
1520 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 2, APRIL 2019

Secure Range Search Over Encrypted
Uncertain IoT Outsourced Data

Cheng Guo , Ruhan Zhuang, Yingmo Jie , Kim-Kwang Raymond Choo , Senior Member, IEEE,
and Xinyu Tang

Abstract—Internet of Things (IoT) is an increasingly popular
technological trend. The operation of IoT needs a strong data-
handling capacity, where most of the data are sensor data.
Limitations associated with measurement, delays in data updat-
ing, and/or the need to preserve the privacy of data can result in
the sensor data being uncertain. Thus, one key challenge is “how
do we ensure the privacy of data collected from IoT devices,
particularly uncertain data, that are being outsourced to the
cloud for analysis, storage and archival?”. Searchable encryp-
tion scheme is a promising technique that allows the searching
over encrypted (uncertain) data stored offshore. In this paper,
we propose a secure range search for encrypted data from IoT
devices. Specifically, we use homomorphic and order-preserving
encryption to encrypt data published by the data owners. We
then use the k-dimensional tree to build the data index. Our
scheme is designed to ensure the privacy of the dataset, with-
out affecting the efficiency of keyword search on the (encrypted)
dataset. We also demonstrate that our scheme can preserve both
data and query privacy, as well as evaluating its performance to
demonstrate efficiency.

Index Terms—Internet of Things (IoT), range search, secure
range search, sensor data, uncertain data.

I. INTRODUCTION

INTERNET of Things (IoT) devices, such as sensing
devices (e.g., radio-frequency identification, infrared sen-

sor, global positioning system, and laser scanners), can be
used to facilitate intelligent identification, positioning, track-
ing, monitoring, and management. Such data (also referred
to as sensor data) can be random and incomplete in nature,
partly due to limitations of deployed measuring instruments
or delays in data updating. In other words, the sensor data can
be imprecise and uncertain. The ability to manage uncertain

Manuscript received January 15, 2018; revised March 29, 2018 and
May 2, 2018; accepted June 5, 2018. Date of publication June 7, 2018;
date of current version May 8, 2019. This work was supported in part by
the National Natural Science Foundation of China under Grant 61501080 and
Grant 61572095, in part by the Cloud Technology Endowed Professorship, and
in part by NSF CREST under Grant HRD-1736209. (Corresponding author:
Kim-Kwang Raymond Choo.)

C. Guo, R. Zhuang, Y. Jie, and X. Tang are with the School of Software
Technology, Dalian University of Technology, Dalian 116620, China, and
also with the Key Laboratory for Ubiquitous Network and Service Software
of Liaoning Province, Development Zone, Dalian University of Technology,
Dalian 116620, China (e-mail: guocheng@dlut.edu.cn; clindy007@163.com;
jymsf2015@mail.dlut.edu.cn; 1079062525@qq.com).

K.-K. R. Choo is with the Department of Information Systems and Cyber
Security, University of Texas at San Antonio, San Antonio, TX 78249 USA,
and also with the Department of Electrical and Computer Engineering,
University of Texas at San Antonio, San Antonio, TX 78249 USA (e-mail:
raymond.choo@fulbrightmail.org).

Digital Object Identifier 10.1109/JIOT.2018.2845106

Fig. 1. Range search over sensor data.

data efficiently is crucial in those working with databases, etc.
Thus, how to efficiently process uncertain data is a topic of
ongoing interest to researchers [1], [2].

Range search is a fundamental query performed on uncer-
tain data, whose purpose is to retrieve data within the query
range. One example application of range search in IoT is in
agriculture [2], where farmers can install sensors in the field
to monitor temperature changes, relative humidity, and pol-
lution level information. Each sensor obtains a set of sensor
data U = {u1, . . . , un}, where U represents a sensor object,
ui represents an instance, and i ∈ [1, n]. Hence, each object
contains three data values and is modeled as a 3-D object
(Fig. 1).

There are three sensor objects {A, B, C}, due to factors, such
as equipment failure and noise. The received sensor objects
may be uncertain. As such, each object is represented by an
uncertain region Ar (shaded areas in Fig. 1) and the probabilis-
tic density function (PDF) (A.pdf in Fig. 1). This implies that
an object may appear in an uncertain region with the prob-
abilities described by its PDF. Farmers cannot obtain precise
data in practice. However, using range search, they can ana-
lyze and determine which range has abnormal conditions (e.g.,
fire hazard, waterlogging, and insect attacks). It is an effec-
tive way for them to have a real-time understanding of the
conditions in the fields.

Existing research on range searches over multidimensional
uncertain data with an arbitrary PDF [1], [3], [4] mainly
follow the filtering and verification paradigm. By leveraging
an effective index structure, some objects can be filtered at
a threshold value without calculating their appearance prob-
abilities in detail. Also, existing research generally focus on
plaintext and does not consider data interaction and sharing.

