tlorg(C)) /x:c & dF/ (a,8)
Assertion 2 follows from this fact and assertion 1.

Assertion 3. Since A is weaker than org(A), we have
(Vo) L1 (A) /x:c & demand (6) = t(org ()} /x:ic & demand (#) ]
In particular, then for & = #B) we have
1{A) /x:1c € demand (t(B)) = t{org(R)) /x:ic € damand (t(B) )
Since B is weaker than orgB), we have
demand (t (B)) € demand (t{org (B)))
Assertion 3 foliows from the two equations above. -

We are now ready to establish the central result of this chapter.

Theorem 4.2: Any schame with weak creates and self-raeference initial
states is create—invariant, e, for every initial state
(v<a,B> € sUB® X SUB®) [Flow" (A,B) = flow” (A.B)]

Proof: We will establish the somewhat stronger result that for avery
derived state h

(v<A,B> € 5UB" X SUB™ [F1ow"(A,B) & flow” (org (A} ,org (B))]
Then in particular, for A and B in the initial set of subjacts, since

orgiA) = A and orgiB) = B, we will have flow (AB) & flow’(AB. That
flow*(AB) € flow"AB) is trivially true and we will have proved the
theocrem,

Now consider any transition sequence H, with weak creates, which results
in stata h. We will modifya H to obtain a transition sequence G, with no
creates, rasulting in state g such that

flow (A,B) € flow? (org (A) ,org (B))

Since our construction of G is for an arbitrary H, we wil have
established the desired result It will be convenient for us to assume that

23

aThe ides behind this construction vwas first used by Minsky [ 15] in the context of the uniform
send—racaive machanism.  The actual construction is quite similat to thet used in the proct of

theorem 3.6 on page 76, where wa sstablished that the How+ function provides a bound on the flow

furetion,



H is in canonical form® and, by lemma 2.1 on page 50, we can do so
without any lass of generality. Modify H to obtain G as follows

1. ignore all create operations in H.

2. Replace all demand operations in H as follows

A demands B/x:c in H
becomes
org (A) demands org (B) /x:¢ in G
3. Ignore aevery transport operation in H of the form
mave A/x:c from dom{B) to dom(C) in H
where org(B) = org(C)
4. Replace avery transport operation in H of the form
move A/xic from dom(B) to dom(C) in H
where org (B} ¢ org(()
by
move org (A) /xic from dom(org (B)) to dom(org(C))

We will first establish the following facts

1. G is a transition sequence5
2. A/xtc & dom' (B) e org(A) /xte & dom® (erg (B))
it follows immediately from assertion 2 that

Tink"(A,B) == 1ink? {org (A) ,org (B) )

We will use this consequence of assertion 2 in the second part of the
proof. The two assertions above are proved by induction on the number
of transport operations in H

Basis Case: For the basis case let the number of transport oparations in
H be 0. H then consists of a sequence of creats operations followed
by a sequence of demand operations, while G consists of a sedquenca of
demand operations.

Assertion 1. The demand operations in G are legal, dua to assertion 3 of
lemma 4.1 on page 82, ie.,

t(A) /x:c € demand (t (B)) ==
t{org (A)) /x:c € gemand (t (org (B)))

Assertion 2: Since there are no transport operations, there are only
three ways by which the ticket A/x:c can appear in dom™(B).

sThnl iz, ovary state wanzition in G is lagal

84

4A trangition seguence H is in canonical form if all create operations precede sl demsnd operstions
which in turn precede ail trengport operations.



Case (i The ticket A/x:c is in the initial domain of B. This is
possible only if A and B are in the initial set of subjects. But
then, orglA) = A and orgiB) = B, and assertion 2 becomes

A/X:ic € dom (B) == A/x:ic € dom? (B)
Thiz is trivially true.

Case (i} H the ticket A/xic appears in the domain of B due to
a create operation, then we have orglA) = orgB); and the right
hand side of the implication in assertion 2 can be written as

org (B) /x:c = dom? (org (B))
Due to the self-reference requirement

arg (B) /x:c & dom® {org (B))
But then, assertion 2 is trivially true.

Case (il The only other way for the ticket A/xic to appear in
dom"®) is via a demand operation. But then, the replacemant
for the demand operation insures that assertion 2 is true.
Thus, for the basis case where H has no transport operations, both
assertions are true

Induction Step: Assume, as an induction hypothasis, that the assertions
gre true for every transition sequence H with k transport operations.
Consider the case of a transition sequance H with k+1 transport
operations. Then, H congists of an initial seguence H' with k transport
operations followed by a single transport operation Let the state
established by the transition sequence H' be denoted as hk. Let (' be
the required modification of H', and let the state established by G' be
denoted as gk. By induction hypothesis G' is a transition sequence. Let
the k+1*" transport operation of H be

move A/x:c from dom(B) to dom(C)

Assertion 1. If orglB) = org(C), this transport operation is ignored in the
construction of G In this case, the induction step follows directly from
the induction hypothesis. If orgiB) # orglA), the corresponding transport
opeatation in G ig

move org (A) /x:c from dom(org(B)) to dom{org(c))

Now, in order for the k+1*% transport operation of M to be lagal, we
must have

a5



1. A/xe € dom™ (B)

2. 1ink™(B,C)
3. t(A) /x:c = ogf7 (+(B) ,2(C))

By induction hypothesis 2, we have

A/xc & dom™ (B) — org (A) /xc € dom®™ (org (B))
1ink™ (B,C) =+ 1ink%* (org (B),org (C))
By assertion 2 of lemma 4.1 on page 92, we have

t{A) /x:ec & ofF/ (2(B) . £(C)) ==
t{org(A)) /x:c € dff (t{org (B)) .t {org(C)))

But then, the three conditions required to authorize the corresponding
transport operation in G are true

Agsertion 2: The state h differs from the state hk at most by

A/xie € dom” (C)
If orgB} # orgiC), the corresponding transport opearation in G ensures that

org (A} /x:c € dom? (org (L))

¥ orglBl = orglC), then by condition 1 for the legality of the k+1°*
transport operation in H and by induction hypothesis 2, we have

org (A} /xc e dom®™ (org (8))
from which it is immediately apparent that

org(A) /x:c € dom¥(arg(C))

This completes the induction stap and we have established both
assartions.

it how remaing to show that for evary derived state h
(v<A,B> & SUB" X SUB™ [flow"(A.B) & flow” {org{A) ,org(B))]

Let path” and path®, respectively, denote a path in state h and in state
g Given any path” from A to B, we will show there is a path® from
orglA) to orgiB) with at least the same authorization for transport of

ticket types as the path" from A to B. The proof is by induction on the
number of links in the path” from A to B. For the basis case, consider a
path” from A to B of length 1, ie. the path consists of a single link. By
assertion 2, we have that

1ink™(A,B) =+ 1ink? {org(A) ,org(B))
By assertion 1 of iemma 4.1 on page 92, we have
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dff (t(A) .t (B)) & df/ (t(org(A)) ,t(org(B)))
Hence, the basis case is true. Assume that the hypothesis is true for
every path” of length k, and consider a path” frem A to B of length
k+1. Then there is some subject C. such that there is path” from A to

C of length k and link™(C.B). By induction hypothesis, there is a path®
from orglA) to orglC) with at least the same authorization for transport

of ticket types as the pathh from A to C By assertion 2, there is a link®
from orgiC) to orgiBl. Again. by lermma 4.1

agff (t(C) ,2(B)) & off (t{org(C)) ,t{org(B)))

But then, there is a path® from orglA) to org(B} with at least the same

authorization for transport of ticket types as the path” from A to B. This
establishes the induction step and concludes the proof of the theorem. =

The proof of theorsm 4.2 also provides an elegant characterization of tha flow
function, between subjects not prasent in the initigl state, as follows.

Coroliary 4,21 Giveh a scheme with weak crestes and self-referance

initial states then for every derived state h

(v<A,B> & SUB" X SUB") [fiow"(A,B) & flow” (org(A) .org(B)) ]
-

Thus, in every derived state, the flow function between two crested subjects is a
subset of the flow” function between the originators of these subjects. In other
words, if 2 flow can be realized between two created subjects then the same fiow

can also be reslized between the originators of these subjects

4.2, MODIFICATIONS OF THE WEAK CREATES DEFINITION.

In this section we demonstrate that all aspects of our definition of wesk creates
oh page 91 are required to ensure the create—invariant property. This definition
requires the following conditions for the type 4 to be weaker than the type &

1. (Vo) [df! (c,b) € df/(c,a) A dff(b,0) & dft {a.0)]
2. (v<o,g=)[b/x:c € dFft (e.d) == a/x:c & dff (c,d)]
3. demand (&) & demand (&)

h. (Vo) [b/x:ic & demand (c} == a/x:c € demand ()]

We demonstrate that dropping any one of these conditions will allow for schermes

which are not creste—invariant Of course, this does not mean that the conjunction
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of thess four conditions is necessary for achieving the create—invariant propuﬂya.
At the same time, this exercise does indicate there is little hope for relaxing these
conditions.

We will drop sach condition in turn and, hence. there are four cases to consider.
The schemes which illustrate these four cases are similar to each other. In all cases
there are two subject types & and & Tha df/ and demand functions are
constructed so that the type & satisfies all but one of the requiremants for baing
weaker than the type a In all cases we use the rule of self-copy creates’. For
each case we uxhibit a rather sitmple self-copy (and, hence, self-reference) initial
state® with just two subjects A and A,. both of typs a to demonstrata that the
scherme is not create-invariant Wa have included all four cases for the sake of
completeness. However, the general idea can be appraciated by studying any one

of thase cases.

Case 1. For this case we drop the first condition. Consider a scheme with the

following &F/ graph

{a/sc, b/sc}

o (XD

{a/sc, b/sc}

Let the demand function be

demand (a) = {a/r, b/r}
demand (b) = {a/r, b/r}

By inspection it is evident that conditions 2 3, and 4 are satisfied for subjects of
type & to be weaker than subjects of type 8 Hence, if we drop condition 1 tha
pair <ab> would be included in the weak can-creste relation Now consider the

following initial stata whera A , and A are subjects of type a

5 _ N
indeed, our study of flow—invariant schermes in chapter S, reveals that thare are flow=invariant
(and, hence, creata—invariant schammas) which do not satisfy these conditipns.

7
See definition .11 on page 43.

a'Scc page 45,
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In the absence of a create operation, these sre the only pessible links and the

flow” function is easily computed to be as follows.

flow” (h,,A,) = {a/sc}

flow™ (A &) = {a/sc}
Let A create 8 subject B of type 4 By the self-copy create-rule, immediately
aftar this create operation, there s a link from A, to B By the self-reference
assumption, A2 possasses the ticket Azlﬁt.n This ticket can then be transported
from dom(A)} to dom(Bi via A , A, can obtain the ticket B/r by a demand

2
opearation. Hence. it iz possible to establish link(B.Aﬂ), regsulting in tha following

(——C

situation.

3]

There is now authorization for transport of tickets of type b/sc from A , oA,

indiractly via 8 Heance,

[6/5c & Flow (A LA)] A [b/sc & flow” (A ,A,)]
But then, the. schame is not craata—invariant

Case 2 For this case we drop the second condition. Consider a scheme with the

following of/ graph

{H/sc}

o (X

{b/scl

Let tha demand function be
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demand (&) = {a/v, b/r}
demand (b) = {a/r, b/r}

By inspaction it is aevident that conditions 1, 3, and 4 are satisfied for subjects of
type 5 to be weaker than subjects of type a. Hence, if we drop condition 2 the
pair <af> would be included in the waeak can-creste ralgtion Now consider the

following initial state where A , 8nd A, are subjects of type a

O—O

Since transport tickets of the type a/x:c are not movable, in the absence of a

create operation all possible links already exist. and the flow” function is as follows.
flow’(A“A,,) = {h/sc}
flﬂw”(Az,A1) = ¢ |
Let A create a subject B of type 5 By the self-copy create-rule, immediately
atter this create opergtion, B possaesses the ticket B/sc and there is a link from B
o A, The ticket B/sc can then be transported from dom(8) to domiA ) via A, B
can obtain the ticket Az/r by a demand operation. Hence, it is possible to establish

link(A_,B). resulting in the following situation.

Thaere is now authorization for transport of tickets of type A/sc from A2 to A,
indiractly via B. Hance,

[6/sc & flow (A,2)1 A [o/5c ® flow” (a,,4,)]

But then, the scheme is not create—invariant.

Case 3 For this case we drop the third condition. Considar a scheme with the
faliowing of/ graph.
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{a/sc, bH/sc}

weeona (T X0

{a/sc, b/sc}

L.et the demand function be

demand (a) = ¢
damand (&) = {a/r, b/r}

By ingpection it is evideant that conditions 1, 2, and 4 are satisfied for subjacts of
type & to ba weaker than subiects of type a Hence, if we drop condition 3 the
pair <a.b> would be included in the weaak can-create relation. Now consider the

following initial state where A , and A, are subjects of type a

®

By the self-raference assurmption, A possesses the ticket A /se. This ticket can

be moved to the domain of Az' However, the ticket Azlr cannot be obtained by
A ,- Hence, in the absence of a create operation, all possibie links aiready exist and
the flow” function is as follows.

Flow” (A ,A)) = {a/sc, b/s¢}

flow'(Az.A1) ¢
Let A  create a subject B of type 6 By the self-copy create—rule, immadiately
after this create operation, B possesses the ticket B/sc and there is a link from B
to A_. The ticket B/s¢ can then be transportad from domiB} to domiA ) viz A B
can obtain the ticket A /r by a demand operation Hence, it is possible to establish

Iink(Az,B), rasulting in the following situation
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Thare is now sauthorization for transport of tickets of type a/sc and fH/sc from A,
to A ; indirectly via B. Hance,

[6/sc = fiow" (AE,A1)] A [b/sc ® fmw"(Az,A1)]
and also

[a/sc & flow” (R0 A )] A [a/sc flow"‘(Az.A1):|
But then, the schems is not create—invariant,

Cage 4 For this case we drop the fourth condition. Consider a scheme with the
following of/ graph.

{a/sc, b/scl

{a/sc, b/scl .o.o

{a/se, b/sc}

l.at the demand function be .

demand (a) = {b/r}
demand (b) = {p/r}

By inspection it is evident that conditions 1, 2. and 3 are satisfied for subjects of
type 5 to ba weaksr than subjects of type s Hence, if we drop condition 4 the
pair <af> would be included in the weak can-create ralation. Now consider the

following initiat state whera A , and A, are subjects of type a

®

By the seif-raference assumption, -A  Possesses the ticket A 1/$c. This ticket can

be moved to the dormain of Az. Howaver, the ticket Aaf" cannot be obtained by
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A, Hence, in the absence of a create operation, all possible links already exist and
the flow” function is as foliows.

flow’ (A,,A) = {a/sc, b/sc}

flow' (A ,A) = ¢
Let A, create a subject B of type 5 By the self-copy create-rule, immadiataly
aftar this create operation, B possesses the ticket B/sc and there is a iink from B
A The ticket B/sc can then be transported from domiB) to domiA,) via A B
can obtain the ticket A /r by a demand operation. Hence, it is possible to establish

link(A_.B), resulting in the following situation.

There is now authorization for transport of tickets of type a/sc and b/s¢ from A,
to A . indiractly via B. Hance,

[o/sc @ flow' (A,A )] A [b/3c ® flow” (A ,A )]
and also

[a/sc & finw*(gz.n1)] A [a/sc & frow’(az,A1)]

But then, the scherme is not create—invariant

4.3. A CLASS OF HIERARCHICAL SCHEMES

In this section we consider 2 class of schemes for which the wesk can-create -

relation arises as a natural consagquence of the structure which motivates this class.
information systems are often structured as hierarchies. For example, the subjects
might be organized in a hierarchy corresponding to a corporate organization chart

The class of schemes we study here models such situations® .

9Tl'lc mocel studied hers, is one particuisr model for hierarchical orgeanizations.  Our framework
aimitz any number of such models.  Indesd, no single modal can cover the varisty of hisrarchical
arganizgtionzs encountered in practica.
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In & hisrarchical organization there are well defined channels for exchange of
information.  Thus, two clerical workers in differant departments typically cannot
exchange information directly, but must do so via some boss at an appropriate level
in the hierarchy. The existence of such "proper channels’ for communication is
essential to preserving the sanity of a large organization. At the same time, it does
lead to rad-tape in that there will be delays in the communication. To counter this
we need to provide a faciity by which direct communication can be astablished, at
the discretion of the bosses who would otherwise be involved in a "proper chanhel”,
Our modsl is motivated by this consideration.

Our starting point is a given hierarchy on the set of subject types, which
presumably corresponds to some real-world structure. This hierarchy is specifiad
by a8 1-1 mapping between the nodes of a rooted tree and the set of subject
types. We identify each node of the tree by the subject type associated with the
node. The given hierarchy then induces the following structure on the aubject

types, defined in terms of standard properties of a rooted tree.
Definition 4.4: Define the predecessor relation

,c:.n?(:t’ETs X Ts

by prediat) if and only if a is the root of some subtree, in the given
hierarchy, which includes A .
Dafinition 4.8: Define the level function

level: TS — {1,...,n}
as follows.
1. If 2 is the root of the tree then /evel/a = 1.

2. If a is not the root of the tree then
feve/ (a) = maxi/evel (b) | pred (b,8) A b » a1 + 1
We say that the level of a subject A is /eve/(tiA). L)

With raspect to the préd relation, the idea is that a subject B is a subordinate or an
equal of subject A if and only if pred(tiA)tB). For simplicity, we will use the tarm
"subordinate” instead of the phrase "subordinate or equal’, even though the simpler
term misses the connotation of possible equivalence. The intention of the /feve/
function is that the iower the level of a subject type a the closer it is to the root
of the hierarchy, and thereby the more trust and authority that may be asgigned to
subjects of type a
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Further, assume that abject types are also classifind into levels, so that there is at
least one object type for every level of the tree. That is, the level function is
extended to apply to object types as follows.

level: Tn — {1,...,n}
We then say that the level of an object O is /eve/(2(D). The intention is that the
lower the level of an object, the more sensitive the information contained in it, and

theraby the more restrictive the policy for transport of tickets for ¢

Now consider the following policy for transport of tickets for objects.
A subject B can obtaih a ticket for an object O, only from a subject A
whose level is less than or equal to the levael of O

That is, the more sensitive an object, the higher—up in the hierarchy must be a
subject from whom B can obtain tickets for the object This is exactly the kind of
policy we encounter in real-world organizations. This policy is stated formaily, as
follows.

0/x:c may be transported from dom(A) toc dom(B)
.

Jevel/ (t (A)) < level (1 (D))
Within our design framework, this policy is easily implemented by ensuring that for
all pairs of subject types «sb>

(Vo/x:c & T X R )[o/xic € dfi(a,b) = Jevel(s) < level ()]

Now there are many df/ functions which are consistent with this policy. As a trivial
example, we can simply let df/ls.f) be empty for all pairs of subject types. Here,
we will interpret the stated policy in a permissive spirit, thereby not imposing any
additional restrictions. This ieads us to the following definition, for that portich of
the df/ function which authorizes transport of tickets for object types.

{vo/x:c & T ) X R)) [o/xic € df/(a,b) ++ level/(a) £ Jevel(0}]
Interestingly, the value of dF/(a.h) is determined by /eve/(a) alocne, and does nhot
depend on /eve/lll in any way. In particular, if 8 is the root of the tree, then

(vo) [T, X R, £ af/(a.8)]
Thus, there is ho restriction on tickets for objects which can be obtained from a
subject whose type is at the root of the hierarchy.