An important medium for sensor data interaction and shar-
ing in the IoT is the cloud, due to benefits that could

2327-4662 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7489-7381
https://orcid.org/0000-0002-1805-0028
https://orcid.org/0000-0001-9208-5336

GUO et al.: SECURE RANGE SEARCH OVER ENCRYPTED UNCERTAIN IoT OUTSOURCED DATA 1521

be realized, such as cost efficiency, high-capacity, and the
reduction of overhead. For example, data owners can poten-
tially benefit from the outsourcing of the database to the
cloud. A tradeoff is data owners ceding over the control of
the query process. This clearly has security implications. It
is also not safe for data owners to upload plaintext data.
Encrypting the data prior to outsourcing is an effective secu-
rity measure, although a tradeoff is reduced data utility. For
example, searching on encryption datasets will be inefficient
and impractical.

Searchable encryption (SE) schemes can be designed to
search on encrypted data, such as the symmetric SE scheme
of Song et al. [5] and the symmetric SE scheme in [6]. The
SE schemes have been applied in a number of areas [7]–[9].
The uncertain and imprecise nature of IoT sensing data, how-
ever, complicate the design of efficient search schemes on such
encrypted data.

In this paper, we are motivated by the challenge in designing
a secure range search scheme to support the queries of uncer-
tain outsourced IoT data. In [10], for example, the authors
used U-Quadtree to organize the uncertain data in order to
support the range search. They developed a cost model to
build an effective quadtree. This tree would be unbalanced
if the data in the dataset was uneven. The unbalanced tree
would also incur significant storage and time overhead.

To solve this problem, we apply a k-dimensional tree
(KD-tree) [11], or the binary space partitioning structure,
to organize the sensor data. According to the data distri-
bution, a KD-tree can split the dataset evenly and support
an efficient range search. To support comparison and addi-
tive operations, we apply homomorphic and order-preserving
encryption (OPE) encryption to encrypt the sensor data pub-
lished by the data owners. This can be used to hide the
access and search patterns and ensure data privacy. We use
two cloud servers (C1 and C2) to support the range search
process. Our scheme algorithm achieves a significant improve-
ment in performance during a range search over the encrypted
uncertain sensor data.

We consider the contributions in this paper to be the new SE
scheme designed to facilitate secure and fast range search over
uncertain sensor data, using KD-tree, OPE, and homomorphic
encryption. In our scheme, we ensure the confidentiality of the
dataset and the query, by hiding the search and access patterns.

The rest of this paper is organized as follows. In Section II,
we introduce extant literature including related SE schemes,
range search, and data privacy. We then introduce the relevant
background information (i.e., OPE, homomorphic encryption,
KD-tree, and uncertain sensor data) in Section III. Section IV
presents the model of our scheme, the algorithms for the
range search and the security analysis. The experimental anal-
ysis is given in Section V. Our conclusions are presented in
Section VI.

II. RELATED WORK

As previously discussed, SE scheme enables data owners to
search on their encrypted data, say in the cloud (more specif-
ically, search the data over a ciphertext domain). Existing SE

Fig. 2. Example of Quadtree.

schemes can be categorized into those based on public key-
based cryptography [6], [12], [13], and those based on sym-
metric key-based cryptography [5], [14], [15]. Song et al. [5]
proposed the first symmetric SE scheme, but many other SE
schemes were proposed afterward [13], [16], [17]. These early
works only support keyword search schemes, which are very
simple in terms of functionality. As technologies advance, so
does the complexity of data. For example, IoT data (e.g.,
sensor data), as well as the errors, or the limitations of the
sensors, result in the obtained data being uncertain. However,
early SE schemes are not capable of supporting searches over
uncertain data.

Uncertain data management [18], [19] has gained traction
among researchers, particularly due to the many practical
applications in various domains. Range search is an effective
way to conduct data analysis, by enabling a quick search of the
most relevant data. Not surprisingly, a number of range search
schemes over plaintext uncertain data have been presented
in the literature in recent years [1], [3], [4]. Most existing
schemes use some indexing techniques to improve the retrieval
performance.

Common retrieval structures include R-tree [1], [3],
U-tree [4], UI-tree [20], UP-index [21], Quadtree [10], and
KD-tree [11]. The first four structures employ an “equality
strategy,” that is, the same amount of resources in terms of
the index space usage are allocated to each uncertain object.
Consequently, they cannot effectively address different uncer-
tain region sizes during the index construction process. To
overcome such a limitation, Zhang et al. [10] applied Quadtree
to organize the uncertain data. Quadtree is a space partition-
ing tree data structure in which a d-dimensional space is
recursively subdivided into 2d regions. In each iteration of
the partitioning process, the space will be divided into 2d

equal parts. Fig. 2 is an example of Quadtree. The data points
are in a 2-D space and the space is recursively divided into
four regions. In Fig. 2, the data points are uneven, which
leads to some useless partitions. However, it will increase
the space and time overhead. As discussed earlier, existing
schemes only support range searching over plaintext uncertain
data. In other words, such schemes are ineffective on encrypted
uncertain data.

In this paper, we apply KD-tree, a binary space partition-
ing structure, to organize the uncertain sensor data. KD-tree
is mainly used in multidimensional space data retrieval (e.g.,
range and nearest neighbor searches). It can achieve effi-
cient retrievals by solving defects in other indexing structures.

1522 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 2, APRIL 2019

Because data from the diverse IoT devices (e.g., sensors)
is uncertain, a range search over the encrypted data should
support some basic operations.

Many existing efficient encryption primitives can support
different operations in the ciphertext domain. Paillier [22],
for example, proposed a homomorphic encryption scheme to
support additions. OPE [23], [24] can evaluate comparisons.
BGN (the abbreviation for the authors’ name) encryption [25],
proposed by Dan et al., or the more recent novel approach
in [26], can support an unlimited number of additions and
only one multiplication.

In this paper, we apply OPE and homomorphic encryption
simultaneously to encrypt the sensor data. Data owners obtain
uncertain data from the IoT devices. They then use the KD-
tree to organize the data. To ensure data privacy, they will use
the OPE and homomorphic encryptions to encrypt the KD-
tree and the dataset. Such data can then be outsourced to the
cloud. When users wish to perform a range search, they should
encrypt the query and then send that query to the cloud. When
the cloud receives the query, it will conduct a search over the
KD-tree and return the encrypted results to the users. Users
use their own secret key to decrypt the results and choose the
results they want. The detailed algorithm will be presented in
Section IV.

III. PRELIMINARIES

In this section, we revisit the homomorphic encryption [22],
OPE [24], and KD-tree, prior to presenting the security defi-
nitions for our scheme.

A. Homomorphic Encryption

The homomorphic encryption system [22] is an addi-
tive homomorphic and probabilistic asymmetric encryption
scheme, based on the higher-order residue class problem. It
contains three stages, namely: 1) key generation; 2) encryp-
tion; and 3) decryption.

Let pk be the public key given by (N, g), where N is the
product of two large primes and g is in Z

∗
N2 . Let Epk be the

encryption function with public key pk and Dsk be the decryp-
tion function with secret key sk. Given plaintext a, b ∈ ZN , this
system has the following properties, namely: homomorphic
addition and homomorphic multiplication.

Homomorphic Addition:

Epk(a+ b) = Epk(a) ∗ Epk(b)mod N2.

Homomorphic Multiplication:

Epk(a ∗ b) = Epk(a)bmod N2.

The Paillier encryption system has been shown to be seman-
tically secure, where an adversary cannot infer any information
about the plaintext from the given ciphertexts.

B. Order-Preserving Encryption

OPE [24] is a special type of encryption, where the orders
of the encrypted data are the same as the orders of their
plaintext. This property makes it possible to sort and rank
the encrypted data without revealing the plaintext. The ideal

security of OPE is defined with indistinguishability under
chosen-plaintext attacks (IND-CPA). It has been recently
achieved by [23] and [27]. Let pk be the public key and Epk

be the encryption function. Given plaintext a, b ∈ ZN , OPE
can insure that, if a > b, then Epk(a) > Epk(b).

C. KD-Tree

A KD-tree is a data structure for indexing k-dimensional
point data distributed in a k-dimensional space. It can be
considered a k-dimensional binary search tree [11]. It is also
a good solution to the space partitioning problem. Every node
in a KD-tree is a k-dimensional point. Every nonleaf node
can be considered to implicitly generate a splitting hyperplane
that divides the space into two parts. Points to the left of this
hyperplane is represented by the left subtree of that node and
the other hyperplane is represented by the right subtree.

All nodes in the tree are associated with one of the
k-dimensions and the hyperplane of each dimension is perpen-
dicular to that dimension’s axis. The first step is calculating
the variance of each of these dimensions based on the points’
values. We choose the maximum value of the variances and
define the corresponding dimension by the splitting hyperplane
direction. The points will be sorted by the value of the dimen-
sion corresponding to the maximum value of the variances.
For example, if the “x” axis is chosen for a particular split, all
points in the subtree with a smaller x value than the node will
be in the left subtree and all points with a larger x value will
be in the right subtree. We can recursively run the methods to
construct the KD-tree. Selecting the splitting hyperplane direc-
tion based on the variance can guarantee that all the points can
be split uniformly.

Fig. 3 is an example of a KD-tree, where the uncer-
tain sensor object set is {A, B, C}, each object has five
points (instances), and the points are in a 2-D space. It has
two splitting hyperplane directions: an x-axis and a y-axis. By
calculating the variances of these two dimensions, we deter-
mine that the variance of the x-dimensional space is bigger.
We set the splitting hyperplane direction as the x-axis, with the
point (5, 6.5) as the median point. The points with a smaller
x value than “5” will be in the left subtree and the points with
a larger x value than 5 will be in the right subtree. We should
recursively construct the left and the right subtree until there
is no point to be split.

Fig. 3(a) represents the partitioning of the space,
and Fig. 3(b) represents the corresponding KD-tree. Each node
consists of one instance and its corresponding range.

D. Security Definition

The main security objective of our scheme is to preserve
both data and query privacy from untrusted cloud servers,
which can be informally explained as follows.