Let us consider this policy for transport of tickets for objects, in the context of

the following hierarchy,
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()

Here, the set of subject types is
Ts - {anb’f-'.d.epf.g.h,f‘}
with the hierarchicai structure specified above. The set of ohject types is
L {01.02.03,04}
with /evelwil =i

Consider & subject B of types b Since /eve/(d) is 2, B can transport tickets for
objects of lavel 2. 3, and 4. to every subject X such that link(B,X). Similar remarks
apply for a subject E of type e. except that E can only transport tickets for
objacts of lavel 3 and 4

For the policy with respact to transport of transport tickets, we classify pairs of
subject types into two catagories, as follows.

1. The pairs <a.b> which ara comparable, with respect to the prad
relation, ie, prediabl v pred(b a)

2. The pairs <ab> which are incomparable, with respect to the pred
relation, ie, ~prediab) A ~predib.a).

Wea say that two subjects A and B are comparable or incomparabla if their types
are, respactively, comparable or incomparable. Consider the following policy for
transport of transport tickets between two incomparable subjects

1. Transport tickets cannot be directly fransported between two
incomparable subjects, A and B

2. Trangport tickets can be indirectly trangportad between two
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incomparable subjects A and B, only via a path which inciudes a
subject whose type is a predecessor of poth t{A) and #B).

The first aspect amounts to requiring that, axchange of transport tickats between
two incomparable subjects must take place through a "proper channel”. This aspect
is eagily implemanted, by ensuring that

<&,0* are incomparable == gf/{g,8) n TS X R = ¢
The second aspect defines a "proper channel’, for this purpose, to be a path which
includes at least one subject whose type is 8 predecessor of both the incomparable
subjects in question,

This brings us to the question of the policy for transport of transport tickets
between two comparable subjects. Now consider a subject A We will allow A to
transport tickets for every subject whose type is subordinate to #HA) in the
hierarchy. By virtue of its position in the hierarchy, A is a boss (or an equall of all
such subjects; and is thereby entitled to participate in the activity of establishing a
ink which bypasses a "proper channel’. In addition. we will allow A to transport
tickets for those subjects whose types are predecessors of #A. Then A can
participate in the activity of establishing links between the subordinates of A and the
bosses of A These considerations lead us to the following policy for transport of

transport tickets between two comparable subjects.
Transport tickets of type ¢/xc can be directly transported between two
comparable subjects, A and B, if and only if ¢ is comparable to HA)

Within our design framework, this policy is easily implementad by ensuring that for
all comparable pairs of subject typas <ab>
(Ve/x:ic & To X R [e/x:c & gf/ (a.b) == pred(a,c} v pred(c,a)]

We now illustrate these policies in the context of the hierarchy defined on
page 106. First consider an incomparable pair of subjects, say B and C of type &
and ¢ raspectively. Then, transport tickets can be moved from domiB) to domiC), or
vice versa, only if at least one subject of type & is involved in this activity. Next
consider a comparable pair of subjects, say B and E of type b and e respectively.
Let there be a link from B to E and vice varsa Then transport tickets for subjects
of type e A /. b and 2 can be movad from domiE} to domiBl). These types of
transport tickets can also be moved from dom(B) to domiE)l Additionally, transport
tickets for subjects of type ¢ can be moved from dom(B) to domi(E).
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The following definition summarizes our derivation of the df/ function from the
pred and /evel!/ functions.

Definition 4.8: For a hierarchical schama define the of/ function as
follows.

1. ¥ predia.t) v prediba) then
off (a,.b) = {c/x:¢c € T, X RT| pred(a,e) v pred(c.,a)} v
{o/x:ic & T X R | /eve/(a) = fevel (o)}

2. If ~predab) A ~pradib,a) then
dflla, b = {o/x:c & To X RI| fevel (8) < level (o)}
[ ]
So far, we have confined our discussion to the ¢f/ function. Let us next consider
the can-creste relation. We glliow aevery subject A to creste subjects whose types
' are subordinata to #(A) in the given hierarchy. This is easily achieved by defining tha
can-create relation to be identical to the pred relation

Next consider the create—rules which specify the semantice of a create operation
Since our focus here is on the create—invariant property and the create-rules are
not relevant to our characterization of this property, we will simply ignore this
aspect Then any set of create-rules is scceptable.

Finally, consider the demand operation for transport tickets. For the sake of
simplicity, we require the demand function to be one of the following cases.

1. (v8) [demand (@) = ¢]
2. (Va) [demand (a) = {b/s| b & T 1]

3. (Va) [demand (a) = {b/r| b & T }]
In the first case, transport tickets cannot be obtained by a demand operation. Tha
second case, authorizes subjects of every type to obtain a send ticket for subjects
of every type. Hancae, tha link relation iz affactively determined by the distribution
of receive tickets This case then models a degenerate version of our send—-receive
framework. The third case is similar, except that the link relstion is now effectively
determinad by the distribution of send tickets.

The following definition surmmarizes the above discussion



Definition 4.7: A hierarchical schema is defined by specifying the
following parameters.

1. A rootad tree and a 1-1 mapping between Ts and the set of

hodes of the tree. The pred relation and the /eve/ function for
subject types are theraby implicitly defined (see definitions 4.4
and 4.5 on page 104.)

2. A function which assigns a level to each object type, ie,
tevel: T, =+ {1,...,n}
whera
n = max{/eve/ (s} | a & T}
such that there is at least one object type for every level, ie.
(Vi s n){30 & To) [tevel/ (o) = i]

3. The ¢f/ function as in definition 4.6.
4. Tha can-~create relation as identical to the pred relation,

B One of the three demand functions shown below.
1. (V&) [demand (a) = ¢]
2. (Ya) [demand (a) = {b/s| b = Ts}]
3. (va) [demand (a) = {6/r| b € T}]

We then have the foliowing theorem.
Theorem 4.3 Every higrarchical scherme is create—invariant for salf—
reference initial states, ie., the weak can-creste relation for a hisrarchical
scheme is exactly the pred relation gso that

prad{(a,b) ++ b is weaker than &
Proof: =+ Observe that, for all three casas, the demand function frivially

satisfies conditions 3 and 4 of definition 4.2 on page 91. Thus, it
suffices to establish that predis.b) implias

1. (Vo) [of/ (c,0) € ofl{c.a) A dft{b,e) € dfi(a.c)}]
2. (Veo,d2) [b/x:¢c & dff (c.d) =+ a/x:¢ & dfl(c,d)]
In order to do so, we will use the following fact Given predist), if b

and ¢ are comparabie then # and ¢ are also comparnblam‘ if b and c are
comparable because predibr), then this statement follows from the

10500 pags 106 for the definition of comparable.



transitivity of the pred relation If » and ¢ are comparable because
predic.hl, then b has both s and ¢ as predecessors. Since the subtrees
with @ and ¢ are not disjoint, it follows that one of & or ¢ must be a
predecessor of the other. But this is axactly what it means to say that g
and ¢ are comparable. Now consider the twe assertions which need to
be established.

Assartion 1: There are parts to assertion 1, ie, for every subject type ¢
[efl(c.b) € afi{c.a)] A [dF/(b,c) E dflia,c)]

Consider the first part of this conjunction ie, dfilcs € dfiice. To
prove this statament, first consider tickets for objects. By definition of
the g7/ function, we know that for such tickets the vaiue of dfl/lcd) is
independent of ¢ Thus, for types of tickets for objects this statement
ig trivially true. Next consider tickets for subjects. By definition of the
gf/ function, we know that d/x:c is in df/(be) if and only if both

1. & and ¢ are comparable,

2. b and 4 are comparable.
Given pred(a b), it follows from our sartier observation that

1. # and ¢ are comparable.

2. 8 and J are comparable.

But then, d/xc is in Jf/ac). This completes the proof for the first part
of assertion 1. The proof for the second part is similar.

Assertion 2: Consider any pair of subject types <cd> By definition,
bfxe is in dffic.d) if and only if both

1. ¢ and ¢ are comparable.

2. ¢ and b are comparable.

Given prediabl in conjunction with 2, it follows from our aarliar
observation that 2 and ¢ are comparable. But then, by definition of the
df/ function a/xc igs in dfl/ie,d). This completes the proof of assertion 2
and establishes one direction of the theorem.

= We need to establish that ~prediab) implies & is not weaker than &
There are two cases 10 consider, depanhding on whather predbea or
~predi{H.a).

Case 1: Let & not be a predecessor of a so that
~pred (8,b) A ~pred(b,a)

Then. due to the structure of a rocted tres, thare exists a subjact type ¢
which is a predecessor of both # and 6 By definition of the of/
function, then
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[o/x:ic & df! (b.6)) A [6/x:c & dff(a,c)]

Hence, df/ib,c) is not a subset'' of dfflac) and b is not wesker than a.

Case 2: Let b be a predecessor of a It follows that
tevel (b) < /level (a)

By definition of a hierarchical scheme, there exists an object type o such
that /eveflo) = fevel/lh). But then, by definition of the o#/ function

[o/x:c & gf/{b,a)] A [o/x:c & dfi(a,a)]
Hance, dffib,e) is not a subset'® of df/lac) and b is not weaker than s
This completes the proof of the theorem. .
In conclusion, note that the weak can-create relation for hiesrarchical schemes, in

general, will contain pairs of subject typas which are not raeflaxive.

4.4. SUMMARY

In this chapter we discussed the notion of a create—invariant scheme. For such
schemes the flow® function is identical to the flow” function and, hence, can be
computad in a straightforward mannaer.

In section 4.1 we developed & notion of wesk creates defined in terms of the o7/
and demand functions. The constraint of weak creates is hon-trivial in the sense
that it will always permit a subject to create anothar subject of the same type. We
showed in theorem 4.2 that any scheme with weak crestes and self-reference initial
states is create—invariant In section 4.2 we showed that relaxing the definition of
weak creates will aliow for schemes which are not create—invariant In section 4.3
we discussed the class of hierarchical schemes to demonstrate the utility of craate—
invariant schermes. '

”Fnr this case. we have sstablished this fact in the context of tickets types for subjects. We
cannot reach a sgimilar  conclusion with respect to ticket types for objects. Wa lasva it as an
axerciss for the reader to figure out the possibilities in the latter context

12Fr:nr this case. we have esteblishad this fact in the contaxt of tickets types for objects. Wa
cahnot resch 8 similar conclusion with respect to ticket types for subjects.  Again, wae leave it a5 an
axercize for the resder to figure out the possibilities in the latter context
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CHAPTER B

FLOW=-INVARIANT SCHEMES

In this chapter we study a class of schernas which maintain the flow function as
#n invariant property of a system To this end we have the following definition.
Definition 5.1 A scheme is flow=invariant (in the strong sense) if for
avary initial state it is the case that
(v<A,B> & SUB® X SUB®) [F1ow®(A,B) = flow" (A,B)]
]
Flow-invariant schemes' prohibit any change in the authorization for transport of
ticket types from subject A to subject B. Even such a severe constraint on
evolution of the flow function is of interest The systam can evolve in two ways.
Firstly, it is possible to establish new paths For exampls, we might hava an initial
state where some component of the flow from A to B is necessarily via subject
C In a derived state it might be possible to bypass the subject C. Thus a flow-
invariant scheme permits for alternate paths to be established for effecting the flow
specified in the initiat state. Secondly, new subjects can be introduced in the

system and paths may be constructed involving these subjects

A more interesting class of schemes is obtained by modifying the the definition of
flow—invariant to apply oniy to the flow of transport tickets. in order to do so wa

introduce the foliowing notation.

1Thu uniform send-receive mechanism of Minsky [15] is fliow—invariant under certpin constraints
#3 discuussed in section 1.2.4. Here we generalize this proparty to apply to selactive schamas.
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Definition 5.22 For every flow" function define the associated flow
funation for transport tickets

flowt“; SUB® X SUB* — power-set (T_ X R)
by

flowt® (A,B) = flow* (A,B) N T, X R

Similarly, define the fiowt” and flowt” functions by, respectively,

restricting the range of the flow” and flow™ functions to types of
transport tickats. [ ]

This leads us to the following modification of definition 5.1.
Definition 5.3: A scheme is flow=invariant (in the weak sense) if for
eveary initial state it is the case that
(v<A,B> & SUB® X SUB®) [flowt®(A,B) = flowt™ (A,B)]
a
Henceforth, we wifl use the term flow=invariant to mean flow=invariant in the weak

sanse,

For flow—invariant schemes there is a congiderable speed—up in computing & bound

on the flow function via tha rowT

function discussed in section 35 Specifically,
as demonstrated in appendix C5, the cost of computing the flow? function for

such schemes is no worse than O(T X R]H|T5|3*|SUB°|3) in contrast 1o the

possibility of an O(|Ts]5ﬁ|SUB°[ﬁ) cost in general.

in our discussion of flow—invariant schemes we need to focus on the transport of
transport tickets. In order to do so conveniently, we introduce the foliowing
notation to isolate that portion of the of/ function which authorizes transport of

such tickets
Definition 3.4: For avary of/ function define the associated dirsct flow
limit function for tranaport tickets

dFfits Ts X T5 ~+ DOWEr ~Bat (Ts X RT)
by
ditt(a,b) = dff{a,m) n Ts X HT

Similarly, define the mf/t ang /ifft functions by, respectively, restricting
the range of the mf/ and jf/ functions to types of transport tickets ]

Qur discugsion in this chapter is in terms of the weaker notion of flow-invariant
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However, our results extend to the stronger definition of flow-invariant simply by

replacing flowt everywhere by flow and any occurrence of _#/t by _f/.

51. THE ROLE OF THE CREATE OPERATION

in this section we establish that under certain conditions on the create-rules. the
vaive of the can-create relation is not relevant in determining whether a scheme is
flow—invariant. This fact simplifies our analysis. since we can then assurme. without
any loss of generality, that the can-creste relation is empty; thereby effectively
eliminating the create operation.

In lemma 2.1 on page 50, we cobserved that any derived state can be established
by a transition sequence in canonical form so that the create operations precede the
demand and 1transport operations Let us call the stste after all the create
operations in a canonical transition sequence have taken place. a croste-augmantad
state. Clearly, the nature of a create—augmented state is determined by the create—

rules of the scheme and the nature of the initial state.

Now, one aspect of defining a scheme is to specify constraints on the initial
state”. If every create—augmented state satisfies these constraints, then every such
state is itsalf an acceptable initial state This observation leads us to the following

definition,
Definition 5.5 We say that the create-rules of & scheme praserve the
constraints on the initisl state provided every creats—augmentsd state

satisfias all constraints on the initial state required by the scheme. -
Observe, in particular, if there are nc constraints on the initial state then any set of

create-rules will preserve the constraints on the initial state.

We then have the foliowing theorem.

2Abstr||:tly, & congtraint i3 simply soma pradicate which svalustes to true or falsa for any given
protection state. The kinds of constraints we have in mind are discussed in section 2.2.4.

aof course, by dafinition, the initis stste must satisty these constraints.
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Thaoram 5.1 Any scheme with craste-rules which preserve tha
constraints on the initial state is flow—invariant if and only if for all initial
states

(v<A,B> & SUB° X SUB®) [flowt®(A,B) = flowt” (A,B)]
Proof. == This direction follows trivially, since if

flowt (A,B) = flowt®(a,B)
then certainly

flowt” (A,B) = flewt®(A,B)

= Consider any derived state h By lemma 2.1 on page 50, we can
agsume, without loss of generality, that h is established by a transition
sequence H in canonical form.  Let g be the state irmrmediately after all
the create operations of H have occurred. It will suffice to show that

(v=<A,B> e SUB® X SUB?) [flowt®(A,B) & flowt®(org(A).,org(B))]
Since tha create-rules presorve the constraints on the initial state. we
can consider g to be an initial state. The non—create operations of the
transition sequence H can then be applied to this initial state g, resulting
in statg h Since this g 10 h transition does not include any creates, by
assumption

(v<A,B> & SUB® X SUB®) [flowt¥(A,B) « flowt"(A,B)]

By construction, we have that

sug" = sug®
By combining the three eguaticns above, we have

(v<A,B> & SUB" X SUB™ [flowt" (A,B) £ flowt®(org(A) .org(B))]

in particular, for subjects A and B praesent in the initial state we have
orglh) = A and org(B) = B, so that

(v<A,B> & SUB® X SuB®) [flowt"(A,8) & tiowt®(a,B)]
This argurment applies for any arbitrary state h and, hence,

(v<aA,B> € 5UB° X suB®) [flowt” (A.B) € filowt®(A,B)]
it is trivially trus that

(v<A,B> & SUB® X SUB®) [f1owt®(A,B) € flowt™ (a,B)]

The theoram will then follow from thase two sdquations.

It remains to show that for eavery cresta-asugmentad state o (e a state
established by a transition seqguence which consists entirely of create
operations), we have



(v<A,B> & SUB® X sus®) [flewt¥(A,B) £ flowt®(org(A) ,org(B))]

We now prove this by induction on the number of create operations in
the transition sequence which establishes state g Let the state after the

first n creste operations be denotsd as state n We need to show that
for all n

(v<A,B> & SUB™ X SUB™ [flowt"(A,B) € flowt® (org{a),org(B))]

For the basis case iet n = 0. But then, state h is the initial state and
orglA} = A and orglB) = B Hence, the basis case is trivially true. For

the induction step, lat the k+1%' create coperation be the creation of
subject D by subject C The only links® in state k+1 which might be

introduced by this operation are link™* '(C,D} and/or link** 'D,C). There are
sevaral cases 10 consider,
Case (ir Consider any pair of subjects <AB> such that A # D

and B » D. Every path in state k+1 from A to B which

includes subject D must inciude both k" 'D.C)  and
fink** '(C.D) contiguously in this order, since these are the only
possible finks to and from subject D in state k+1. This path
can then be replaced by a shorter path, that does not include
subject D, by eliminating these two links.  This shorter path
only involves subjects and links present in state k. But then,

k*1(a,8) € flowtk(a,B)

The induction step, for such pairs of subjects, follows from
the induction hypothesis.

flowt

Case (i Consider any pair of subjects <AD> such that A * C
and A » D. Every path in state k+1 from A to D must inciude
subject C, since the only possible link to subject D in stae
k+1 is link"* C,D).  Hence,

(a0 & flowt* '(a,0)

By case (i) wa have already established that

flowt

K+

flowt {(A,C) & flwto(org(A) org(C))

Since orgDl = orglC), by combining these two aguations, it
follows that ‘

flowt** ' (4,0) £ flowt®(org(R) ,org (B))

Cage (i Consider sny pair of subjects <DB> such that

4This fotiows from tha constraint that the creste—rules must be local as discussed on page 43.

118
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B# Cand B D By a simia argument as in case (i), we
can show that

Fiowt" ' (0,B) £ flowt® (org (D) ,org (B))

Case (ivy The only pairs left to consider are <C,C»> <C.D> and
<D,C>  Since subject ¢ crestes subject D, orgd = orgC).
The induction step then follows trivially, since by definition
‘floth (org(C) ,org(C)) = T5 X RT
This completes the proof of the theoram. L
The proof of theorem 5.1 also provides the following characteristic of the flowt
function for subjects created subsequent to the ihitial state,
Coroilary 5.1.1: For every flow-invariant scheme and every initial state it
is the case that for every derived state h
(v<A,B> € SUB" X suB") [Flowt" (A,B) & flowt®(org(a),org(B))]
.
This is an appealing property. Recall that we had & similar result, in the context of
create—invariant schemes (see corollary 4.2.1 on page 97)

5.2. SFILF-COPY SCHEMES

in the remainder of this chapter we characterize the flow-invariant property for a
class of schemes called self-copy schemes. The constraints which define this class
are presentad in section 521, In section 5.2.2 we identify a straightforwargd but

crucial consequence of these constraints, called the origination property.