1) Data Privacy: Given two encrypted datasets, D0 and
D1, an adversary cannot distinguish between these two
datasets.

2) Query Privacy: Given two search tokens, Q0 and
Q1, an adversary cannot distinguish between these
two queries.

GUO et al.: SECURE RANGE SEARCH OVER ENCRYPTED UNCERTAIN IoT OUTSOURCED DATA 1523

(a) (b)

Fig. 3. Construction of the KD-tree based on three uncertain sensor objects: A {[2,3] [5.5,4] [4,7] [3,6] [3.5,2]}, B {[2.5,1.5] [5,6.5] [7,1] [9,5.5] [8,4.5]},
and C {[1,4] [4.5,5] [9,2.5] [8,8] [6,5.5]}. Each object has five instances and the probability of each instance is 0.2.

Fig. 4. Model of the secure range search over encrypted sensor data.

The rigorous definitions of our data and query privacy, with
indistinguishability under IND-CPA, and its corresponding
leakage function, are presented in Section V.

IV. MODEL OF THE PROPOSED SCHEME

In this section, we describe our proposed secure range
search model and then briefly introduce the general process
of our scheme. Then, we provide the definition of a range
search over the encrypted sensor data. The algorithm will be
presented in Section V.

A. Model of the Scheme

In this paper, our scheme consists of four entities:
1) data owner; 2) cloud server 1 (C1); 3) cloud server 2
(C2); and 4) user. The model is illustrated in Fig. 4. The
model illustrates that the sensor object consists of a sen-
sor object ID, a set of instances and the probability of
each instance. Each instance is a d-dimensional with its own
coordinate. The data owner has a collection of data sets to
be outsourced to the cloud server in the encrypted form.
To enable the searching capability over encrypted data, the

data owner will first build an encrypted KD-tree with the
data sets. Then, the encrypted data sets and encrypted KD-
tree will outsource to C1. When a user wants to do a range
search, the user will encrypt the query and then send to
C1. C1 and C2 will cooperate with each other to search
over the encrypted KD-tree and then return the results to
the user.

Our secure range search scheme consists of the following
six polynomial-time protocols.

1) GenKey(1λ)→ {skOPE, pkHE}: Given a security param-
eter λ, the data owner computes and outputs: skOPE ←
OPE.GenKey(1λ) and pkHE ← HE.GenKey(1λ), where
HE denotes homomorphic encryption.

2) BuildTree(U) → �: Given an object set
U = {U1, U2, . . . , Un}, each object U has m
instances, denoted by U = {u1, u2, . . . , um}.
There are m × n instances. This protocol uses
all instances to construct a KD-tree. Each node
consists of one instance and its corresponding
range R = {[r11, r12], [r21, r22], . . . , [rd1, rd1]}. The
range is calculated based on the coordinate of the
instance.

1524 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 2, APRIL 2019

3) Enc (skOPE, pkHE, �)→ �∗: Given a secret key skOPE,
a public key pkHE, and a KD-tree �. In the following
range search process, we should compare the value of
the instances’ coordinates and conduct an additive oper-
ation on the probabilities. The data owner traverses the
KD-tree to encrypt each node with

OPE.Enc([Di1, Di2, . . . , Did])→ [eDi1, eDi2, . . . , eDid]

OPE.Enc({[r11, r12], [r21, r22], . . . , [rd1, rd1]})→ eR

to obtain each instance’s encrypted coordinate and
the encrypted range, where [Di1, Di2, . . . , Did] is each
dimension value of the instance i. The data owner then
runs

HE.Enc
(
uip

)→ euip

to obtain each instance’s encrypted probability. The
data owner outputs an encrypted KD-tree �∗.

4) GenToken (skOPE, pkHE, rq) → erq: Given
the secret key skOPE, a range search rq =
{[qr11, qr12], [qr21, qr22], . . . , [qrd1, qrd2]} and a prob-
abilistic threshold θ , where [rj1, rj2] denotes the range
of the jth dimension, 1 ≤ j ≤ d. The user encrypts it as

OPE.Enc
({[

qr11, qr12
]
,
[
qr21, qr22

]
, . . .

[
qrd1, qrd2

]})

→ {[
eqr11, eqr12

]
,
[
eqr21, eqr22

]
, . . . ,

[
eqrd1, eqrd2

]}

HE.Enc(θ)→ eθ

and outputs erq as a search token.
5) Search (�∗, erq) → eUq: Given the search token erq

and an encrypted KD-tree �∗, C1 starts from the root
node, and traverses �∗ to calculate the upper and lower
appearance probability of each object regarding erq and
sends these to C2. The detailed search process will be
given in Section V. The cloud servers cooperate with
each other to output a sensor object set, which satisfies
the search token.

6) Dec(skOPE, pkHE, eUq)→ rUq: Given secret key skOPE,
public key skHE and the object set returned from the
cloud server. The user runs this protocol to obtain the
final sensor object set, which satisfies the probabilistic
threshold θ .