5.2.1. Tha Seif-Copy Constraints

Seif-copy schemes are defined, by constraining the initial state and the demand

function and adopting a specific rule for the create operation, as follows.
Definition 5.6: A scheme is said to be a self-copy schame if

1. The initial state is constrained to be a balanced self-copy stats,
ie. for all subjects A and B present in the initial state
(a) [B/s = dom®(R)] == [A/r €& dom®(B)]
(b} [A/sc & dom“(B) =+ &4 = B] A
[A/rc & dom®(B) 4+ A = B]



118

2. Copiable transport tickets cannot be obtained by a demand
Operation, is.,

(V<a,6>) [6/sc ® damand.(8) A b/rc ® gemand (&) ]

3. The create-ruie is the seif-copy rule which statss that
immediately after a subject A creates a subject B the situation is

B/s ' A/t B/sC

: [
B/r A/s  Birc

B
Observe that thare are no eonstaints on the 47/ function and the can-create
relation.

The restriction of a balanced initial state is mitigated by the existenca of a
Yemand function. Anyway,. this restriction merely amounts to requiring that the initial
state be specified without any stray tickets which do not astablish links.

The self-copy restriction is ¢onsiderably stronger. Of course, this constraint is on
the initial state and in general will not be true in derivad states. The rastriction on
the demand function ensures that the self-copy aspect of the initial state cannot be
altared by a demand opaeration. The net effect is that there is a single source, the
domain of a subject A, from wHich 8l copies of a transport ticket for subject A
must be obtained This single source property of a seif-copy scheme facilitates
implementation of mechanisms for revocation of these copies.

The salf-énpv craate—rule ensures a uniformity with the constraints on the initial
stata.  Specifically, congider any transition sequance in canonical form The state
after all the creates have occurred will then be a balanced self-copy state. since
every individual create operation preserves tha balanced self—-copy property. In
particular then, theorem 5.1 on page 115 applies to self-copy schemaes, so that the
value of the can-create relation is not relevant in determining the flow-invariant
property for such schemas
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5.2.2. The Origination Proparty

The self—copy constraints have & simple but crucial consequence. Consider any
subject A, These constraints ensure that transport tickets for A with the copy flag
are initially present only in the domain of A Any transport of the tickets A/sc and
A/rc must then originate from A Hence, if a subject B ever acquires one of these
tickets by a transport operation it must be due to a series of transport operations
which can be traced back to the domain of A We call this the origination
property. A formal statement of this property is as follows.

Lemma 5.2: Given a self-copy scheme and any pair of subjects A and
B then for avery transition szequence H whose final operation is a
transport operation which places
A/x:c in dom" (B)
there is a proper (possibly empty) prefix G of H which establishes state
g such that
t(A) /x:c € flow” (A,B)

Proof: Follows immadiately from the above discussion -

In order toc make use of this property in our snalysis, we introduce the following

notation to identify those tickets which can only be acquired by a transport
oparation.
Definitlon 5.7 For a given schetme and initial state we say that
B/xc & dom_(A) if and only if

1. There is a ftransition sequence H whaose final operation is a
transport operation which places

B/x:c in dom" (A)
2. The ticket B/x:¢ is not in the initial domain of A, ia,

B/x:c # com® (A)

3 The ticket B/xc cannot be obtained by A via a dermand oparation,
ia,

t(B) fx:¢c & gdemand {t{A)}

4. The ticket B/xc is not placed in the domain of A by a creste
operation
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The first condition requires that the ticket can indeed be acquired by a transport
operstion. The other conditions exclude those tickets which are acquired or could
be acquired in some other way. Lemma 5.2 can then be written as follows.

A/xic € dom, (B)

S

t{A) /x:c & flow(A,B} prior to A/x:c € dom (B)

Here we omit explicit mention of the states g and h for simplicity.

5.3, FLOW-INVARIANT SELF-COPY SCHEMES

In this section we obtain necessary and sufficient conditions for a self-copy
scheme to be flow—invarient Due to thecrsm 5.1 on page 115, the value of the
can-create relation is not reievant in determining the flow—invariant property. We
will assume, without any loss of generality, that can-create = ¢ thereby effectively
eliminating the create operation. It then suffices to define the of/ and demand
functions, in order to define a particular self-copy scheme. Morsover, since our
focus is on the flow~invariant property, we need only define that portion of the

Jfl function which authorizes transport of transport tickets (ie. the df/t function).

the flow function, in general. and the flowt function, in particular, change due to

sstablishment of links which were not present in the initial state. The evolution of
the link relation is then a significant aspect for studying the flow—invariant property.
We introduce the link”™ ralation to refer conveniently to this evolution

Definition 5.8: For a given scheme and initial state define the associated

binary relation

tink* € sus® X sug®
by

[~1ink®(A,B)] A (3 derived state h) [1ink" (A,B)]
]
in order to understand the flow—invariant property it is esgential to first understand
the tink® relation. The manner by which a link® must be astablished is strongly
influenced by the demand function. Our strategy is to isolate four extreme cases
of the demand function This provides a convenient technique for developing our
analysis by firet considering these extreme cases and then consolidating the results

Morecver, these extreme cases are of interest by themselves.
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%31, Extrame Cases of the Damand Function

For a particular pair of subject types <alb> in @ self-copy scheme, there are four
possibilities with respect to the demand function as follows.
1. [b/s  demand(a) A a/r € demand (b))
2, [b/s & demand (3) a/r & demand (b)]

A [ 3
3. [b/s & demand (a) A a/r € demand (5]
4. [b/s & demand (8) A a/vr & demand (b}]

Now consider a subject A of type a and a subject B of type & such that ~link®(A,B).
in the first situation, it is a simple matter to establish link*(A,B), since both subjects
can obtsin the required ticket by a demand operation. In the naxt two situations,
ona of the subjects can obtain the required ticket by a demand operation. In the
fourth situation, neither subject can obtain the required ticket by a demand
operation. These four possibilities strongly influence the manner in which link " {(A,B)

must be established.

We define four extreme cases of the demand function in correspondence with
the four possibilities above,
1. For the first casa we require that
(V<a,b>) [b/s & demsnd (a) A a/r & demand (b)]

in this case there is no control over the distribution of transport
. tickets, since these tickets can always be obtained by a demand
operation A scheme with such a demand function is called a
parmissive scheme to reflact this fact

2. For the second case we require that
(V<a, b>) [b/s € demand (a) A a/r ® demend (b))

This case is a degenerate version of our send-receive framewaork,
where the authorization for a transport operation is effectively
achieved by the distribution of receive tickets. A scheme with such a
demand function is called a receive-controliad schema to refiect this
fact

3. For the third cass we require that
(V<a,b>) [b/s & demand (a) A a/r & demand (b)]

This case is another degenerate version of our send-receive
framework, where the authorization for a transport operation is
affectively achieved by the distribution of send tickets. A scherma with
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such a dernand function is cellad 2 send-controlisd scheme to refiect
this fact

4 Finally, for the fourth case we require that
(Y<a,b>) [b/s * demand (a) A a/r € demand (b)]

This case eliminates the demand operation for transport tickets. A
scheme with such a demand function is called a striet scheme 1o
reflect this fact

Receive-controlled and send—controlled schemes are of particular interest
Analysis of such schemes reveals the limitations in controlling the transport
operation by a single ticket, at the destination and source respectively. Inspite of
the apparent duality of receive—controlied and send—controlled self-copy schemes,
their properties are significantly different  This fact was first obsarved by
Minsky [15] in his analysis of the uniform send-receive mechanism (see
section 1.2.4)

Strict schemes are of interest since they eliminate the demand operation for
transport tickete The analysis of such schemes then reveals the utility in providing
a demsnd operation for transport tickets. Permissive schemes are of little intrinsic
interest® by themselves and are introduced to cover all four cases of the demand
funetion.

Our strategy in characterizing the nature of flow—inveriant self-copy schemes will
bae, first of all to study three of these four extreme cases of the demand fungtion
in the following order

1. Receive—controlied self-copy schemas.
2 Send—controlled self-copy schemes.
3, Strict self—copy schermes.

Having done so we will consolidate the results to apply to an arbitrary self—copy
scheme. Wae illugtrate our results, for these three extreme cases of the demand

5This it not to say that such schemes are completely unusable. indeed, » permigsive schems may

well suit the particulst policy nesds of a designer. However, since lirks can be freely astablished, the
flow analyeis probiem for such schemes is trivial.  If we assume there iz at least one subject of
every iyps present in the initial staste (o alternatively, that the creste—rules allow this situation in a

derivad stmie), then computstion of the flow* tunction raduces to computation of the indirect flow
limit function discussed in section 3.4.
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function, by determining the flow-invariant property for self—copy schemes with the
following dfft functions.
1. A scheme similar to the uniform send-receive scheme, so that there is
a single subject type a and
dfit(a,8) = {a/sc. a/rc}

2. A scheme with two subject types, & and b, such that so that

dfit{a,8) = la/sc, a/rc, b/sc, b/rch
cdFitia, b {a/sc, a/rec, b/sc, B/rc)
dfit (b, a) {a/sc, a/rc, &/8sc, b/rel
dftt b, b)) = ¢

This might correspond to a situation where subjects of type & are
activa whareas subjects of type & are passive, as discussed in
saction 2.4.

We will show'that both schemes are flow—invariagnt for the receive—controlled and
strict cases, while neither is flow—invariant for the senhd-controlled case.

5.2.2. The Raceive-Controlled Case

For a receive—controlled self-copy scheme any subject can obtain 2 send ticket
for any other subject by a demand operation whaereas receive tickets cannhot be
obtained in this manner, ie., for all pairs of subject types <ab>

b/s € demand (a)
b/r & demand (3)

Singe the dermand function is fully specified and the velue of the carr-create relation
is irrelevant, for such schemas the only parameter of concern is the df/t function, )

Now, consider how we might demonstrate that a receive—controlled self-copy
scheme is not flow-invariant it would suffice to exhibit an initial state with
subjects A and B, of type a and b respectively, such that for some derived state h

flowt" (A,B) ¥ flowt®(A,B)
The simplest manner in which this can be achieved is when

1. Tha link relation in these two states differs only by a single link from
AtoBie,

1ink" (A,B) A ~1ink®(a,B)

2. This additional link alters the value of the flowt function, ie,
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dfit{a,b) & Flowt®(A,B)

To bring about the desired difference between the link" and fink® relations it must
be possible to estsblish link"(AB). Subject A can obtain the B/s ticket by a demand
operation. However, subject B must obtain the A/r ticket by a transport operation
By lemma 5.2 on page 119. transport of the A/r ticket must originate from the
domain of A If B gets this ticket directly from A then there is already a link from
A to B prior 1o the transport operation. Hence, link (A,B) must be established by
moving the ticket A/r to the domain of B indirectly from the domain of A Now this
can be achieved only if the df/t function permits such an indirect transport This
requirement is formally stated as follows.
{(JasA) [a/r & miit (@, 8)]

The simplast mannar to sstabligh fink™{A,B) is then to construct an initial state with a
path from A te congisting of subjects whose types are represented by the string
a.  Such an initial‘state is shown below where we assume that o« = 4 .4 and
subject A is of type & .

The derived state h differs from this initial state only by link™A.B. We would then
have

flowt® (A,B) = mf/t(a,a,b)

flowt” (A,B) = mf/t(a,a,b) U dfit(a,b)
Our objective of demonstrating that the schema is not flow-invariant will have been
achinved if

dfft{a,b) & mfit{a,x,b)

This approach to demonstrating that a receive—controlled self-copy scharma is not
flow-invariant will work, provided there is a pair of subject types <ab> such that
(xwA) [a/r & mfit(a,x,.b) A dfit(a.b) € mfit(a,x,b)]
For the ampty string A, the second term of the conjunction is trivially faise. Hence,
wa can writa the above requirement as

(3x) [a/r & mfitia,a.b) A dftrla, b)) & mfit(a,«,b)]
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Conversely, our attempt will fail if we cannot find such a pair of subject types
Now, the negation of the above condition is easily sesn to be

(V) [a/r € mfit(s,e,b) == dfitla,b) € mfit{a.c,b)]
This requirement stipulates that any attempt at bypassing 8 path from a subject A of
type 2 to a subject B of type 5, by establishing a direct link from A to B, will not

increase the value of flowt(A B)

We are then lad to the following theorem.
Theorem 5.2 A receive—controlled self-copy scheme is flow-invariant
if and only if for all pairs of subject types <ab>
(Vo) [8/r € mftt(a,a,b) =+ dfit(s, b & mfit(a,e,b)]
Proof: == Consider the contrapositive statement that
For any racaive-controlled self-copy scheme if there exists a
pair of subject types <a.b> such that
(3a) [a/r & mift(a,a,b) A dift(a,b) & mfit(a,a,b)]
then there is an initial states with subjects A and B such that
for some derived state h

flowt"(a,B) #* flowt®(A,B)
This statement follows immadiately from the discussion above.

+= This direction of the theorem is proved by induction on the number

of link's established subsequent to the initiai stste. By theorem %.1 on
page 115, we can ignore the create operation and assume that all
subjacts are present in the initial state. Let us denote the state

immediately after the first n link's are established as state n We will
show that for every n
(v<A,B> & SUB® X SUB”) [flowt™ (A.B) = flowt®(A,B)]

For the basis case let n = 0. But then n is the initial state and the basis
case is trivisity true. Assume as an induction hypothesis that immediately

aftar the first k link's are established
(v<A,B> € SUB® X SUB®) [flowt“(A,B) = flowt®(A,B)]

For the induction step consider the case of n = k+1. Let the " link®
established be from subject C to subject D. For a receive—controlled
solf-copy scheme this requires that

C/r & dom.r (D)
By the origination proparty. of lermma 5.2 on page 118, we must have
t(C)/r & flowt (C,D) prior te link(C,D)
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By definition of the states k and k+1, the link relation in the state
immediately prior to state k+1 is identical to the link relation in state k. It
then follows from the above statement that

t(C)/r & flowt® (C,D)

By definition of the mf/t and flowt functions, there must be some string
a such that

HC) /r & mie(t(C) ,e,2(D)) & flowt*(C,D)

By assumption of the theorem it follows that

dFit(t(t),t(D)) € flowt"{C,D)

But then, introduction of a link from C to D in state k+1 cannot affect
the flowt function, and we have

(v<A,B> & SUB® X SUB®) [flowt**'(A,B) = flowt®(s,B)]

The induction step then follows from the induction hypothesis. »
Corollary B.3.1: A receive-controlied self-copy scheme is flow-invariant,
in the strong sense, if and only if for all pairs of subject typas <ab>

(Vo) [a/r € mfi(a,x,b) == dff (a, & € mf! (8,a,0)]

Proof: Modify the proof of theorem 5.3 by replacing every occurrence
of flowt by flow, and every occurrence of _f/ by _f/t. ]

Let us consider the df/t functions defined on page 123, in the context of a

recaive-controlled self—copy scheme.
Exampie 1. There is a single subject type & and

dfit{a,a) = {a/sc, a/re}
it follows that
(Vo) [mfit(a,0,8) = ofit{s,a)]

Thus, the condition of theoram B.3 is satisfied and this receive—controlled
self ~copy scheme is flow-invariant. ™

Exampla 2 There are two subject types a and & such that

drit(a,a) = {a/sc, a/rc, B/sc, b/re}
dfitia.p) = {a/sc, a/rec, b/sc, b/rcl
dftt(b,m = {a/ec, afrc, b/sc, b/re}
dfitib,b) = ¢

it follows that for any string « and any pair of subject types
<c,d> e {8,6} X {a,b}
sither
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1. mfitle,x,d) = {a/sc, afrve, b/sc, b/rel
or 2. mfitic,e,d) = ¢
MNow i the first case it is evident that
dgfitlc,d) & mfitic,a,d)
while, in the second case
c/r & mfitl{c,a,d)

in esither case the condition of theorem 5.3 is satisfied and. hence, this
recaive—controlled self-copy scheme is flow=invariant -

Thus, hoth examples are flow—invariant for the receive—controlied case. There are a
variety of receive-contrclied flow—invariant seif-copy schemes that can be

constructed. We will study several examples in sections 5386, 6.1 and 8.3

8.2.3. The Send-Controllad Caze

For a send-controlled scheme any subject can obtain a receive ticket for any
other subject on demand whereas send tickets cannot be obtained in this manner.
8., the demand function has the following form for all subject types & and &

b/r & demand (a)
b/s ® demand {a)

Since the demand function is fully specified and the value of the can-create relation

is irrelevant, for such schemes the only parameter of concern is the df/t function

Following the approach of the previous section, consider how we can demonstrate
that 8 send-controlled self-copy scheme is not flow—invariant. We have seen that
the simplest manner to do this is to exhibit an initial state with subjects A and B of
type & and b raspectively such that

1. For some derived state h we have

flowt"(A,B) # flowt®(a,B)
2. The link relation in these two states differs only by

1ink" (A,B) A ~1inkY(A,B)

3. This additional link siters the value of the flowt function, ie,
dfit{a,p) € Flowt® (A,B)

To bring about the desired difference between the link" and link® relations it rmust
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be possible 1o establish link*(A,Bl. Subject B can obtain the A/r ticket by a demand
oparation. However, subject A must obtain the B/s ticket by a transport operation.
By lemma 5.2 on psge 119, transport of the B/s ticket must originate from the
domain of B. Now this can be achieved only if the of/t function permits such a
transport.  This requirement is formaily stated as follows.

(3p) [b/s &€ mfit{b,p.a)]

The simplest manner to estsblish link*{4,B) is then to construct an initial state with a
path from B to A consisting of subjects whose types are represented by the string
B, Such an initial state® is shown below where we assume that § = & - and

subject B is of type &

The derived state h would differ from this state only by link{AB). We would then
have

flowt®(A,B) = ¢

flowt" (A,B) = of/t(a,b)
Our objective of dermonstrating that the schems is not flow-invariant wili have been
achieved if of/tlab) % §.

This approach to demonstrating that a send—controlied salf-copy schame is not
flow—invariant will werk, provided thers is a pair of subject types <a.b> such that
‘ (3p) (/s & mfirib,B.a) A dfft(a,b) # ¢]
Converssly, our attempt will fail if we cannot find such a pair of subject types.
Now, the negation of the above condition is easily seen to be
(vp) [6/s ® mfft(b,B,a) == dfit{a,b) = ¢]
This requirement stipulates that any attempt at using a path from a subject B of
type & to a subject A of type a to establish a link from A to B will result in a link
which cannot be uzad to move transport tickets.

& )
If the string B happens to be empty then the sequence of links from B to A should be raplaced
by & single link from B to Al
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Wae are then led to the following theoram
Theorsm BE.4: A send-controlled self—copy scheme is flow—invariant if
and only if for all pairs of subject types <ab>

(VR) [b/s € miitib,B.a) = dflt(a,b) = ¢]

Proof; == Consider the contrapositive statament that
For any send—controlled self-copy scheme if there exists a
pair of subject types <ab> such that

(apy [b/s & mfit(b,p,8) A dfit(a,b) % ¢]
then there is an initial state with subjects A and B such that
for some derived state h
flowt" (A,B) » Flowt®(A,B)
This steterment follows immediately from the discugsion above.