B. Problem Definition

In this section, we define uncertain sensor data. Table I sum-
marizes the notations frequently used throughout this paper.

The uncertain sensor data (object) is represented by its pos-
sible points and the probability that it may appear at each
point. All the points in this paper are in a d-dimensional
numerical space. In particularly, an uncertain sensor object
can be described either continuously or discretely. We will
introduce these two conditions as follows.

In the continuous case, a sensor object U is described by
its probability density function (PDF) U.pdf and its uncertain
region Ur. U.pdf (x) denotes the probability of U appearing
at point x, yielding

∫
x∈Ur

U.pdf (x)dx = 1. Sometimes, the
PDF of the sensor object may not be available, and hence,
a sensor object is represented by a set of sampled points,

TABLE I
SUMMARY OF NOTATIONS

which is the discrete case. A sensor object contains a set
of instances (points) U = {u1, u2, . . . , um}, uip denotes the
probability of U appearing at instance ui and

∑
u∈U up = 1.

For a point p and a region r, p ∈ r means that r contains p.
For any two regions r1 and r2, r2 ⊆ r1 if r1∪r2 = r1 means r1
contains r2. We say r1overlaps r2 if r2
⊂ r1 and r1 ∩ r2
= ∅.

For presentation simplicity, we concentrate on the discrete
case in this paper. Nevertheless, all techniques developed in
this paper can be applied to the continuous case.

Below is the definition of a “probabilistic threshold range
search,” which is equivalent to a “range search” in the rest
of paper.

Definition 1 (Probabilistic Threshold Range Search): Given
a set U of sensor objects and a user specified probabilistic
threshold θ , the probabilistic threshold range search retrieves
all objects U ∈ U with P(U, rq) ≥ θ (0 ≤ θ ≤ 1).

In this paper, we concentrate on the problem of
a probabilistic threshold range search over encrypted
multidimensional sensor objects. We aim to develop an
effective indexing structure to facilitate the range search
process.

V. RANGE SEARCH OVER ENCRYPTED

SENSOR OBJECTS

A. Main Idea

As specified previously, the main process of our scheme can
be summarized as follows.

The data owner obtains the sensor dataset from the sen-
sors, where the dataset contains n uncertain sensor objects and
each object contains m instances. Each instance is a triplet
(u.o, u.D, up), where u.o denotes the object it belongs to,
u.D denotes the coordinate of this instance, and up denotes
the probability of this instance. The data owner constructs
a KD-tree based on the instances. Each node is a two-tuple
(u.o, u.R), where u denotes the instance in this node and
R = {[r11, r12], [r21, r22], . . . , [rd1, rd1]} denotes the range of
its area, as in Fig. 3(b), where d denotes the d-dimensional
space. The range of each node is calculated based on the
coordinate of the instance n.u.D.

GUO et al.: SECURE RANGE SEARCH OVER ENCRYPTED UNCERTAIN IoT OUTSOURCED DATA 1525

The data owner runs the encryption function mentioned in
Section IV to encrypt the KD-tree and output the encrypted
KD-tree �∗, where the two-tuple of each node is denoted by
(n.eu, n.eR). The data owner then outsources the encrypted
KD-tree �∗ to the C1. If a user wants to conduct a range
search, then he/she should use the secret key of OPE to encrypt
the query rq and then send the encrypted search token erq

to C1.
When C1 gets a search token, it will traverse �∗ to calculate

the encrypted lower and upper bounds of the probability for
all objects and then send it to C2. C2 decrypts these probabil-
ities and compares them to the user’s probabilistic threshold
θ . It chooses the objects that satisfy the requirements. Then,
C2 encrypts the result object set and sends it to C1. C1 recon-
firms the results and then sends the set to the user. The user
decrypts the results to obtain the objects. During this time,
C2 will follow the filtering-and-verification process to choose
the objects that satisfy his/her requirements. A sensor U may
be filtered in either of the following ways.

1) U is pruned if UP(U, rq) is smaller than the given
probabilistic threshold θ .

2) U is validated if LP(U, rq) is not less than θ .
where LP(U, rq) and UP(U, rq) denote the lower and upper
bounds of P(U, rq), respectively. Only the objects that sur-
vive the filtering phase need to be verified [i.e., explicitly
computing P(U, rq)].

B. KD-Tree-Based Range Search

Theorem 1 indicates that we can derive LP(U, rq) and
UP(U, rq), based on the topological relationship between rq

and the range of each node.
Theorem 1: Given a search token erq and an encrypted

KD-tree �∗, let N1(N2) denote the node set contained (over-
lapped) by erq

eLP
(
U, rq

) =
∏

n.u.eup, where n.eR ∈ N1

eUP
(
U, rq

) =
∏

n.u.eup, where n.eR ∈ N1 ∪ N2.

Proof: Because the probability of each instance up is
encrypted by a homomorphic encryption, we should use the
property of homomorphic addition to calculate eLP(U, rq)

and eUP(U, rq). For any node n, we have n.u ∈ erq

if the range of node n is contained by erq. Immediately,
Dec(eP(U, rq)) ≥ Dec(

∏
n.u.eup), where Dec() is the decryp-

tion function and n.eR ∈ N1. Given a node n, if n.eR is
not contained or overlapped by erq, then we have n /∈ erq.
This implies Dec(eP(U, rq)) ≤ 1 − Dec(

∏
n.u.eup), where

n.eR /∈ N1 ∪ N2. Because Dec(
∏

u∈U eup) = 1, we have
Dec(eP(U, rq)) ≤ Dec(

∏
n.u.eup), where n.eR ∈ N1 ∪ N2.

Therefore, the theorem holds.
Example 1: In Fig. 3(a), given a search region rqq, accord-

ing to Theorem 1, only the area 1 is contained in rq The
area 2, 3, 4, 5, 6, 7, and 8 is overlapped by rq. The range
of each node and the search region rq are encrypted by
OPE, so we can also compare the range over the ciphertext.
We can now obtain eLP(C, rq) = Enc(0.2), eUP(C, rq) =
Enc(0.2) × Enc(0.2) × Enc(0.2) = Enc(0.6). When the user
obtains the resulting set, he/she will decrypt it to obtain the

Algorithm 1 Range Search (r*,erq)
Input:

�∗: the encrypted KD-tree
erq{[eqr11, eqr12], . . . , [eqrd1, eqrd2]} and eθ

Output:
the encryptcd object sets R.

1: R := ∅;V := ∅;
2: C1 do
3: for each dimension i, i ∈ [1, d] do
4: traverse �∗ each node n
5: U← n.u.o
6: ep← n.u.eup
7: if eqri1 ≤ n.eri1 ≤ eqri2 or eqri1 ≤ n.eri2 ≤ eqri2 then
8: eUP(U, rq) := eUP(U, rq)× ep
9: if eqri1 ≤ n.eri1 and eqri2 ≥ n.eri2 then
10: eLP(U, rq) := eLP(U, rq)× ep
11: end if
12: end if
13: end for
14: C1:object set {U1, U2, . . . , Uj}, j ≤ n

send−→C2
15: C2: use skHE to get {LP(Uj, rq), UP(Uj, rq)}
16: for each object U do
17: if LP(U, rq) ≥ θ then
18: R := R ∪ U
19: else
20: if UP(U, rq) ≥ 0 ≥ LP(U.rq) then
21: V := V ∪ U
22: end if
23: end if
24: end for
25: C2: encrypts set V then, sends to C1
26: for each U ∈ V do
27: for each dimension i, i ∈ [l, d] each instance uj, j ≤ m do
28: if eqri1 ≤ euj.eDi ≤ eqri2 then
29: eP(U, rq) = eP(U, rq)× euj.ep
30: end if
31: end for
32: end for
33: C1:Uj ∈ V, {eP(Uj, rq)} send−→C2

34: C2:{P(Uj, rq)} skHE←− {eP(Uj, rq)}
35: for each U ∈ V do
36: if P(U, rq) ≥ θ then
37: R := R ∪ U
38: end if
39: end for
40: C2: encrypts set R and sends to C1
41: C1: return set R to user

objects’ LP(U, rq) and UP(U, rq). This will then be compared
with his/her own probabilistic threshold θ . Consequently, C is
pruned if θ = 0.8 and C is validated if θ = 0.2. Hence, we
need to verify C if θ = 0.4.

Algorithm 1 details the range search following the filtering-
and-verification paradigm. Lines 3–14 for C1 traverse �∗ to
calculate each object’s eLP(U, rq) and eUP(U, rq) values.
C1 sends the object set U to C2, who then uses skHE to decrypt
eLP(U, rq) and eUP(U, rq).

According to Theorem 1, we arrive at the lower and upper
bounds of the appearance probabilities of the objects. We can
validate an object U if LP(U, rq) ≥ θ (line 18). We only need
to verify the remaining objects set V, in which LP(U, rq) ≥
θ ≥ UP(U, rq) (line 21). C2 encrypts set V and sends it to
C1, C1 calculates the eP(U, rq) value of each object in set V

1526 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 2, APRIL 2019

(lines 26–32). And then, C1 sends set V to C2. C2 decrypts
it and compares each object’s P(U, rq) with θ . The objects
which P(U, rq) ≥ θ (line 36) will be added to the resulting
set R. C2 encrypts the resulting set R and then sends it to C1.
C1 will return R to the user.

When the sensors obtain more data set, the KD-tree should
be updated duly. If a little bit of data should be inserted to
the KD-tree, the data owner can encrypt the data set and then
upload it to C1. Each level of the KD-tree contains the split-
ting hyperplane direction. When C1 receives the encrypted
data set, it will insert each data into �∗. The process of
inserting data can be summarized as follows.

C1 traverses �∗ from the root node and compares the value
on the corresponding splitting hyperplane direction. If the
value is smaller than the root node, it should traverse its left
node until the data can be inserted to a leaf node.

The essence of the KD-tree is a balanced binary tree.
Inserting plenty of the data will destroy the balance. So, the
data owner should reconstruct the KD-tree with the old and
new data if large volume of data will be updated.