«= In the discussion leading up to the thecrem, we observed that for a
send-controlled self-copy scheme

Vink® (A,B) == (3p)[2(B)/s & mf/t(t(B),B,t(A))}]
But then, by assumption of the theorem

Tink' (A,B) = ff/t(t(A) ,2(B)) = ¢

Thus, the only new links introduced cannot be used for the transport of
transport tickets. Introduction of such links does not change the flowt
function and, hence, the scheme is flow—invariant m

This proof alsc provides the following corollary.
Corollsry 5.4.% A send—controlled self--copy scheme is flow—invariant if
and only if
(v<A,B>) [1ink" (A,B) == df/t(t(R),¢(B)) = ¢]
u
Thus., the dynamic aspect of such schemes is limited to the establishment of new
linke over which transport tickets cannot be moved The reason why such schemes
are flow-invariant is then self evident Further, with the stronger definition of
flow-invariant, we have the following result.
Corollary 5.4.2: A send—controlled self-copy scheme is flow—invariant, in
the strong sense, if and only if for all pairs of subject types <ab>
(v<A,B>) [1ink™ (A,B) == o7/ (¢(A),2(B)) = ¢]
]
Thus, with the stronger definition, the only links which can be established are
completely useless, since no tickeis can be transported over them.
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Let us consider the df/t functions defined on page 123, in the context of a

sangd—controlled self—copy scheme.
Example 1 There is a single subject type # snd

dfit{a,a) = {a/sc, a/rc}
It follows that
(Vx) [a/5 & mfit{a,x,8) A oFit(a,a) v ¢]

But then the conhdition of theorem 54 ig violated, and this send-
controlied self—copy scheme is not flow—invariant. -

Example 2 There are two subject types & and b such that

ofit(g,8) = {a/sc, a/rc, b/sc, b/rc}
dfit{a, Bt = {a/sc, a/re, b/sc, b/recl
dfit{b,a) = la/sc, a/rc, b/sc, b/rcl
dfit{h,b) = ¢

it follows that for any string « which consists of one or more
occurrences of &

a/s = mfft{s,«,8) A dfit{a,a) #* ¢

But then the condition of theorem 54 is violated, and this send-
controlled self-copy scheme is not flow=invariant, L

Thus, both examples are not flow-invariant for the send—controlled case

5.3.4. The Strict Case

Next consider the cese of strict self-copy schemas. For such schemes there is
no authorization to obtain transport tickets by demand, ie, for all subject types a
and b )

b/r ® demand (a)
b/s ® dermand (8)

Once again, the only parameter of concern is the df/r function.

Following the approach of the previous two sections. consider how we tnight
damonstrate that a strict self-copy scheme is not flow—invariant As before, the
simplest manner to demonstrate this is to exhibit an initial state with subjects A and
B, of type a and b rezpectively, such that

1. For some derived state h we have

flowt" (A,B) # f1owt®(A,B)

2. Tha link relation in these two states differs only by
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Vink™(a,B) A ~1ink9(a,B)

3. This additional link alters the value of the flowt function, ie.,
dfit(a,b) & flowt®(A,B)

To bring about the desired difference between the link™ ang link® relations it must
be possibie to establish link™{A,B). To achieva this the ticket A/r must be placed in
the dormain of B by a iransport operation and the ticket B/s must be placad in the
domgin of A by.a transport oparation By the sarmé reasoning used ih the pravious
two saections, these tweo reguirements respectivaly translate into the foliowing
conditions on the mf/t function
(IxwA) [a/r &€ mfit(a.e,b6)]
(3p) [b/s € mfit{b,f,a)]
The simplest manner io establish link'{A,B) is then to construct an initia! state with a
path from A to B consisting of subjects whose types are represaented by the string
¢ and a path from B to A consisting of subjects whose typas are represented by

the string [ Such an initial state’ is shown below., where we assume that

i

fvmmmamm—ean @ @
.

o« = ag.8_ subject A is of typa . P = b1.,,bm, and subject 51 is of type b‘.

The derived state h would differ from this state only by link(A.B). Waea would than
have

flowt®(A,B) = mf/t(a,a,b)

Flowt"(a,B) = mfiz(a,x,b) U dfit{a,b)
Our objective of demonstrating that the schema is not flow—invariant will have been
achisvad if

dftr(a.b) & miit{a,z,b)

7 . .
if the string B happans to be empty ‘hen the sequence of links from B to A should ba replaced
by 8 gingle link from B to A
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This approach to demonstrating that a strict self—copy scheme is not flow—
invariant will work, provided there is a pair of subject types <a.b> such that
{3x#A) (3p) [a/r & mift(a,e,b) A b/s & mflt(b,p,a) A
g1t (a, b) & mifitla,a, b))
For the empty string A, the third term of tha cohjunction is trivially false and, hence,
we can write the above requirement as
(3e) (AP) [a/r &€ mfit(s,a,b) A b/s € mfit(b,B.8) A
dfft(a,b) & mfir{a,x. b))
Conversely, our attempt will fail if we cannot find such a pair of subject types.
Now, the negation of the above condition is easily seen to be
(va) (VD) [8/r € milt(a,x.b) A b/s & mfit(b,p,a) = _
dfit(a,b) & mitt{a,x,b)]
This requirement stipulates that any attempt at bypassing a path from a subject A of
type & 10 2 subject B of type 4, by establishing a direct link from A to B, will not
increase the value of flowtiAB).

We are then lad 1o the following thaorem.
Theorem 5.5: A strict self—copy scheme is flow—invariant if and only if
for all pairs of subject types <a b>
(Vo) (VP) [a/r &€ mfit(a,x.b) A b/s € miit{b,B,8) =
dfit(a,b) & mfft{a,e, b)]
Proof. == Consider the contrapositive statemant that .
For any strict self-copy scheme if there exists s pair of
subject types <ab> such that
(3) (3P) [a/r & mfit(a.x.b) A b/s & mftt(b,B,a) A
dfit(a,b) & milt(a,a.0)]

then thers exists an ihitial state with subjects A and B such
that for some derived statem h

flowt" (A,B) = flowt®(A,B)
This statement follows immediately from the discussion above.

== This direction of the thecrem is proved by induction on the numbar

of link's established subsequent to the initial state. By theoram 5.1 on
page 115, we can ignore the crests operstion and assume that all
subjects are present in the initial state. Let us denote the state

immadiatalty after the first n link’s sre established as state n. We will
show that for every n

(v<a,B> & SUB® X SUBY) [flowt" (A,B) = flowt®(A,B))
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For the basis case let n = O. But then n is the initial state and the basis
case is trivially true. Assume as an induction hypothesis that immediately

after the first k link’s are established
(V<A.B> & SUB° X SUBY) [Flowt" (A,B) = flowt® (A,B) ]

For the induction step consider the case of n = k+1. Let the nt" link®
estabiished be from subject C to subject D. For a strict self—copy
scheme this requires that

[b/s € dom, (€}] A [¢/r € dom_(D}]
By the origination property, of lemma 52 on page 118, we then have

[t(0) /s & flowt(D,€)] A [#(C)/r & flowt (C.D)]
prior ta 1ink{C,D)

By definition of the states k and k+1, the link relation in the state
immediately prior to state k+1 is identical to the link rejation in state k. It
then follows from the above statement that

[+(D) /s & flowt(D,0)] A [t(C)/r & Flowt(C.D)]

By definition of the mf/t function, there must be some string a such that

t(C) /r & mfft{t(C) ,«,t(0)) & Flowt" (C,D)
and sorma string B such that
t(D) /s & mfit(t(D).B,1(C))
By assumption of the theorem we then have

It (C) ,1{0)) & Flowt*(c,D)

But then, introduction of a link from C t6 D in state k+1 cannot affect
the flowt function, and we have

(v<A,B> & SUB® X SUB®) [flowt"*'(A,B) = flowt*(A,B)]
The induction step then follows from the induction hypothesis. m

Wa also have the following corollaries.
Corollary 5.5.1: For a given df/t function, if the receive-controlied
self—copy scheme is flow—inveriant then the strict self-copy scheme is
flow=invariant,
Proof: If the receive—controlled scheme is flow—invariant then, by
theorem 5.3 on page 125, for every pair of subject types <ab>

(Vo) [a/r € mifitia,«,b) == dfit{a,b) & miit{a,«,b)]
By inspection, the condition of theorem 55 is then satisfied u
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Corollary 5.5.2: For a given df/t function, if the send—controlled salf-
copy scheme is flow—invariant then the strict self—copy scheme is flow-

invariant
Proof: If the send-controlied schema is flow—invariant then, by
theorem 5.4 on page 129, for every pair of subject types <ab>

(Vo) [a/2 & mfit{a,a,b) == dfit{b,a) = ¢)

By inspection, the condition of theorem B.5 is then satisfied. ]

Now consider the Jf/t functions defined on page 123, in the context of a strict
self-copy scheme. On page 126, we saw that for the receive—controlled self—copy
case both examples were flow—invariant It follows, from corollary 5.5.1, that both

examples are slso flow-invariant for the strict self—copy case.

5.3.5 The Ganetral Casne

in the three precading sections, we characterized the nature of flow=-invariant
salf-copy schamas with respect to three exireme cases of the demarnd function
By consolidating these results, we now obfain the following characterization of a
flow invariant self-copy schame.
Theorsm 5.8: A self-copy scheme is flow-invariant if and only if for
all pairs of subject types <ab>

1. If [b/5 € demand (8) A &/r £ demand ()] then
(Vo) [a/r & mifit{a,x,b) == df/t(s,b) & milit(a,«,b)]

2. If [b/s € demand (@) A a/r & demand (H)] than
(VB) Lo/s & mfit(b,p.a) == dfit(a,b) = ¢]

3. W [b/s & demand{a) A a/r ¥ demand (b)] then
(Va) (YP) [a/r & mfft{a,«.b0) A b/s & mfitib,p,8) =
dfft{a,b) & mfit(a,a,b)]

h, ¥ [b/s & demand (8) A a/r & demand (b)] then Jdfit(a,b) = ¢

Proof: Note that exactly one of these four conditions will apply for a
given pair of subject types <ab>,

—+ This direction of the theorem iz established by proving the
contrapositive statement  Let us refer to the four conditions of the
thecrem by their designated numbaers. The contrapositive statement is
that
For any saelf—copy scheme if there exists a pair of subject
types <ab> such that
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~[1] v ~[2] v ~[3] v ~[4]

then there exists an initial state with subjects A and B such
that for some derived state h

flowt" (a,B) # flowt®(A,B)

Given ~[1]. ~[2], or ~[3] we can construct an appropriate initial state
by using the construction of sections 532, 5.3.3, or 534 respactively.
Given ~[4] construction of such an initial state is trivial

+= This direction of the theorem is proved by induction on the number

of link*s established subsequent to the initial state.  The induction is
similar to the induction used in the proofs of theorems 5.3 and 55 on
pages 125 and 132 respectively. The differance is that the necessacy

condition for establishing fink*(C.D) is determined by the nature of the
demand function with respect to the ability of C and D to raspactively
obtain the D/s and C/r tickets by a demand operation. There are four
possibilities here and, hence, the induction step has four cases
corrasponding to the four cases of this theorem. =

In order to obtain an algorithm for checking the conditions of theorem 5.6, we
can eliminate all references to the mf/t function by rewriting these conditions in
terms of the dfit and jfit functions. This transformation is shown in sppendix C.6
and results in an algorithm with a cost of O(|T_|%

We have sesn that the conditions under which a send-controlled self-copy
scheme is flow—invariant, are rather restrictive. On the other hand, the conditions
under which a receive-controlled self—copy scheme is flow—invariant, are not too
restrictive. For this reason, our examples of flow—invariant self~copy schemes are,
for the most part, limited to the receive—controlled case Wea do have the

following result, by which our examples extend to a more general restriction on the
demand function.
Corollary 5.6.1: For a given dfit function, if the regeive—controlied

schema is flow—invariant than a self-copy scheme with the sama df/t
function and a demand function such that

{V<a,b>} [b/r & demand (8)]

is also flow-invariant®.
Proof: With the stated constraint on the demand function enly the first

8 .
Observe that coroliary 5.5.1, on page 133 is a specisl caze of this coroliary.
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and third conditions of theorem 5.6 are relevant It follows that a self—
copy schame, with the stated comstraint on the demand function, is
flow-invariant if and only if for all <ab>

1. ¥ [&/s & demand (8)] then
(V) [a/r € mfit(a,a,b) == Ofit(a,b) & mfit{a,a,mn]

2. Iif [b/s ® demand (a)] then
(Ve) (vp) [a/r € mfit(a,x,b) » b/s & miflt(b,p,8) ==
dfit{a,b) & mfit{a,a,b) ]

Now for a given df/t function if the receive-controlled  self—copy
scheme is flow—invariant then for all pairs <ab> we have

(¥x) [a/r € mifitia,a.b) = diit{a,b) & miit{a,e,b)]

But then, by inspection, it is evident that the then clauses of conditions 1
and 2 are true for every par <ab> »

it is the ability to demand receive tickets which restricts us in constructing flow=—
invariant schemes. Once this ability is eliminated. there are a surprising variety of
flow—-ihvariant schemes which can be constructed, as discussed in sections D36,
6.1 and 6.3

Morecver, note that the converse of corollary 56.1 is not true. Thus, in principle,
restricting the ability to demand send tickets allows for a larger class of flow-
invariant schemes than obtsined for the receive—controlled case. However, thea
intuitive constraints that we have been able to devise actually result in self-copy
schemes which are flow—invariant for the receive—controlied case. it is an
interesting question, as to whather there are intuitively appealing dfit functions
which lead to self-copy schemes which ere flow-invariant for (say} the strict case
but not for the receive—controlled case.

5.3.6. Nastad Ssif-Copy Schames

in this section we investigate a class of flow—invariant self-copy schemes. Due
to theorem 5.1 on page 115, the value of the can-creste relation is not relavant in
determining the flow—invarisnt property for self-copy schemes. Since our focus
here is on this property, we will ignore the existence of this design parameter.
Similarly, we can ignore specification of the df/ function for all types of inert
tickets, In order to specify a ciess of flow—inveriant self-copy schemes it then
suffices to describe the nature of the 4/t and demand functions. As mentiohead
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earlier, we will rastrict our discussion to the receive-controlled case so that the
demand function is specified as follows.
(v<a,b>) [b/s € demand (8)]

The only parameter of concern is then the df/t function.

We begin by considering a simple constraint on the of/t function, and lead up 10 a
more complex structure. Specifically, we begin with an slt—-or—nothing situation by
limiting the values of the df/t function to eithar allow transport of ali types of

transport tickets or of none. This condition is expressed as follows.
Definition 5.9: A sacheme iz said to be s homogenmous schame
provided the dr/t function satisfies the following constraint

dftt: T, X T — {$, T, X R}
B
we will discuss these schemes in more detail in section 61, For the moment we

have the following result

Theorem 5.7: Every receive—controlled self-copy homogeneous scheme
is flow—invariant.

Proof: For such schames it is obvious that for all pairs of subject types
<a b> and for every string o

dfit(a,b) = ¢ or T, X R,
mfft{s,c.b) = ¢ or TS X HT
But then,
a/r € mfit(a,a,b) == mift(a,a,b) =T, X R
- dfit{a,b) € mfit(a,o,b)
Thus, the condition of thecrem 5.3 on page 125 is satisfied. =
it is instructive to consider what happens if we slightly modify the definition of a
hemogenecus scheme. In all cases we shall retain the two valued nature of the df/t

function. Howaever, we will modify the strict all—or—nothing nature of our definition.

In the first modification, we allow for a situation whers transport tickets for
certain subject types are immobile. Let the set of subject types whose tickets can
be transported be denoted as T, where T. is some proper subset of T_. The
maximum value of the of/t function is then Té X RT, whiie the minimum value is ¢,
e,

dffe: T X ¥ — {¢, T, X R}
The proof of theorem 57 worke for this case also, by simply replacing T_
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everywhers in the proof by Tg. Thus, the above modification preserves the flow-

invariant property.

For our hext modification, we assume that tickets for certain types of subjects
are universally mobile. Again, let Té be some proper subset of T Considar a df/t
function of the foliowing form.

gty T X T — {TL X R, T, X R}
Such a scheme has an all-or—some aspect, rather than the all-or-nothing aspect of
homogeneous schemaes. In this case, it is easy to construct en example scheme
which is not flow-invariant Specifically, let
T, = la, b,c}
T, = {al
dfit(a,b) = T; X HT
dfit(b,c) = T, X R,
where all other valuss of the &f/t function are T5 X R These values violate the
condition of thecram 5.3 on page 125, since
La/r & mfit{a,b,e) = T X R & Ldfit (a,c) = T, X R.]
Thus, this modification does not praserve the flow—invariant property.

Howsver, if we impose an additional condition we will get a flow=invariant

schermne. Specifically, consider as before that
gfre: T X T, — {T. X R, T, X R}
but, with the additional constraint that
8 €T, = dilt (@,0) = T X R
The idea here is that since transport tickets for subjects in the set T; are
universally mobile, by curtailing the ability of such subjects to move transport tickets
there will be a tighter control on the evoiution of the flowt function. There are
two cases to consider, in determining whether such a scheme is flow-invariant
Firet consider a subjact type & from the set Té. Then, we have for all pars <gb>
and every string « that
g &Y = [dfit(a,b) = T X R A [mfit(e,e,b) = T, X R]
e dfft{a,b) = mfiti{s,«,b)

Next, consider a subject type & not in the set T_ Then, we have for all pairs <a,b6>
and every string o that
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aET, = [a/r € mfit{a,a,b) — mfit(a,a.b) =T X R.1
- [a/r € mift(a, e, b) == dfit{a.b} & mflt(a.u: b)]
in both cases, the condition of theorem 5.3 on page 125 is satisfied.

Based on the same idea, we can construct a variety of flow—invariant achemes. In
the example above, the df/t function was restricted to being two valued Let us

first sliminate this constraint but in & structured manner.
Definition 5.10: A family of subsets of T_

{‘l"i: i=1,...,n| T €& Ts}
is said to be nested provided
1.TS-T1U uTn
2. (v<i, j») [T n TJ - gl Vv [:T1 c Tj] v ['rj [= T1]]

We will restrict the range of the df/t function so that

gfftr T X T, — T, X R.| i=1,...,n}
for some nested family of subsets of TS. If we do not impose any further
restriction, we know from our earlier discussion that it is possible to construct
schemes which are not flow—invariant We will formulate an additional constraint,
similar to what we did for the two valusd case discussed sbove. In order to do

50, we introduce the following notion.
Definition 5.11: Given g nested family of subsets of T, we say that a

subject typa 5 is T 1—m¢blln if
(g€ T,1A (V]) [ = '1‘-1 - T.]
]

Due to the nested nature of {T_..T_} there is a unique T, for which any a is
T 1-mobilu. This leads to the following definition
Dafinition 512: A scheme is said t0 be a2 nested scheame provided
1 {T:i=1..n} is & nested family of subsets of T,

2. The dfit function satisfies the following constraint
1. gt TX T — {T XR| i=1,...,n}
2. a is T -mobile == (vb) [¢f/t(e,0) €T XR.]

We then have the foliowing result

Theorem 5.8: Every receive—controlied nested self-copy scheme is
flow—invariant.