C. Security Analysis

Prior to analyzing the security of the proposed scheme, we
will provide some necessary definitions.

1) Concepts Definition:

a) Leakage function L: In an SE scheme, a leakage
function covers all the possible leakages revealed during the
search process. The leakage function of a sensor object set U
introduced by query rq, can be denoted as L(U , rq).

In our scheme, the leakage function contains an access
pattern (i.e., the identifiers of the encrypted data that are
retrieved for each query), search pattern (i.e., whether the same
encrypted result is retrieved by the two different queries), and
a path pattern (i.e., the path that the search algorithm traverses
in the KD-tree). The security of the data and query privacy in
our scheme is defined as follows.

Definition 2 (IND-CPA Data Privacy): Let
∏ = (GenKey,

BuildTree, Enc, GenToken, Search, Dec) be a probabilis-
tic secure range search scheme over security parameter λ.
We define a secure game between a challenger C and an
adversary A:

Init: A submits two sensor datasets U0 and U1 with the
same size and isomorphic tree structure �0 � �1, where U0 =
{U01, U02, . . . , U0n}, U1 = {U11, U12, . . . , U1n}, for 1 ≤ i ≤
n, U01, U02, . . . , U0n and U11, U12, . . . , U1n are all distinct,
�0 ← BuildTree(U0), and �1 ← BuildTree(U1).

Setup: Challenger C runs GenKey(1λ) to generate a public
key pk and a secret key sk. It keeps these keys private.

Phase 1: Adversary A adaptively submits a few requests.
Each request is one of the two following types.

1) Ciphertext Request: On the jth ciphertext request,
adversary A outputs a dataset U ′j , where U ′j =
{U′j,1, U′j,2, . . . , U′j,n}, for 1 ≤ i ≤ n. C responds with

an encrypted tree �
′∗
j = Enc(sk, pk, �′j), where �′j ←

BuildTree(U ′j).

2) Token Request: On the jth token request, A outputs
a range search rqj. C responds with a search token
erqj = GenToken(sk, pk, rqj).

Challenge: With U0 and U1, C flips a coin b ∈ {0, 1},
computes �b ← BuildTree(Ub), and returns �∗b to adversary
A.

Phase 2: Adversary A continues to submit a number of
requests adaptively, which are still subjected to the same
restrictions of Phase 1.

Guess: The adversary takes a guess b′ of b.
We say that

∏
is secure against INC-CPA in relation to

data privacy if, for any polynomial time adversary in the above
game, it has, at most, a negligible advantage

AdvIND−CPA−Data∏
,A

(
1λ

) =
∣
∣∣∣Pr[b′ = b]− 1

2

∣
∣∣∣ ≤ negl(λ)

where negl(λ) denotes a negligible function [28] in λ.
The definition of IND-CPA query privacy is similar to the

previous definition; due to space limitations, we omit the
detail.

2) Security Analyses: We now analyze the security of our
scheme by following the preceding security games. We know
that a homomorphic encryption scheme can against IND-
CPA, so our scheme is IND-CPA data secure, as long as the
homomorphic encryption is IND-CPA secure.

Proof: We simulate the security game defined in Definition 2
with an adversary A′ from the ideal security game of OPE and
HE. We then demonstrate that compromising the IND-CPA
data privacy of our scheme is equivalent to compromising the
IND-CPA of OPE.

Following Definition 2, the security game of our scheme is
simulated by multiple instances of homomorphic encryption.
As a result, A′ could not distinguish between the two datasets,
U0 and U1, as long as any pair of the two messages could be
distinguished in the security game

AdvIND−CPA−Data∏
,A

(
1λ

) ≤ q · AdvIND−CPA−Data
HE,A′

(
1λ

)

≤ q · negl(λ)

≤ negl′(λ)

where q denotes the number of homomorphic encryption
instances needed in the game. This demonstrates the IND-
CPA data security of our scheme. The proof for our scheme
for IND-CPA query privacy is similar to the previous data pri-
vacy proof.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our scheme
for different parameter settings. We implement the KD-tree,
OPE, homomorphic encryption, and range search scheme in
Java. Various experiments are run on a PC Intel Core 2.50 GHz
CPU with 12 G memory.

In the experiment, there are four real sensor datasets that
contain 20K, 72K, 168K, and 336K, respectively. The points
in the first three datasets are 2-D and represent the location
information in the United States (e.g., Los Angeles, CA, USA),
which are available at: https://www.census.gov/geo/maps-
data/data/tiger.html. There were 16000 3-D points included

GUO et al.: SECURE RANGE SEARCH OVER ENCRYPTED UNCERTAIN IoT OUTSOURCED DATA 1527

TABLE II
SYSTEM PARAMETERS

Fig. 5. Diff. n and m = 2, 5, 8, respectively.

in the fourth dataset, containing 2000 objects, where
each object has eight instances. The data are available
at https://archive.ics.uci.edu/ml/datasets.html. The dimensions
represent the farm soil quality affected by three factors (i.e.,
air humidity, soil temperature, fertilizer application amount).
We also generate a synthetic dataset to evaluate our scheme
more precisely. The dimensionality varies from 2 to 6, and
was named 2-D, 3-D, 4-D, 5-D, and 6-D, respectively. The
object size varies from 100 to 2000 and the instance size of
each object varies from 2 to 8.