Proof: Consider any subject type & which is T -rnobile. It immediately
foliows that for every & and every «



a/r & mflt(a,x,b) = mfitla,a,b) = T1 X RT
By definition of a nested scheme, for every b we have
gfit(a,b) & T, X R

The condition of theorem 5.3 on page 125 is then satisfied »

5.4. SUMMARY

We bagan this chapter by introducing two notions of a flow—invariant scheme. In
the stronger sense, a flow=-invariant scheme does not allow sny change in the flow
function, with respect to the initial set of subjects. In the weaker sense, the
invariance is only with respect to the flow of transport tickets. In the former case,
it is trivisl to compute the flow™ function, while in the latter case the cost of
computing the flow* function is substantially readuced. Our discussion in the rast of
the chapter was in the context of the weaker notion of flow—invariant, but our

results are easily modified to apply 1o the stronger notion

In section 5.1 we showed that, under some rather general conditions on the create
rules, the value of the can-create relation is not relevant in determining whether 2
scheme is flow—invariant This fact considerably simplifies our analysis, since we
can then assume, without any loss of generality, that the cen-create reiation is

empty; thereby effectively eliminating the create operation.

in sactioh 5.2 we defined the class of self-copy schemes by constraining some
of the design parsmeters. In particular, constraints were imposed on the demand
function and the initial state and a specific create rule was adopted. The nature of
these constraints led to the name self—copy, since the major constraint was on the
occurrance of transport tickets with the copy flag.

In section 5.3 we ocbtained nacessary and sufficient conditions for a self-copy
scheme to be fiow—invariant The cost of testing these conditions for an arbitrary
self-copy scheme is O(|Ts|4). Our strategy in developing these conditions was to
first study extreme cases of the demend function. This study revealed that the
properties are significently different in these extreme cases, thus extending the
cbservation first made by Minsky [15] in the context of the uniform send-receive

mechanism.  Finally, we demonstrated there a variety of flow—invariant self-copy
schemes.
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FURTHER ASPECTS OF SELF-COPY SCHEMES

The preceding three chapters of this thesis have been concernad with the flow-
analysis problem. In this chapter we discuss some other analysis issues in the
context of salf-copy schemes. The class of self-copy schemas is deofined by
imposing constraints on the initial state and the demand function and adopting a
specific create-rule. We can define sub—classes of self-copy schemes by further
constraints on the design parameters. Indeed, certain analysis issues can be

formulated only in the context of such sub—classes.

in section 61 we study a class of self-copy schemes called homogenaous
schemes. We introduced this class in the previous chapter. Mere, we study it in

more detail.

In section 6.2 we return to the general class of self-copy schemesz We now
study the nature of the link’ relation.  Specifically, we characterize the types of
subjects between which a link’ may be established.

Finally in section 63 we study another clase of self—copy schemes called unique
madiator schemes. The analysis issues raised here are considerably different than
those raised in the contaxt of homogenaous sehermes.

6.1. HOMOGENEDUS SCHEMES

The clase of homogenaous schemes, introduced in section 5.3.6, is defined by
congtraining the of/t function to be two vaiued as follows.
dffts T, X T, — i, T, X R}
Thus, for a given pair of subject types a8 and b, the Jf/t function either permits
transport of all transport tickets or of none.
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6.1.1, Clusters of Subjects

It is evident that, for homogenecus schemes, not only the dfit function but also
the flowt function is two valued  This fact leads us to imroduca the following
notion.

O
Definition 6.1: A cluster of subjects is a largest subset of suB”. such
that for every pair of subjects A and B in the cluster
Ed - -
[flowt™ (A,B) = T X R.] A [flowt™ (B,A) = T X R.]
]
By definition of the flowt funstion, it is avident that for homogeneous schemes
k k
[flowt“(a,B) = T, X R] A [flowt"(B,C) = T X !
L
[flowt“ (A,C} = T_ X R]
Moreover, for every state k and every subject A

flowt" (A,4) = T_ X R_
Thus, the definition of a ciluster amounts to the symmetric closure of a transitive
and reflexive raelation, whose characteristic function is defined by. if flowt (AB) =

T, X R, then 1 glse 0. Clearly then, a cluster is an equivaience class of subjects
and each subject belongs to a uniqua cluster,

Clusters play an important role in the analysis of homogeneous schemes. We will
often need to refer to an individual subject as well as the cluster to which this

subject belongs. In order to do so conveniantly, we introduce the following
notation,

Definition 8.2: For avery homogeneous schame and every initial state
define the associated cluster function

cis: $SUB° — power-set (SUB®)
by

cls{A) = {B & SUBOI B is in the same cluster as A}

The flowt™ function induces a natural partial ordering on clusters defined as

follows.
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Definition 6.3: Define the partial ordering < on clusters by
cls{h) < ¢1s(B)

E
[Flowt™ (A,B) = T_ X R] » [fiowt” (B,A) # T X R.]

i two distinet clusters are not comparable with respect to this partial
ordering we say that cislA) <> cls(B). u

6.1.2. The Link Ralation

in this section we study propertiss of the link ralation for self-copy homogeneous
schemes. We need one final bit of notation before commancing our analysis.
Definition &.4; For every initial state, define the associated binary
relation
link* £ suB® X sum®
by

Vink™ (A,B} += [1ink°(A,B) v 1ink" (4,B)]

The following theoretn, than illustrates the crucial role of clusters.
Thaoram 6.1: For every self—copy homogenseous scheme

[cls(A) = cls(B)] == [1ink"(A,B) A link (B,A)]

Proof: In conjunction with the self-reference asssumption, the flowt”
function enables transfer of the tickets required (if any) for establishing
thesgse links. -

Thus, within a ciuster subjects.can establish direct links with esch other. Due to
this constraint, a homogeneous scheme is suitable for a situation where the subjects
can be partitionsd inte mutually exclusive components, corresponding to the clusters,
such that the transport of tickets within 2 component is permissive.

Different classes of homogenecus schemes differ with respect to the policy for
transport of tickets between subjects in distinct clusters. A comparative study of
the policies, implementasd by various self—gopy homogenesous schemes, must
necessarily concentrate on the patterns of links which can be established betwean
subjects in different clusters Let us refer to a link from a subject in one cluster
to a subject in a different cluster as an inter-cluster fink In this section we
characterize the nature of inter—cluster links in terms of the partial ordering on
clusters.
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The following theorem expresses the pature of links between subjects in
incomparable clusters.

Theorsm 6.2: For every homogensecus scheme and every initia} state if
cls{a) <= clsB) then

bink (A,B)

-
1ink®(A.B)
v
[t{B) /s & demand (t(A}) A t(A)/r & demand (#(B))]
Proof: == This direction is trivial, since it is a simple matter to astablish
a link from A to B if it doss not already exist Both subjects marealy
have to obtain the necessary tickets by a demand operation

— By definition, link“(AB) requires that either KHnk®AB) or link™(AB)

Consider the latter possibility Since the initial state is balanced, link ™ (A, B}
requires that A and B respactively obtain the tickets B/s and A/r in some
derived state. There are two possibilities here, viz,

1. Both A and B can obtain the required ficket by a demand
uperation

2. At least one of A or B must obtain the required ticket by a
trangport operation.

Stated formally, we have argued that, for a self-copy scheme, link (AB)
implies

[t(B) /s & demand (t(A)) A t(R)/r & demand (t(B))]
v

[A/r e dom_(8) v B/s € dom,(A)]
Consider the latter possibility. By the origination property, of lemma 52
on page 119, we have

A/r & dom_(B) =+ flowt” (A,B) # ¢

B/s & dom_(A) =+ flowt™ (B,A) # ¢

In either case, we canhot have cis(A) <> cls@B) in violation of our
assumption. The theorem follows immediately. [

Theorem &£.2 states that the only links betweenh subjects in incomparable clusters are

those present in the initial state or those which can be established purely by a
demand operation,

We naxt characterize the nature of links betwsen subjects which are in different
but comparable clusters.



145

Theorem 6.3: For every homogeneous schems if cls(A) < cls(B) than

1. Vink" (a,B) == [1ink®(A,B) v t(B) /s € demand (t(A))]
2. 1ink” (B,A) == [1ink®(B,A) Vv t(B)/r & demand (¢ (A))]

Proof: We will prove assertion 1 of the theoram angd the proof of
assartion 2 is quite similar.

= This direction is trivial, since it is a simple matter to astablish link(A B)
if it does not already exist In particular, A can obtain the B/s ticket by

a demand operation and the flowt™ function authorizes transport of the
A/r ticket from A to B

=s: |t suffices to show that
link* (A,B) == t(B) /s € demand (t(A))

Now in order to establish link*(A,B), the ticket B/s must be placed in the
domain of A 1f A has this ticket in the initial state then by the balanced

state assumption B has the A/r ticket But then link®(A,B), so that
link™(A.B) is not possible Subject A cannot obtain the ticket B/s by

transport, as this would require flowt (B,A} # ¢ in contradiction to our
assumption that cislA) < cis@®). Hence, the only way for A to obtain this
ticket is by a demand operation. L]

Recall that in our analysis of the flow=-invariant property for self-copy schemes
we defined four extreme cases of the demand function as follows

1. For permissive schemes

(v<a,b>) [b/5 & demand (&) A a/r € demand (b))

2. For receive-controlled schemes .

(v<a,b>) [b/s & gemand (3) A a/r € demand (b) ]

3 For send—controlled schemes

(v=a,b>) [b/s & demand (8) A a/v & demand (b)]

4. For strict self-copy schames
(V<a,b>) [b/s & demand (8) A a/vr & demand (b)]
We observed that permissive schemes are not very interesting and were introduced

for the sake of completeness. With respect to the link relation it is clear that for
any permissive schame

(v<A,B>) [1ink” (A,B) A link (B,A)]
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consider the other three extreme Cases of the demand function in the

Let us
Specifically we will interpret the nature of

context of homogensous schamaes.

inter—clugter links for thesa three caces.
Theorem 6.4 For receive—controlied homogeneous schemes

1. If clsla) <= clis(B) then
1ink” (A,B) == 1ink?(A,B)

2. If cis(a) < cls(®) then
Vink® (A,B) A [1ink*(B.,A) == 1ink®(B,A)]

Proof: Immediate from theorems 6.2 and 6.3. L]

The policy. with respect 1o inter—cluster links, for any receive—controiled

homogeneous scheme is then as follows.
1. The only possible links between subjects in incomparable ciustars are
those which were present in the initial state.

2 Links between subjects in distinct but comparable clusters can always
me established in one direction but can exist in the other direction only
if they were present in the initial state.

Next we sea that the policy, with respect to inter—cluster links, for send—
controlied schemes is in a sense the dual of the policy for receive—controlled

homogeneous schemes. Specifically we have the following theorem.
Theotrem 6.5. For send—controlied homogeneous schemes

1. If clg(A) <> cls(B) then

1ink* (A,B) == 1ink°(A,B)

2 If cislA) < cls(B) then

link" (B,A) A [1ink"(a,B) #+ 1ink°(4,B)]
Proof: immediate from thecorams 8.2 and 6.3. L]
Thus the policy, with respact to inter—cluster links, for any send—controlled scheme
again has a one way permissiveness with respect to links bstwesh subjects in
different, but comparable, clusters and a rigidity with respect to links in the other

direstion.

Finally consider the case of strict homogeneous schemaes,
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Theorem 6.8: For strict homogeneous schemes if cig{A) # cisiBl then

1ink® (A,B) =+ 1ink®(a,B)
Proof: mmediate from theorems 6.2 and 6.3 -
Thus for strict homogeneous schemes the only possible links between subjects In

different clusters are those which were present in the initial state

Wa have demonstrated that the three extreme Ccases of the demand function iead
to policies which are less general in terms of links between subjects in different
clusters, than the policy achievable by an arbitrary demand function. In all three
casas the only possible links betwseen subjects in incomparable clusters are those
which ware presaent in the initial state. With respect 10 links between subjects in
different, but comparable, clusters the most restrictive policy is that of strict
homogeneous schemes while receive—controlled and send—controlled homogenaous
schemes are completely permissive in one direction and completely restrictive in the

other,

The use of the term restrictive above is not intended to be pajorative, since this
may weli be a desirable result The point is that the three extreme cases of the
demand function do not cover every concaivable situstion. indeed the foregoing

analysis demonstrates the utility of providing a non-trivial' demand operation.

6.2. THE MAY<LINK RELATION

in this section we return to the general class of self-copy schemes Wa now
study the nature of thm link” relation. Recall that this relation specifias pairs of

subjects betwesn which thers was no link in the initial state while a link could be
established in some derived state, e,

Vink* (A,B) =+ [~1ink®(A,B}] A (3 derived state h) [1ink"(A,B)]

The possibility of establishing a link® from A to B, means that it is possible to
realize a direct transport of tickets from A to B, where in the initial state such a

direct flow was not guthorized Here, we characterize the types of subjects

1 . . L. .

in the ganse that the demand operation is not aliminated, =5 in the case of strict homogensous
schemes, or introduced to model degenersie versions of the send-receive principle, a5 in the case of
receive—controled snd send-cantrolied homogeneous achemas.



petween which a link’ may be established, under a given self-copy scheme. in

order to do so, we introduce the following notion.
Definition 6.%: For every protection scheme, define the associated
binary ratation

mey-link € T, X T,
by may-/inkia.b) if and only if there mxists an initial state with subjects A
and B, of type & and type b respectively, for which it is possible to
establish link " (A,B). .
The policy., with respect to direct transport of tickets from A to B where
~rnay -1 inkitiA),tB)), is then decided when the initig! state is established and cannot ba
changed tharaafter,

in this section. we derive characteristics of the may-/ink relation for self—copy
schemes. Given a pair of df/ and demand functions, the onhly parameter required to
complete the specification of a self-copy scheme is the can-create ralation. We
first establish that the may-/ink relation is independent of the can-create relation in

the following sense.
Theorem 6.7: For a givan pair of df/ and demand functions

may-linkia.t) for a self—copy scheme with can-create # §
-

may-linkia.t) for the self—copy scheme with can-create = ¢

Proot: = Trivial, gsince for given 4d// and demand functiohs, any
transition saquence for the self-copy scheme with can-create = ¢ is also
a transition sequence for a self—copy scheme with can-create * §.

e By definition, may-/inkla b} implies there is an initial state with
subjects A and B, of types & and & respectively, such that

[—-'Iinko(A.B)] A (3 derived state h) [1ink"(A,B)]

By lemma 2.1 on page 50, we can assume that the derived state h is
established by a transition sequence H in canonical form so that the
create operations precede all the demand and transgport operations. Let g
be the state immediately after all the creates have occurred Due to the
gsolf—copy create-rule, this state preserves the balanced salf—copy nature
of the initial state. Thus the g state is itself a balanced self-copy state
The transition sequence H without the creates can then be applied to
state g. Then

[~1ink9(A,B)] A (3 derived state h) [1ink"(A,B)]
where state h is derived from state g without any create operations.
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Hence, g is an initial state for which fink (AB} without any create
oparations. "

Thus for self-copy schemes?, the may-/ink relation is determined by the of/ and

demand functions. We then have the following theorem.
Theorem 6.8: For a self-copy scheme may-/inkia.b} if and only if

1. [b/s & demand(a) A a/r ® demand{b6}] A
(Jxwpr) [a/r @ mfit{a,«.b)]

or 2. [b/s & demand (a) A a/r & demand (b)] A
(ap) [b/5 & mfitib,p,a)])

or 3. [b/% ® demand(a) A a/v & demand (b)] A
(3xrA) [a/r & milt{a,a,5)] A (3p) [b/s & mifit{s,p.a)]

or L. [b/s € demand (a) » a/r € demand (b))

Proof: Observe that exactly one of these conditions will apply for a
given pair <a.f> of subject types.

- Wea need to demonstrate in each case that there exists an initial state
with subjects A and B of type a and £ respactively for which it is

possible to establish fink {AB). We demonstrate the construction for the
first case and the construction for the other three cases is similar.  In
the first case. since « % A, agsume that « = 2 .3 . Let subject A be of

type @  and consider the foliowing initial state.

it is then possible to transport the ticket A/r from domiA) to dom(B) via
the subjects A, to A . Subject A can obtain the B/s ticket by a demand

operation. Then we have link"(A.B).

=+ By definition, link"{AB) requires thst we must have one of the
following mutually exclusive casas

2 )
Actuaily theorem 6.7 applies to any scheme wwith greste-ryies that prassrve tha constraints on the
initial state, in the zense of definition 5.5 on page 114,
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1. [p/5 & demand (&) A a/r = demand (b)] A
A/r & dan (B)

or 2. [b/s ® demand {a) A a/r & demand (b)] A
B/s = domT (A)

or 3. [b/s € demand (&) A a/r & demand (b)] A
A/r & dom _(B) A B/s & dom_(A)

or L. [b/s &« demand (8) A a/r € demamnd (b)]

in sach of these four cases we can derive the corresponding condition
of the theorem. Wa show this derivation for the first case and the
derivation for the other thrme cases is similar. Now in the first case we
have

link™ (A,B) == A/r & dom_(8)
By the origination property, of lemma 5.2 on page 119, we have

A/r € dom, (B) ==
a/r € flow{A.B) prior to link(A,B)
But then, by definition of the flow and mf/t functions, we have
(3ara) [a/r & mfit{s, e, b))

in order tc obtiin an algorithm for chacking the conditions of theorem 6.8, we
can eliminate all references to the mf/t function by rewriting these conditions in
terms of the /f/t function. This transformation is shown in appendix C.7 and results

in an algorithm with & cost of D(|T$|3).

6.3. UNIQUE-MEDIATOR SCHEMES

In this section we study a situation where there sre two categories of subjects;
these are called maediators and users.  Transport tickets for mediators canhot be
moved around, whereas transport tickets for users may be moved around, The
latter trangport is subject to certain constraints. Spacifically, users are not allowed
to transport such tickets diractly betwaen themselves but can do so only via one or
more mediator subjects. The intention is that the activity of establishing a link from
ong user 10 another must involve the cooperation of at least one mediator subject
Presumably the mediator subjects are trusted to make such decisions in accordance
with some broader policy considerations (which we do not specify here).



we allow for any (finita) number of user types but assume there is a singlea
maediator type.
this fact
types by the symbol b, for i ranging from 1 to some fixed value n We now

formalize and elaborate the constraints stated informally above.

1 Our first constraint is that transport tickets for mediator subjects

cannot be moved around This is easily enforced by requiring that the
tickaet typas a/s and a/r not appear in the range of the dfit function.

_ Our second constraint is that two user subjects should not be able to

move transport tickets directly between themseives. This constraint is
expressed by the following requirement

(Vab,,b.2) [dfitb, b)) = ¢]

. We assume that mediator subjects are very powerful with respect 1o

their ability for moving transport tickets between themsalves.
Specifically, we require that

dfit(a,a) = {b /sc, b /re| i=1,...,n}

Thus, two mediator subjects can potentially move transport tickets for
all types of users directly batween themselves. We could be even
more permissive in this respect and allow such subjects to move
transport tickets for mediators alse, so that

afit(a,a) = {s/sc, a/re} U {b /sc. b /re| i=1,....n)
This well might be the situation encountered in a practical context
However, the issues we wish to illustrate by this case study can be

brought out, and indead are sasier to highlight, in the simpler context
where transport tickets of the type a/x:ic are not movable.

. Recall that our contaxt is that of self-copy scharmes. We allow users

to transport their seif-reference tickets to a medistor subject so that
their connaction to the system may avolve. Thig transiates to the
following requirement on the of/t function.

(vo ) [afit (b, ,a) = {b /sc, b /re}]

. In order for the link relation to evolve, we must alléw users to obtain

transport tickets for other users. At the same time, we do not want
users to serve as indirect channels for transport of tickets between

Bazed on the zame idea, it 13 possible to build yp hierarchies of users and madistors in seversl
ways.

Considerations of time and space, do hot parmit us to study such hisrarchies here.

We call this ciass of schemes unigue=-maedistor schemes to reflact
Lat us denote the single mediator type by the symbol & and the user



mediator subjects. The latter objective is enforced by prohibiting users
from obtaining transport tickets with the copy flag. so that
(V<b1,bj>) [bj/sc e dfft(a,b) A bj/rc # drit(a,b )]

The objective of allowing the link relation to evolve, is met by
permitting mediator type subjects to move transport tickets for user
types to every U, e,

(vo) [arit(a.b) & b /s, b/r] j=1,...,n}]
The exact values of this portion of the df/t function are left open, as
a parsmater 1o be specified when @ particular unique—mediator scheme
is defined.

. Finally, we wigh to control the evolution of the link relation by insisting

that new links cannot be established by a demand operation alone soO
that, for every <co>e T_ X T_

c/s & demand (d) w= o /v & demand (c)

c/r & demand (@) == d/s & gemand (c)

The following definition summarizes the various restrictions we have imposed
Definition 6.6: A self—copy scheme is a unique-maediator scheme if

1. The set of subject types is
T, = {a.b1.....bn}

2. The df/t function is such that
a‘flt(bi. g = {bi/ac. b1/rc}
dflt(bi,bj) = ¢
dfft(s . &) = {b,/sc, b /re| j-:l.....n}
dfit(s ,b) & {bJ/s. b /r | j=1,..-,n}

3. The demand function is such that for all pairs of subject types
<c.d>

c/s & demand (@) == d/r ® demand (c)
c/vr & demand () == d/s ¥ damend (¢)

Obsarva that we do not constrain the can-creste relation in any way. The
graph for a unique—mediator schaeme has the structure indicated below.

162
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Tha Dflt Graph for Uniqua-Medistor Schames

It ie apparent that the only way to move transport tickets from a subject of type

b o subject of type & 4 is via one or mare subjects of type a

The definition of unique-mediator schemes immediately leads to the following

property.
Theoram 6.9: For every unique—madiator scheme ~may-/inkia.a).
Proof: Theorem 6.8 on page 149, characterizes the may-/i/nk relation for
self-copy schemas, in the context of the <aa> pair. for unigue-—
rmediator schemes the first three conditions are false, due to the
constraint on the gf/t function; and the fourth condition is false, due t©
the constraint on the demand function. .

Thus, for such schemes it i not possible to introduce any links between madiator
subjects. This is a notable proparty. in particular, this property guarantees that
rmadiator subjects which are created lor, more strongly, originatedl by a user subject
will remain isolated from all other subjects which were present in the initial state (as
wall as from the descendants of such subjects)

6.3.1. Tha Fiow=Invariant Property

Following our now familiar approach“, we investigate the flow—invariant property
for unique-mediator schemas in the context of extreme cases of the demand
function. Due to the constraint on the demand function, there are thrae extreme
cases to consider as follows

45!. sections 5.3 and 6.1.2.
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1. For receive—controlled gelf-copy schemes
(V<a,b>) [b/s & demand (a) A a/v ® demand ()]

2. For send-controlled self-copy schemes
(v<a,b>) [b/e ® demand (a) A a/r & demand (b)]

3. Eor strict self-copy schemes
(v<a,b=) [b/s = demand (a) A a/r ® demand (b)]
We will establish that receive—controlled and strict unigue—mediator schemes are
flow—invariant, while send—controlled unique—mediator schemes are not Consider

first the case of receive—controlled schemas.
Theorem 6.10; Raceive-controlied unique—mediator schemes are flow—
invariant .
Proof: From theorem 53 on page 125, we khow that receive—controlled
self-copy schemas are flow-invariant if and only if for all pairs of
subject types <cd>
(Vo) [e/r & miitic,«,d) == dfitic,d) & miit{c,a,d)]

There are three cases 1o consider,

Case (i} Consider pairs of subject types where the first

member of the par is a ie, ¢ = & in the above condition

For a unique-mediator scheme, tickets of type a/r are not

movable and, hence, the condition is frivially true for such
pairs.

Case (i) Consider pairs of uger types, ie, ¢ = 4 and d =04

in the above condition. For avery such pair, we have
dflt(bi.bj) = 4

The condition is then trivially satisfied.

h]

Case (iz The only psirs left to consider are of the form
c = .b‘i and d = a in the sbova condition. For every type b1,
we have

df/t(b1.a) = {b1/5c, bi/rc}

By inspection of the dJf/t function, for unigue—madiator
schermes it is evident that for every string «

mflt(b1.ma) = ¢ or {b /sc, b1/rc}
But then,
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b /r e mflt(bi.u,a)
- mtitb ,«,8) = {b /sc, b /rcl
— dfit(b .8) € miit(b ,«,a)

Thus in all cases the condition of thmorem 5.3 on page 125 is satisfied.
-

MNext, consider strict unique—mediator schemes.
Corollary 6.10.1; Strict unigue—mediator schemes are flow—invariant,
Proot: From theorem 6.10 and corollary 5.56.1 on page 133. -

Finally, consider send-controlled umgue—madiator schemaes.
Ttheoram 6.11: Send—controlied unique~madiator schemes need not be
flow—invariant
Proof: From thecrem 5.4 on page 129, we know that send-controlied
salf-copy schemes sre flow—invariant if and only if for all pairs of
subject types <cd>

Va) [c/s & mfit{c,e,d) == ofit(d.e) = ¢]

it suffices to aexhibit a pair which violates this condition, to establish that
send—controlled unique—mediator schemes need not be flow-invariant
Consider any pair <& 8> By definition, we have

atit(b ,8) = {b /¢, b /re}
while in genheral,
dfit(a,b)) # ¢
This viclates the stated condition. =

6.3.2. The May-Link Relation

Next we investigate properties of the may-//ink relastion for the extreme cases of
the demand function. Recall that this relation specifies those types of subjects
between which links, which were not present in the initial state, may be establishad
We cbserved, in theorem 69 on page 153, that for unique—mediator schemas
~may-fink(aa). Hence, it is not possible to establish mew links betwseen mediator
subjects.

Now consider the types of user subjects between which a link” can be
established. Thig is 8 policy decision to be made when a specific unique—madiator
schome is defined Indeed, this decision determines the extant to which madiators
can change the initial protection state. For convenience in our discussion, let the

symbol 2 denote a specific subset of {6 .61} X {5 ..51}. It should be possible
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to accommodate any 8 in the may-//nk relation, in order 10 provide the designer of

a specific unique—madiator scheme complete freedom in this respect

The definition of unique-mediator schemes leaves the exact values of dfitab))
unspecifisd, a5 a parsmeter to be defined for a particular unique—mediator scherne.
We now show that, by appropriate design of these values, an arbitrary & can be
included in the may-/ink relation. Indeed, we estabiish that this is feasible even if

the demand function is fully specified

Theorsm 6.12: Given any subset B of (b .51 X {6,563} and any

demand function® we can design the df/t function for a unique—mediator
scheme so that

may—link(b1.bj) €b1,bj> « g
Proof: Construct the oFf/t function as follows.

1. Initislize Jf/ta.b ) to be empty for all &..

2. For every <b b It in the specified set £ do the followmg
if b /s & demand (6) then dfit{a,b) +— df/t{e,b) v (b /s}
if b /r & demand (b,) then dflt(a.bj) - dﬂt(a.bj) v {6 /r}
The intuition here is rather straightforward |If subjects of type 64, and
5. cannot obtain the required tickets by a demand operation® then they

must be allowed to do so via a trensport operation In conjunction with
theorem 6.8 on page 149 it is then a simple exercise to show that

may-link (b ,b) ++ <b, ,b> € B

Thus as far as user types are cohcerned, there is complete flaxibility in
determining the may-//ink relation. In particuiar, for sl three axtreme cases’ of the
cdemand function, an arbitrary & can be accommodated in the may-/ink relation.
However, there are significant differances when we consider the possibility of

establishing new links involving a madiator subject The following theorem
establishes this differance.

5 R N . . .
Subject. of course, to the constraint which rules out establishing links puraly by demand
parations.

[
Actuslly we nogd not sven bother to tast this condition, since it doss not matter whether thara
are alternate ways of obtaining the reguired tickasts.

7 .
That i%, the raceive—controlied. send—-controlied, snd strict cases.
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Theorem 6.13: For a unique—maediator scheme in the three extreme
cases of the demand function we have

1. For receive—controlied unigue—madiator schemes
(V6 ) Lmay-/ink (b ,a) A ~may-link(a,b )]

2. For send-controlled unique—mediator schemes
(Vb1) [~may-1ink (bi .8) A may-fink (a.b‘) ]

3 For striet unique—mediator schemas
(Vb1) [~may-1ink (x'b1 28} A ~may-link (a.bi)]

Proot: Wa will prove the first statement of the theorem The proofs of
the other two statemants are similar. By theorem 6.8, we know that for
a raceive—controlled unique—-mediator scheme

may-1ink (b_,a) <= (3akh) [b /v & milt(b ,a,8)]

By definition of unique-mediator schemes, this condition is true for every
string. « which consists of one or more occurrences of 2  Again by
theorem 68 on page 149, we know that for a receive—controlled
unique—madiator schame

may-/ink(a,b.) == (3arh) [a/r & miit(a,a, b }]

By definition of unigua—mediator schemes, tickets of type a&/r are not
movable and this condition is trivially false. =

We will discuss the consaquences of this theorem in the next section

6.3.3. The Control-invarisnt Property

In this section we conclude our study of unique—-madiator schemes by discussing
the notion of a control-invariant scheme. Just as the notion of clusters is peculiar
to homogeraous schemes the property of comtrol-invariance is peculiar to unique-—
mediator schames.

We motivate the introduction of this notion by considering send—controllad
unique—madiator schemes. In theorem 6.13, we observad that for such schemas
(vt.) Lmay-1ink (a.bi)]
It is then possible to establish a link” from a mediator subject to a user subject In

particulgr, consider the following initial state where A ; and A'l’\2 are subjects of type
& and B, and B, are subjects of type 6, and &,
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The Initisl State

in this state the subject A has control over the subject B, since B, is connacted
to A, in both diractions by links, but is not connected 1o any other subject of type
& It iz quite reasonable to require that this control be maintained in all subsequant
states. Then we know that whatever links may be established to and from B, must
involve the mediation of A,. Similar remarks apply to A, and B For a send-
controflad unique-madiator scheme this control cannot be maintamned  Ih partiguiar,
in the initial state shown gbove, the self-reference ticket B /sc can be transported
from domiB ) to domiA ) The ticket Azlr can be obteined by B1 on demand, This
resuits in 2 link from A, to B.. Similarly, there can be a tink from A to B8, The
rasulting state is shown below,

A Derived State

The situation with respect to receive—controlled unigque-mediator schemes is
similar, singe for these schemas, from thecrem 6.13 we have
(vd,) [may-1ink (bi.a)]
Indead, the only way to ensure that links are not astablished between users and
madiators, is 1o make sure that



(Vb)) [~may-link (a,b.} A ~may-Iink (b,,8)]
This jeads us to introduce the following notion. .
Definition &7, We say that a unique-mediator scheme s
control~invariant if and only if

(Vo) [~may-link (a,6,) A ~may-link b,..8]

The corollary below follows from this definition and theorem €6.13.
Corollary 6.13.1: Strict unique—mediator schemes are control—invariant
wheraas receive—controlled and send—controlied unique—mediator schemes
are not control—invariant =
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It is possible to slightly modify the demand function for receive-controlled and

send-controlled unique—mediator schemes, so that the resulting schemes becoma

control~invariant  All we need do, is eliminate the ability of user subjects 1o acquire

tickets for tmediator subjects by a demand operation This is easily achiaved by

maodifying the demand function as follows.
Definition 6.8: A unique—madiator scheme is receive-orientad provided

(Vbi) [demand (bi) = {bj/s |i=1,...4n}]
Similarly, a unique-mediator scheme is send-oriented provided
(vs,) lgemand (b,) = {bj/r |i=1y+..,n}]

. Wae then have the following corellary.

Corollary 6.13.2: Receive—oriented and send-oriented unique-—madiator
schemes are control-invariant

Proof: By inspection of the conditions of thecrem 6.8 on page 148, »

An interesting aspect is that controi—invariant schemes are also flow—invariant as

shown below.
Theoresm B6.14: Every unique-mediator scheme which is control-invariant
is flow—invariant.

Proof: We know, from theorem €.9 on page 153, that for every unigue—

maediator scheme -~may-/inkla.s). For a control-invariant unique—-maediator
scheme, by definition

(v6,) [~may-/ink (8,b) A ~may-/ink (b ,8)]

it follows that a link® can be established only between user subjects.
intfroduction of such links cannot change the flowt function. ]

Hence, the analysis of control-invariant schemes can be carried out efficiently.

Obsgaerve that the converse of this theoremn is not true, since receive—controlied

unique—mediator schemes are flow—-invariant but not control—invariant
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6.4. SUMMARY

in this chapter we investigated some policy issues other than the flow analysis

problem,

ih saction 6.1 we studied the nature of the link relation in the context of
homogeneous schemes. We defined the notion of a cluster of subjects and
demonstrated that the nature of links between subjects in different clusters is
strongly influenced by the demend function. In particular we showed that the three

axtreme cases of the demand function are limited in this respact.

In section 6.2 we defined the may-/ink relation. This relation specifies tha types
of subjects between which it is possible to establish a link which did not exist in
tha initial state We characterized the nature of this relation, for self-copy

schemes, and showed that it can be computed with a cost of 0(|TS|5)-

In section 6.3 we defined the class of unique mediator schemes and studied the
nature of the may-/ink relation for such schemes. Wa also introduced the notion
of control-invarignce and showsd that while the degenerate send-controlled and
receive—controlied cases are not control-invariant, a slight modification of tha

demand function leads to unique-madiator schemes which are control-invariant.



CHAPTER 7

SUMMARY AND CONCLUSION

We have raissd a number of questions in the course of our exposition. While
most of these duestions have only baen partially answerad we do believe that our
results provide useful guidelines to the designer of & specific system. Wae review
the major results of our investigation in section 21, In section 7.2 we discuss
issues which have not been raesolved in the analysis presented in this thesis.
Resolution of these issues will provide a sharper insight than we have been abla to
provide, Finally in section 7.3 we briaefly discuss some crucial aspects which were
not addressed at all in the thesis.

7.1. MAJOR RESULTS AND INSIGHTS

In chapter 2 we proposed a framework for specifying the dynamics of a
protection schame. Certain assurnptions are bagic to tha framework and apply 1o

~any specific scheme. Specifically,

1. The transport operation is controlied by the send-receive protocol

2. There is a copy flag which distinguishes tickets whose copies might be
transported from tickets whose copies simply cannot be transportad,

3. Every subject is created to be of a specific type and its type cannot
change thereafter.

4 New types cannot be introduced at run time.
Our framework provides the following parameters which must be specified in order
to define a particular scheme.
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The set of types T = T_ U T, where T, NT, =4

The set of rights R = R, U R where R = {s, r, sc, rcl.
The function of/: 'I‘S X ‘Ts — power-set(T X R).

The function demand: Ts. — power-set(T_ X R.).

The relation can-create € T s xXT -

I B A R S

. A local create—rule for every pair <ab> & can-create.

7. Constraints on the initial state,
The first five parameters are each formalized in terms of a set, function, or relation
The pracise definition of the last two parameters has been deliberately left open but

we indicated the scope we have in mind

In chapter 3 we defined the flow" function to express the authorization for
transport of tickets from dom(A) to domiB), in state k, accounting for indirect as
well as direct transport  The values of this function will change as the protaction
state evolves and the flow—analysis problem is to determine properties of this
function. We defined the flow function to axpress the maximum value of the
flow function in any derived state. A protection scheme constrains the evolution of
an initial gtate only to the extent determined by the flow  function The create
oparation presents a major complication in computing this function, since the
protection state can evolve in an unbounded manner. We ware not abla 10 arrive at
an sigorithm for computing the flow™ function or demonstrate that it is not

1.

computable.  We introduced the notion of a bound flow' on the flow function by

the requirement that

(V<A,B> € SUB® X SUB®) [fiow” (A,B) £ Flow! (A,B)]
We defined the /f/ function which provides a bound on the flow function without
considering the structure of a particular initiel state. This function is defined in
terms of the ¢f/ function and can be computed with & cost of O(|T X R{«|T,|%.

We also defined the flow" function to express the maximum value of the flow
function in any state derived without use of the crests operation. The flow”
function is easily computed with a cost no worse than D(|SUB°|5). We developed
a technique for computing a bound on the flow function taking into account the
particular initial state. This technique augmented the initial state by introducing a
finite number of new subjects for every subject present in the initial state. We
defined the flow’ function to be the flow" function which results from an
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augmented initiai state. We proved in theorem 3.6 that the flowT provides a bound
on the flow function. This bound can be computed with a cost no worse than
O(|TS|5*|SUB°|E). We demonstrated, by means of an example, that this technique
provides a sharper bound than the /f/ fumction Wa also indicated how the bound

can be improved by unfoiding the initial state,

in chapter 4 we discussed the notion of a create-invariant scherme. For such
schemes the flow™ function is identical to the flow” function and. hence, can be
computed in a straightforward manner.  We developed a notion of weak creates
defined in terms of the df/ and demand functions. The constraint of wesak creates
i5 hon—trivial in the seanse that it will always permit a subject to create another
subjact of the same type. We showad in theoram 4.2 that any scherma with waak
creates and self-reference initial states is create—invariant We demonstrated that
relaxing the definition of weak creates will allow for schemes which are not
create—invariant, We also discussed the class of hierarchical schemes to
demonstrate the utility of schames with weak creéates,

In chapter 5 we defined two notions of a flow-invariant schame. In the strongear
sensa, a flow-invariant scheme does not allow any change in the flow function, with
respect to the imitial set of subjects. In the weaker sense, the invariance is only
with respect to the flow of transport tickets. In the former case, it is a trivigl
matter to compute the flow" function. In the latter case, 2 bound on the flow
function, uging the technigue of section 3.6, can be computed with a2 cost no worse
than Of|T X R|*|T5|3*|SUB°[3) which is considerably faster than the general case,

which might require a cost of D(|Ts|5*|SUB°|5). Our discussion in the rest of the
chapter was in the context of the weaker notion of flow—invariant, but our results
are @asily modified to apply to the stronger notion. We showed that, under some
rather general conditions on the create—rules, the value of the can-create relation is
not relevant in determining the flow—invariant hature of a scheme. We defined the
class of seif-copy schemas by congtraining some of the design parameters. The
nature of these constraints led to the name self-copy, since the major constraint
was in terms of fransport ticket types with the copy flag Wae obtained necessary
and sufficient conditions for a self-copy scheme to be flow—invariant The cost of
testing these conditions for an arbitrary self-copy schemes is O(|T5|4). Our

strategy in developing these conditions was to first study extreme cases of the



184

damand function. This study revealed that the properties are significantly different
in these extreme cases, thus extending the observation first made by Minsky [15],
in the context of the uniform send-receive mechanism. Finally, we demonstrated

that there a varisty of self-copy schemes which are flow—invariant.

in chapter 6 we investigated some policy issuss other than the flow—analysis
probiem.  Specifically
1. We studied the nature of the link™ reiation in the context of
homogeneous schemas. Wea defined the notion of a cluster of
subjects and demonstrated that the nature of links between subjects in
different clusters is strongly influenced by the demand function. In

particular we showed that the three axtreme cases of the demend
function are limited in this respect

2. We defined the may-/ink relation as a measure of the scope for
evolution of the link relation allowed by a particuler self—copy scheme,
We characterized the nature of this relation and gshowed that it can be

computed with a cost of OI|T, |

3 We defined the class of unique madiator schemes and studied
properties of the may-/ink reiation for such schamas.

7.2. UNRESOLVED ISSUES

The major unresolved issue is that of an exact computation of the flow" function
Reca!l that the flow™ function expragses the maximurm flow of ticket types which
can be achigved in the presence of a create operation. We strongly beliave that
this function is indeed computable by some closure technique. However, we have
not been able to formulate a suitable termination condition. One open problem is
then to demonstrate the computability of the fiow™ function and deterrmine the
complaxity of such a computation.

A related issue is to obtain some measwre on how good the bound obtained by
the flow’ function actually is We demonstrated by an example that this bound is
congiderably batter than the bound imposed by the /f/ function. Our example also
showed that the tlow' function may be too permissive. It would be interesting to
know under what conditions the flow® function is identical to the flow” function.
We could also lock for some systematic technique to itprove the bound along the
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lines of our example where we obtained an exact value of the flow" function by

unfolding one level of creates prior to construction of the augmented initial state.

it is also possible to further investigate the concept of a create—invariant scheme.
We have arrived at & sufficient condition whigh guarantees this property. That this
sufficient condition i1s not necessary is easy to see. For example, the receive-—
controlled mediator schemas of section 6.3 were shown 1o flow-invariant By
extending the constraints on the &f/t function to the of/ function these schermnes
become create—invariant in the presence of an arhitrary can-creste relation. Such a
create relation does not satisfy our criterion of weak creatss. Kt would be of
interest to develop necessary and sufficient conditions for a scheme to be create—

nvariant,

Wa daveloped the concept of a flow-invariant schema in the context of self-
copy schemes. This concept cen be generalized to apply to a larger class of

schemes and it would interasting to now how far the constraints can be relaxed.

7.3. AVENLUES FOR FURTHER RESEARCH

There are several pragmatic issues which have not been addressed in this thasis.
Perhaps, the most significant is that of implementing the design framework.
Conceptually the framework can be implemented by a kernsel, consisting of a
combination of hardwara and software, which provides the machinery for
interprating a specific protection scheme. The tradecffs involved in such an
implementation can be appreciated cnly after investigating the possible architectures
for such a kernsl in particular, if there is significant economy in implemanting
restricted versions of the framework then it is worth investigating these versions
further.

Another issue is the need to demonstrate the utility of our scheames by a large
scale case study. Such an exercise would help refine those aspects of the
framework which have been left unspecified or only partislly specified. More
significantly this exercise would (hopefully) demonstrate that our analysis techniques
provide ugable results in such a contaxt
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APPENDIX A

INDEX OF DEFINITIONS

Activator 4
Active Subject 51
aug 75
Augrmentad State 75
Balanced Initial State 45
Bound on the Flow Function &7
can-create 41
Canonical Transition Saquence 50
Capability 3 14
cis 142
Cluster 142
Colon Convention 15
Congtraint on the Initial State 44
Copiable Ticket 15
Copy Flag 15
Create—invariant Schemes t21:]

Craate—Rule 43
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Derived State
df/

dflt

dom

dom.r

Domain
Entity
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flow"
flow™

#
flow

flow!

flowt

Flow—Analysis Problem
Flow—Ihvariant Schemes
Mierarchical Schemes
Homogeneous Schemes
if7
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189
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57
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Initial State
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Legal State Transition
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Locel Create Rule
Maxinal Flow Function
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Maximal State
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Nested Schames
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Object

Object Type
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120

143

43
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73
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Protaction Meachanism
Protection State

R

RI

R,

Receive—Controlled Schemes
Right

Safety Problam

Scheme

Self—Copy Create—Rule
Self-Copy Initial State
Self-Copy Schames
Self-Referance Initial State
Self-Reference Ticket
Send-Controliad Scham#s
Send-Receive Transport Machanism
Seand-Receiva Protocol
State Transition

Strict Scheames

SuUB
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64, B85

47

43

45

117
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48
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Subjact Type
SuUrr

Surrogate

Ticket

Ticket Type
Transitioh Sequsnce
Trangport Right
Transport Ticket
Transport Ticket Type
Transportable Tickat
Unigque—Mediator Schemes
Uniform Mechanism
Uniform Scheme
Unfolded State
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33

33
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33
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34
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APPENDIX B

NAMING CONVENTIONS

 has been necessary to introduce g fair amount of notation, to describe formally
the class of protection schemes considersd in this thesis and to anslyze their
properties. Due to the lack of historical precedant, most of this notation is of our
own creation. While we have attempted to intraduce the minimal amount of
notation necessary for pursuing our investigation, we are sware there is ample
potential for a reader to get bewildered In this appendix we summarize those
features of the notation which were designed for clarifying the role of various
symbols. The specific aspects covered are as follows.

. Names of Relations

Names of Functions

. Names of Subjects and Subject Types
. The Sat T;

The Type Function

Trangition Sequences and Resulting States
The Flow Limit Functions

The Flow Functions

PNOD A WN

Namaz of Relstions
There are two basic sets which pervade the entire discussion. These are

SUB: the current set of subjects
T. the set of subject types

We have introduced several relations which are subsets of T, X T.. As examples
we have the can-create and msy-/ink relations. Any relation which is a subset of

T X T, is named using italic script

Similarly, we have introduced several relations which are subsets of SUB X SUB.
As examples we have the link and link” relations. Any relation which is a8 subset of
SUB X SUB is named using normal script '
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Names of Functions
The convantion for names of relations extends to names of functions, by applying

the same pringiple to function domains. If the domain of a function is Ts or

T, X T, or T_X T; X T.. then the function is named using italic script As
examples we have the o7/, jf/, and mf! functions, respactively.

H the domain of a function is SUB or SUB X SUB, then the function is narmed

using’ normal script.  As examples we have the org and flow functions, respectively.

We have made ohe exception to these rules in naming the ¢ function, which tells
us the type of a given subject We explain the reason for this deviation after
discussing the convention for naming subjects and subject types.

Names of Subjects and Subject Types

We denote subject types by lower case italicized letters from the beginning of

the aiphabet. Thus the letters a, 4, ¢, ¢ denote specific subject types.

We denote specific subjects by upper case letters from the beginhing of the
aiphabet  Thus the letters A B, C, D denote specific subjects. To the extent
possible, we ensure that the type of a subject is the corresponding lower case
italic letter.

On occasion, we need to introduce several subjects of the same type We
distinguish therm by an integer subscript Thus, A , and A2 ara two distinct subjects
both of type &  Similarly, , and B gre subjects of type & We also refer to
such subjects by a generic subscript as, for example, subject A ; of type a

On occasion, we place integer subscripts on lower case italicized letters to denote
subject types, so that a , and a, are distinct subject types. We can then refer to
these types by a generic subscript as, for example, 2 ;- When we have subscripted
typas, we designate a subject of one of these types by the corresponding upper
case letter in normal script and the same subscript Thus, A , '8 8 subject of type
8, and A2 is a subject of type &, Wa can also use a generic subscript so that A |
i5 & subject of type 8.
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There is an obvious ambiguity' in the above convention. Thus, it is not clear
whether A and A, are two distinct subjects both of type & or whether they are,
respactively, of type a , @nd a_. This conflict is resolved by the particular context

The Set T;

There is a need to denote members of the set T;, which is the Klasne closure of
T, We denote strings from this set by lower case Greek letters, such as « and B
For the case of a non-empty string, we write out the string explicitly as follows.

« = a8,...4_a
B=10b0b,...0 b

im

The empty string is denoted by the symbol A

The Typa Function

The type function

t: S5UB — Ts

returns the type of the argument subject. According to our stated convention, its
name shoutd be in normal script; since its domain is the set SUB. We have deviated
from this convention to ensure that every member of 'rs appears in italic script;
either directly as & 5, a ; otc. or indirectly, via sn application of ¢ as #A), #B), 1A )
atc. The net result is that any function or relation with an italicizad name must have
italicizad arguments.
Transgition Sequences and the Reaulting States

We dencte a transition sequence by upper case lstters from the middle of the
asiphabet typically, H and G The resulting state is denoted by the corresponding
lower case letter, h and g, respectively.
The Flow Limit Functions

The mnemonic used for flow limit is #/. If followed by a t. as in f/t, then tha
flow limit is on tickets with trensport rights.

If the letter ¢ precedes these strings, then the flow limit is on a direct transport
from one subject to another. If the letter m precedes these strings, then the flow
limit is on a mediated transport from one subject to another. Finally. if the letter /
precedes these strings, then the fiow limit is on a direct or indirect transport from
one subject to another.

1 -
In addition to following thess conventions, we axplicitly indicate the type of every subject
introduced in the discussion so there is never really any doubt sbout our intention.
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By taking alt combinations of the two indepsndent aspects mentionad above. we
get the following names.

afl mi/ il
dfit mfit fft

‘The Flow Functions

The same conhvention used to qualify the £/ symbol is also used to qualify the
flow function. Thus,

flow: refers to the flow of any ticket type
flowt refers to the flow of transport tickets
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ALGORITHMS AND THEIR COMPLEXITY

In this appendix we develop algorithms for computing various functions and
ralations introduced in this thesis We also derive the complaxity of these

algorithms.

Each algorithm is written as a procedure which returns a value. We assume that
the design parameters of the scheme are available as global variables, 50 that they
need not be passed as parameters 1o our algorithms. For the same reason, we also
assume that the current set of subjects is globally available. Hence, the foliowing
variables are globally accassible.

1. The df/ function

2. The demand function.

3. The can-create relation,

4. The current set of subjects, SUB.

Several algorithms require computation of the transitive closure of some relation.
Wa assume there is a procadur_e called trclosure available for this,

The keywords and syntax used for writing these algorithms conform to standard
practice in modern programming languages. However, there are certain aspects
which need to be expisined. These aspects are discussed in saction C.1. In
particular, we present the assumptions underlying our complexity analysis. The
remaining sections develop and analyze the cost of specific algorithms.
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€.1. Conventions for Presenting Algorithms

Tha particular aspects we explain haere are, respectively:

The forall loop.

The 3 predicate.

The use of set operations.

The representation of ralations.
The representation of functions.
The transitive closure oparation

oS LI S O L

The Forall Loop

The forall lcop involves iteration over all members of some set Tha general
form of this loop is

forall member & SET do statememt;

The statement, called the body of the locop, may be a simple staterment or a
compound statement enclosed within a begin end pair.  The semantics is that the
body of the loop is executed once for every member of the indicated set At sach
iteration. the selaction of & mamber from the indicated set is done non-
deterministically; and each member is chosen axactly onhce. The SET being iterated
over camhot be changed by the body of the loop.

if the cost of executing the body of the loop is indepandent of the set member
chosen for a particular iteration, then the cost of axecuting the entire oop is
0 (| SET | ®cost - body)
where, |SE7| is the size of the SET and cost-body is the cost of a single iteration.

On occasion, the cost of executing the body of the lcop depends on the
particular set element selectad for the iteration. In such cases, we compute the
cost of the loop by assigning the maximum cost for every iteration. Tha cost of
the entire loop is then

0 (| SET | kewst - body~max)
where, cost-body-max is the maximum cost of a single iteration
The Existential Predicste

The existential predicate involvas an iteration over all members of soma set,
searching for an element which satisfies a designated predicate. The general form
of this construct is

(3 member & SET) pradicste (member)
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This construct is used within an if statement The semantics ig that the predicate is
tasted for every member of the the indicated set Tha moment a member which
satisfies the predicate is encountered, the existential predicate evaluates to true. If
the entire get iz exhausted without finding 8 member for which the predicate is
true, then the existential predicate evaluates to false. The order in which membaers
are selectad from the indicatad éat i hoh—deterministic, but sach member is chosen
exactly once. The S£7 being iterated over canhot be changed by evaiuation of the
predicate.

If the cost of evaluating the designated predicate is independent of the set
member chosen for a particular iteration, then we assign the cost of evalugting the
existential pradicate as

0 (| SET | #cost- predicate)
where, |SET| is the size of the SET and cost-predicate is the cost of evaluating
the desighated predicate for a specific set membar. Note that, if the existential
predicate is faise this is the actual cost, whereas if the existential predicate is true
then it is 8 worst case cost

On occasion, the cost of evaluating the predicate depends on the particular set
elamaent selected for the iteration In such cases, we compute the cost of
evaluating the existential predicate by assigning the maximum cost for every iteration.
The cost of aevalusting the existential predicate is then

O (| SET | *cost- predicate-max)
where, cost-predicate-max is the maximum cost of evaluating the designated
preadicate.

Set Operstions )

We assume that the union and intersection of sets can be performed in constant
time. Also that membership in @ set can be testad in constant time. These costs
are realizable for a bit-string representation of a set with known maximum size
The sets involved in our algorithms satisfy this requiremsnt
Relstions

The declaration for a relation defined on a given set has the following form,

declara re/stion-name(1...|SET|,1...|SET))
We assume that membership in a relation can be tested in constant time. Also that,
a2 particular pair can be inserted or deleted in constant time. The concrete
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implementation we have in mind is that of a bit~-matrix. We insert a pair in the
relation by setting the appropriate bit to true, and similarly, remove a pair by setting
the appropriate bit to false,

Functions
Cur functions are all set valued and have the following structure
function-name: DSET X DSET — power-aet (RSET)
mapping the cross product of DSET to a subset of ASET. We declare a function
as follows
declare function-name(1...|DSEY|,1...|DSET|)
The ASET is implicitly determined by the function-name. The concrete
implementation we have in mind is thet of a matrix of bit-vectors. Each bit-vector
has a size equal to |ASET|.
The Transitive Closure Opersation
The transitive closure operation is used in a number of our algorithms.  We
assume there is a procedure called treciosure available for effecting this computation.
The input 1o this procedure is a relation shown as & set of ordered pairs. For
exampla,
trolosure ({<A,B> & SUB X SUB| 1ink(A,B)})
computes the transitive closure of the link relation

The standard transitive closure algorithms compute the closure in On®) time, and
we assume this cost in our complaexity calculations. We are aware that the fast
multiplication algorithms can be used to obtain an O{n2‘7awlug(n)) algorithm, which is
asymptotically better. However, for practical situations this is not very helpful We
are alsc aware that there are algorithme which have an expacted' complaexity of
O(nﬂ). These algorithms are discussed in several books, inciuding the one by
Reingold, Neivergelt, and Deo [18].

1 .
Since we sdopt a worst case viewpoint in our analysis. thiz fact is not immedistely relevant
Howaver, this would be sn important consideration when impismanting the eigorithms.
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C.2. The Ifl Function

In order to compute the /f/ function it is convaniant to first compute a closely

ralated function defined as follows,
Definition C.1: For every /f/ function define the associated function

iflc: TS X Ts -= powar-sat (T X R)
by
efxc & iflc(a,b) == c/xc & ifi(a,b)
[ ]
The /f/c functioh is easily computed, by eovaluating a transitive closure for every
ticket type with the copy flag, as shown below.

procedurs get-itic
declare /if/c(1...|T [, 1...|T ), may-flow(1.. T |, 1...|T |);
forall <s,b> & Ts X Ts do iffcla,b) =~ ¢;
forall ¢/xc &« T X R do
bagin
may-flow +— trclosure {{<a,b> E 'I's X T$| c/xc € dfifa,b)});
forall <s,h> & TS X TS do
if may-flow (a,5) then iflc(a,b) +— Iflc(a,b) v fc/xc};
ond;
raturn /f/c;
and get-ific;
There is a cost of 0(|T5|a) for the transitive closure operation and, since this
operation must be performed for every copiable member of T X R, the complexity
of the get-ific aigorithm is O(|T X R|*|T |3

The j#/ function can be expressed in terms of the @7/ and if/c functions, by the

following transformation. By definition
c/xic & jifi{a,p) = () [c/x:c € mf!{a,x,b)]
There sre two cases to consider. For the first case, lat & be empty. By definition
of the mf/ function, we then have
e/xtc &€ mifla,A,B) = c/x:c & gtl(a,b)

For the second cese, « is non—empty. Then, o« can be written as ¢ where § may
or may hot be ampty. But then,

(3pd) [e/x:c & mfi{a,pd.b)]
= (IBd) [c/xc € mf/ (a,B,d) A c/xic & dff(d,b)]
w (3d) [c/xc €& ificla.d) A c/x:ic & dfi(d,5)]

By combining both cases, the /f/ function can be expressed as follows.
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c/x:c € jff(a,b)

i
[e/x:c & off/(a,b)] v (3a) [c/xc & iffc(a,d) A ¢/x:ec & dff(d,b)]
The 77/ function can then be easily computed from the /f/¢ function as shown
batow.

procedure get=-ifl
daclare /f/ (1...|T | 1.0 [T ), ifle( | T Lt | T D5
ifle — gat=Hlc;
forall <a,b> T_ X T, do

begin
Hila,b) — dfl(a,n;
forall d & Ts do if/{a,b) «~— iff(a.b) v [ificle.d) n dfi(d,m];
and;
return /f/;
end get-ifl;

The cost of the nested forall loops is D(|‘l"5[a). This is dominated by the cost of

computing the /f/c function  Hence, the cost of computing the 77/ function is
3
oT X HIN[Tsl 3

C.3. Tha Flow Funation

In order to compute the flow function, it is convenient to first compute the flow
of tickets with the copy flag. The latter flow is expressed by the flowc function,
defined as follows,

Definition C.2: For every flow" function define the associated function
fiowe™: SUB X SUB -+ powar-set(T X R)
by
¢/xc € flowc™ (A,B) = ¢/xc & fiow" (A,B)
]
The flowe function can be computed from the link relation, by evaluating a transitive
closure for every ticket type with the copy flag. This computation iz shown below.
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procadure get=tflowe {(1ink)
declare flowc (1...|5UB|,1...|SUB|),
can-flowe (1...|SUB|,1...|SUB]);
forall <A,B> & SUB X SUB do flowc (A,B) « ¢;
forall c/xc = T X R do
bagin
can-flowc +— trelosure ({<A,B> € SUB X SUB|
link (A,B) A c/xe & gf/{t(a),t(B))});
forall <A,B> & SUB X 5UB do¢
if can-flowc(A,B) VvV A = B
then flowc (A,B) «— filoewc(A,B) U {o/xe};
and;
return flowc;
ehd get-flowc;

The cost of each transitive closure operation is O(}SUB|%. Hence, the cost of
computing the flowe function is O(T X R|*|SUB}).

it is then a simple matter to compute the flow function. We need only account
for ticket types which do not carry the copy flag The latter step is
straightforward, since such tickets can be transported at most over a single link
This computation is shown below.

procedure get-flow (1ink)
declare flow(1...|SUB[,1...|5UB|), flowc(1...|SUB|,1...|SUB|);
flowec «— get=-flowe {1ink) ;
foratl <A,B> = SUB X SUB do
bagin
if A =B then fiow(A,B) — T X R
wize flow(A,B) — flowc (A,B);
forall C & SUB do if link(C,B) then
flow(A,B) «— flow(A,B) W [flowe (A,C) n af/(#(C),t(B))];
end;
return flow;
end gat=-flow:;

The cost of executing the nested forall loops is O(lSUB|3). This cost is dominated

by the cost of computing the flowc function. Hence, the overall cost of computing
the flow function is O[T X R{»|SUB|®)
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C.4. The Maxims! Flow Function without Craates

In order to compute the flow” function, we need to focus on the transport of
transport tickets. To do so conveniently, we introduce the following notation® to
isolate that portion of the of/ and flow functions which authorize transport of such

tickets.
Dafinition C.3: For avery of/ function define the associated direct flow
limit function for transport fickets

arit: T, b T, — powasr-set ('l's X RT)
by
dfit{a,b) = dff(a,p) n TS X RT

Definition C.4: For every flow® function define the associated flow
function for transport tickets

flowt*: sug® X sup® — power-set (TS X RT)
by

flowt™(a,B) = flow (A,B) n T X R,
n
In the previous section, we developed the get-flow algorithm to compute the flow
function from the link relation The flowt function can be computed in a similar
manner, by replacing every occurrence of T X R by T, X R, and every occurrence
of dff by dfit in the get-flow algorithm. Call the resulting algorithm get-flowt.
The cost of computing the flowt function is then O(]T, X R_|*|SUB|%. Since,

|HT| is known to be four, the cost of computing the flowt function is
Ol T, [*|suB|).

The ger-flowt algorithm computes the flowt function from tha link relation. In
order to compute the evolution of the link relation, we next develop an algorithm
called get-link, which given the initial domain and the flowt function returns the set
of links which gan then be astablished.

For a given pair of subjects A and B, there are two aspects which have to be

2 This notation i3 introduced, in the main body of the text, in chapter 5. Wa define it at this point,
sinca the interested reader may wish 10 read this appendix prior to reading chapter 5.
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checkad in order to determine whether a link can be established from A to B These
are that the ticket B/s must appsar in dom(A) and that the ticket A/r must appear in
domiB). Let us refer to these two conditions as foliows,

slink = B/s & dom(A)
rlink £ A/r € dom(B)

MNow, there are three ways by which the slink condition can be satisfiad.
1. The ticket B/s is in the initial domain of A, ie.

B/s & dom® (A)

2. The subject A obtains the ticket B/s by demanding it, ie.
t{B) /s & demand (t (A})

3. There is somae subjest C which possesses the ticket B/sc and can

transport the ticket B/s to the subject A There are two waly*a.3 by
which C might obtain the ticket B/sc. The subject € might have this
ticket in the initial state or C might obtain the tickat by a demand
operation. This case then requires that

[B/sc € dom®(C) v t(B)/sc & demand (t(C))]
A
t(B)/5 & flowt(L,A)

A similar set of conditions can be developed for checking whether the rlink
condition is satisfied,

The algorithm shown below checks these conditions for every pair of subjects A
and B. If both conditions are satisfied, the pair <A,B> is insertad in the link relation
otherwise the pair is omitted from the relation

a i ! , .

We need not consider the case whars C obtaing the ticket B/sc from some subject D and then
transports it to subject A, since this amounts to subject D transporting the ticket to A and will ba
accounted for.
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function get-link (dom®, f1owt)
daclare 1ink (1...|SUB|,1...|SUB|), slink, rlink;
forall <A,B> & SUB X SUB do
bagin
If B/s & dom® (A) V 1(B)/s € demand (t(A))
than siink = trua elge s1ink — falsa;
if A/r & dom®(B) v 7(R)/r € demand (t(B))
than rlink +— true else rlink +— falaa;
foralil C & SUB do
begin
it [B/s¢ & dom®(C) v t{B)/sc & demand (t(C))] A
t{B) /s € Flowt (C,A)
then s1ink +— true;
if [A/rc € dom®(C) v t(A)/rc & demand (t(C))] A
t(A) /r & fFlawt {C,.B)
than rlink «~— trum:
and;
if slink A rlink then 1ink {A,B) + true
wise 1ink (A,B) < false:
and;
ratum link:
and gat-iink;
The inner forall loop checks for the existence of a suitable subject C who can
assist in setting up link(ABl. The cost of this inner loop is O(]SUB|L Since this
loop is executed for every pair of subjects A and B, the net cost of the get=link

algorithm is Of|SUB|%).

Establishing the new sat of links may change the flowt function in turn
enhancernaent of the flowt function may allow mare links to be estblished Wae can
alternately execute the get-flowt and the get-link algorithms until the link relation
stabilizes. This computation is shown below.
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procedure ger-flowt" (dom®)
declare flowt {1...|SUB|,1...|SUB|),
1ink*(1...|SUB[.1...|SUB|), 1ink"" " (1...|SUB},1...|5UB|);
forall <A,B> & SUB X SUB do flowt (A,B) +— ¢;
1ink® < get=link (dom®, flowt) ;
repaat foraver

bagin
flowt <« get=flowt()ink");
1ink"*! +— get-link {dom®, f 1owt)

i 1ink®™" - 1ink® = 4 then return flowt
bkt

elge 1ink® «— link H
end;

end get-flowt”;

The initial sat of links is computed by setting all values of the flowt function to be
empty and invoking the get-link algorithm. Tha flowt funhction and the link relation
are then computed alternately till the link relation stabilizes. Both the get=-flowt and
get-link computations have a cost of O(|SUB|3), which is then also the cost of
vach iteration of the repeat loop. Since at most |SLJB|2 links can be established,
there are at most |SUB|? iterations of this loop. Hence, the tima complexity of the
get-flowt” algorithm is no worse than O(|SUB|®).

Once the flowt? function has been computed, computation of the flow” function
is straightforward, as shown below.

procadura get-flow" (dom®)
deciare flow(1...|SUB|,1...|SUB|), flowt(i...|SUB},1...|SUB|),
Tink{1...|SUB|,1...|SUB|) 3
flowt + get-flowt” (dom®) ;

link +— gat-link (dom®, fTowt)
flow =~ gat=tlow (] ink);
return flow:

ohd get-flow”;

The complexity of the get-flow sigorithm is O([T X R|#|SUB|%. This is dominated
by the 0(|SUB]E’} cost of computing the flowt® functioh Henhce, the complexity of

the get-flow” algorithm is O(|SUB|5).
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C.56. The Augmentad Flow Function

T function amounts to computing the flow” function for

Computation of the flow
the augmented initial state Construction of the augmentad initial state is a

straightforward matter and we can ignore the cost of doing so

For each subject present in the initisl state construction of the augmented initial

state introduces at most |T5|-"l new subjects. Hence,
]
|sus™@| = |T |*|suB”|
The flow* function can be computed in O(|SUB|®) time, as discussed in
appendix C4 Then the cost of computing the flow! function is no worse than

0(|T5|5*|SUB°|5). This computation clearly is expensive in the worst case, but
naverthaless it is fractable.

Flow-Invariant Schemes:® For the spacial case of schemes, which are flow-
invariant {in the weak sense”), there is a considerabie speed—-up in cormputation of
the flow’ function. The fiowt! function can now be computed, from the link
relation in the augmentad initial state, by using the get-flowt algorithm on page 182
Tha cost of this computation is O(|TS|*|SUB|3). Since there are at most
|T5|*|SUB°| subjects in an augmented initial state, the cost of computing the
flowt! function is no worse than 0(|T5|‘*|SUB°|3). The flow function can then
be computed from the flowt* function, by using the gnt-flcrw# glgorithm on
page 185 The complexity of this computation is O{JT X R|n|TS|3*|SUB°|3). This
is considerably better than the possibility of an D(|T5|5*|SUB°|B) cost for

+ function in general.

The rermainder of this saction is relevant 1o the discussion of chapter & and can be ignored tilt
that point

ESCC definition 5.3 on page 113,
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C.6. The Flow~invariant Property

Theorem 5.6 on page 134 characterizes the flow-invariant property for self-copy

schemes as follows
A self-copy scheme is flow—invariant if and only if for all pairs of
subject types <ab>

1. If [b/s & demand (a) A a/r & dermand (b)] then
(va) [a/r & mfit(a,e.p) = gfit{a.b) & mfit{a,z,b)]

2. If [b/s ® demand(a) A a/r & demand ()] then
(vp) [6/s & milt(b,B,8) == dfit(a,b) = ¢]

3. If [b/s ® demand(a) A a/r ® demand (H)] then
(va) (¥B) [a/r & mfft(s,a.b) A b/s & miit{b,B.a) —
dFftia, b) € mfit(a,a,d]

L, ¥ [6/s € demand (8) A &/r « demend (£)] then Jfit(a,b) = ¢

By negating both sides of this theorerm and applying some straightforwarg logical

transformations®, we obtain the aduivalent statement that
A gelf-copy scheme is not flow—invariant if and only if there exists &
pair of subjact types <a.b> such that

1. [b/s & gemandla) a a/r ® demand (B)] A
(3a) [a/r & miit{a,a,b) A dfftla, ) & mfit(a,a,b)]

or 2. [b/s # demand(a) A a/r & demand (b)) A
() [a/s & mfit{a,x,b) A dfft(b.a) ¢ ¢]

or 3. [b/s ® damand (8) A a/r ¥ demand ()] A
(3) (3p) [a/r &« mfit(a,a,b) A b/s & mftt{s,p.a) A
drit(a.n) € mtit(e.«.b)]

or 4. [b/s & demand(a) A a/r & demand (6)] A dfft(a,b) # ¢
ih order to obtain an algorithm for checking these conditions, wa will eliminate all
references to the mf/t function. In mach case, testing that part of the condition
which refers to the demand function is straightforward and we will focus on the
remaining part In particular, testing condition 4 is triviek Wse consider the first

three conditions in turn.

It is important to recognize that the condition of theorem 5.6 can be ifreated #s a conjunction of
implications.  This is because exactly one of the conditions of the four if statements will be satizfiad
for a given pair of subject typaes.
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Condition 11 We begin by defining the following notation, for denoting that part of

the JFf/t function which authorizes transport of copisble transport tickets
Definition C.5: For evary gf/t function define the associated function

dffte: T X T, — pt:ﬂmls'nr-'-snt(T5 X R))
by
c/kc & dfitcla,b) = p/xc € dfitia,h)

Consider the requirement that o7/a b} is not a subsat of mfltlaa bl If « is the
empty string then, by definition, mf/tla.A.b} is the same as gf/tab). Hence a must
be non—-ampty. lLet « be of the form a ,~8, 80 that

mflt(a.a1...an,b) -
dfftc(a,a) N ... n dfitcla,a,, ) N ... N dfitia ,0)
Then, df/ta.b) is not a subset of mf/tla.a .6 b if and only if at least one of the
followmg conditions is satisfied,
(i} dtitla,b) € dfiteia,s)

(i} Qi) Lafrtia,n) € dfire(a ,a_,

(iii) afitia,h) & dﬂt(an,b)
We will congider each cne of these possibilities

Case (i Let a have the form cf where [ may possibly be the eampty
string. Then,

3]

1

a/r € mfit(a,cf.b)

L
a/rc & dfit(a,c) A“a/r' € mfitic,f1,b)
Tha condition that the scheme is not flow—invariant, becausa of tha pair
<a,b>, can then be expressed as
(3cp) [a/rc & afit{a,c) A afr & mflt(e,p,b) A
dfit(a.b) & dfitc(a,c)]
By definition of the /f/t function, this is identical to

(3¢) La/rc & ofit{a.c) A &/r & jfit(c,h) A
dfit{a, b € dfitc(a.o)]

Case (it For this case to apply the length of « must be at least two.
Lot « be of the form P,cdB, where B and/or B, may possibly be
ampty. Then,

a/r € mfit(a,p edp, ,b)
A
[a/rc w mfit{a,p,,c)] A [a/rc & dftt(c,d)] A [a/r mflr(d,pz,b)]
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The condition that the scheme is not flow—invariant, because of the pair
<ab>», can then be expressed as

(3p,cdp,} [a/rc & miit(a,p ,c) A a/rc € difitlc,d) A
a/r & mfit{d,p,,b) A dfit(a,b) & dfitc(c,d)]
By definition of the /f/t function, this is identical to

(3eef) [8/rc & jfit{a,c) A a/rc € gfit(c,d) A
a/r & Jfit(d. by A dfit(a,b) & ditte(e,d))]

Case (it Let « have the form pd where [ may possibly be the empty
string.  Then,

a/r © mfit(a,pd,h)

la/rc &€ mfit{a,p,d)] A [a/v & dfit(d,b)]

The condition that the scheme is not flow—invariant, because of the pair
<a.0=, can then be expressed as

(3pd) [a/rc & mfit(a.p,d) A a/r & dfit(d.b) A
dfit{s,h) & dfit(a,d)]
By definition of the /f/t function, this is identical to
(3d) [a/rc & jfit(a.d) A a/r € dfit(d,b) A

dfit{a,b) & dftt{a,d)]
Thus, in each of the threm cases we can eliminate refersnce to the s/t function.
The resulting conditions are in terms of the of/t, dfite and if/t functions. These
conditions can be easily tested. This computation is coded as 8 boolean procedure,
flow-invariant-r shown beiow, which takes a pair of subject types as input and
determines whether this pair satisfies the condition for the scheme to be flow-
invariant The three if statements correspond to the three cases discussed sbova,

procedurs flow-invarlsnt=r (s, b)
if (3c & Ts)
[a/rc & dfit(e,c) A a/v & ifit{c.b) A dfit{a,b) & dgrite(a,c)]
then return falae;
¥ (3=r,d> & T5 X TS)
fa/rc € jfit{a,c) A 8/rc & dfit{c,d) A a/r € ifit{d,b) A

dfft(a, b % dfitele.da)]
than retumn false:

if (3d & Ts)
[a/rc & ifit{a,d) A a/r & dfit{d,b) A dfit(a,b) & dfit{a,d)]
then return false:
retum true;
and flow=invarisnt-r:
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The cost of evaluating this procedure is dominated by the cost of evaluating the
axistantial pradicate in the second if stptement Since this involves an iteration
through the set T, X T_. the cost is D(|T5|2).

Condition 2. This condition is easy to check, since by dafinition
{3x) [a/5 & mift(a,a,0) A dfit(b,8) # ¢]

e

[a/s & ifft{a,b)] ~ [dfit(b.a) % ¢]

Condition 3 This condition can be written as a conjunction of two separate
conditions, ohe involving tha string « and the other involving the string B, as follows

() [a/r & mfrt(a,a,b) A dfit{a,b) & mfit(a,«,0)]
A

(Ap) [b/s & mfit(b,B,a)]
Tha first term of this conjunction is exactly the same as condition 1. Hence, the
flow-invariant-r procedure can be usad to evaluate the first teren, By definition of

the 7f/t function, the second term of the conjunction is exactly that b/s € /f/tb.a)

Tha Resulting Algorithm: It is now a simpis matter to obtain a algorithm for

testing whethar the requirements of theorem 5.6 are satisfied The algorithm shown
below performs this computation by testing the appropriste condition for every pair
of subject types.

procedure flow~-invariant
forall <a, b> & Ts X TS do

bagin
If [b/s « demand {(3) A a/r ® demand (b)] A
~How=invariant=r (a, b)
then return false;
if [b/s ¢ demand(8) A a/r € demand (£)]1 A
b/s & Ifit{a,n) A dfit(a,b) # ¢
then raturn falge;
it [b/s & demand (&) A a/r ® demand (0] A
b/s & jfit(b,a) A ~flow-inveriant-r (a, )
thean return falee;
it [b/5 & demand (8) A a/r = demand (M A
dfit{a,b) * ¢
than ratum faise;
and;
return true;
end flow=invariant;
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The first three Hf statements correspond to the three conditions discussed above,
while the final if statement corresponds to the fourth (trivial) condition Since the
flow-invariant-r pradicate recuires D(ITSIQ) time for its evaluation, the cost of this

algorithm s no worse than 0(|T5|4); which is of the same order as the cost of
computing the /f/r function,

C.7. The May~-Link Relation

In theorem 6.8 on page 149, we characterized the may-/ink relation for seif—
copy schemes as follows.

may-[ink (a, b)

L
1. [b/s & demand(a) A a/r ® demand (5] A
(3a#A) [a/r € mfit(a,e,b)]

or 2. [b/s & demand (a) A a/r € demand ()] A
(3p) [b/s € mift(p,p,a)]

or 3. [b/s & gemand (@) A a/v % demand (&) A
Qeara) [a/r & mfit{a,x.0)] A (AP) [b/s & mfit{b,p,a)]

or 4. [h/s € demand (a) A a/r € demand (b)]
For any pair <ab> of subject types exactly one of these conditions needs to ba
tested In order to obtain an aigoritm for chacking thesa conditions, we will
eliminate all references to the mf/t function. In each case tasting that part of the
condition which refers to the demand function is straightforward and we will focus
on the retnaining part In particular, testing condition 4 is trivial. Wa consider the
first three conditions i turn

Condition 1 Since the string « is non—empty. we can sssume that it contains at
laast one subject type, say ¢ so that « is of the form p 10]'.?2 where , and/or [.l2
may possibly be empty. But then, the condition can be transformed as follows.

(3xwA) [a/r & mfit{a,a,b)]
= (Ap.cp)[a/r & mfit(a,p.cp,,b)]
+ (3p.cp) [a/rc € mfit(a,p,.c) A a/r & mflt (=,B,,06) ]
- (3c) [a/rc & iftt(a,c) A &/r & ifit(c,b)]

Condition 2 For this case the existential condition on the mf/t function is axactly
that
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b/s & [fit(h,a)

Condition 3 Here, there are two parts to the condition on the mf/t function
equivalent to conditions 1 and 2 respectively. Condition 3 can then be written as
follows.

(3c) [a/rc & ifit(a.c) A a/r € ifit{c,h)]
Condition 3 is then equivalent to
[6/8 & ifit(b,a)] A (3c) [a/rec & ifit{a,e) A a/r & ifit(c,b)]

The Resulting Algorithm: The may-/ink relation for self—copy schemes can now

be computed by testing the appropriate condition for every pair of subject types.
This computation is shown below, whare the four If statements respectively
correspond to the four conditions on page 191,
procedure get-may-link
declare may-/ink{1.., ITS' T T D s
forall <s,b> € T_ X T do
begin
If [&/s € demand{(a) A a/r & demand (b)] A
(Ac & Ts) [a/rc & iftt(a,c) A a/r & ifit(c,b)]
then may-/ink (a,b) +«— true else may-/ink(a,b) «— talse:
if [6/% ® demand (a) A a/r € demand (5)] A
b/s € ifit(h,a)
then may-/ink (8,5) +— trus else may-/ink (a,bh) < talge;
it [6/s ® demand (&) A a/r ® demand (5)] A
b/s & jflt(b,a) A
(3c € 7)) [a/rc € ifit{a,c) A a/r & ifitic,0)]
then may-/ink (a,b) +— true slse may-/ink (a,b) +— falae;
If [6/s & demand (a) A a/r & demesnd (b)]
then may-/ink (a,b) +— true wise may-/ink (a,b) +— faise;
ond;
return /mav-/ink;
end get-may-link;
Since at most one condition with complexity O(]T_|) must be tested for every pair

of subject types and there are |T | such pairs, the cost of this computation is
o T, |
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