All dimensions are normalized to domain [0, 400]. The
query is a rectangle, or cuboid, which changes following the
dimensions. The query range of each dimension varies from
10 to 50. The OPE and the homomorphic encryption key size
were set to 128 bits.

Table II lists the parameters used in our performance
evaluation.

A. Construction of the KD-Tree

For fairness, we evaluate the efficiency of the KD-tree
construction process based on n, m, and k in the experiments.

Fig. 5 shows the construction time of the KD-tree for
15 datasets, where n varies from 100 to 2000 and m equals 2, 5,
and 8, respectively. As expected, the construction time grows
with n. When n = 2000, m = 800, the number of instances
is 16000, and the construction time of the KD-tree is only
350 ms. The construction time increases with m, because each
node only stores one instance. When the number of instances
increases, the height of the tree will increase.

Fig. 6 shows the construction time of the KD-tree for
ten datasets. From the results, we can see that the construc-
tion time increases linearly with the dimension k. Based on the
property of the KD-tree (see Section III), we know that it will

Fig. 6. Diff. k and n = 100, 500, respectively.

Fig. 7. Diff. n and m = 2, 5, 8, respectively.

Fig. 8. Diff. k and n = 100 and 500, respectively.

calculate each dimension’s variance value in each partition.
Hence, the computation cost will increase if the dimension is
increased.

B. Encryption of the KD-Tree

By fixing k = 2, we evaluate the encryption efficiency of
our scheme as n varies. Fig. 7 shows that the size of the object
set varies from 100 to 2000, and the cost of the encryption
increases almost linearly with n. This result reveals that when
m varies from 2 to 8, the encryption time will increase, because
each node represents one instance. If the number of instances
grows, the height of the KD-tree grows with it.

The value of k is also an important factor that has an impact
on encryption efficiency. As shown in Fig. 8, if the value of k
varies from 2 to 6, the encryption cost increases linearly with

1528 IEEE INTERNET OF THINGS JOURNAL, VOL. 6, NO. 2, APRIL 2019

Fig. 9. Diff. n and m = 2, 5, 8, respectively.

Fig. 10. Diff. k and n = 100 and 500, respectively.

Fig. 11. Diff. θ and n = 500 and 1000, respectively.

it. When k is growing, OPE will be growing. The encryption
cost will increase, ask increases when n is bigger.

C. Evaluate Range Query

Fig. 9 reports the average query response time against the
number of objects n. We fix k = 2, θ = 0.4 and the query
range R of each dimension qrd2 − qrd1 ≤ 40. From Fig. 9,
we can see that the performance of m = 8 is more sensitive
to the growth of n, as compared with m = 2. This is because,
when m is bigger, the number of instances will increase with
an increase in n. The KD-tree will be deep and the space will
be divided smaller. Hence, the search time will increase.

Fig. 10 shows that the search time will increase linearly
with the value of k. The performance is more sensitive to the
growth of k.

Fig. 12. Diff. search range R and n = 500 and 1000, respectively.

Fig. 11 shows that the performance of the algorithms is not
sensitive to the probabilistic threshold θ . It is because the early
calculation process costs lots of time, this process filters the
most points. So, compare with θ will cost less time. We fix
k = 2 and m = 2. The search range R varies from 20 to 80.
Fig. 12 shows that the search time grows exponentially as R
grows. This occurs because if R is bigger, the number of the
nodes which are visited will increase, and hence, the number
of calculations will increase.

VII. CONCLUSION

The diversity and range of IoT devices will grow as they
are deployed in a broader range of applications, ranging from
civilian (e.g., smart cities and emergency response) to military
and battlefield (e.g., Internet of Military Things and Internet of
Battlefield Things) and so on. This reinforces the need to effi-
ciently manage uncertain and increasing amount of data from
the IoT devices.

To ensure the security of uncertain IoT data, particularly
those outsourced to the cloud or the edge, we developed
an effective indexing technique to support range searches on
multidimensional encrypted data. Specifically, in the proposed
scheme, we used the KD-tree to organize the objects to
improve the retrieval efficiency. To support operations over
ciphertext, we used an OPE and homomorphic encryption
scheme to encrypt the dataset. We then evaluated the security
and performance of our scheme.

Future research includes implementing a prototype of the
proposed scheme in a real-world environment, such as on the
university campuses of the authors. This will allow us to carry
out a more extensive evaluation in a real-world environment,
as well as enabling us to evaluate its scalability.

REFERENCES

[1] H. P. Kriegel, P. Kunath, M. Pfeifle, and M. Renz, “Probabilistic sim-
ilarity join on uncertain data,” in Proc. Int. Conf. Database Syst. Adv.
Appl., Singapore, 2006, pp. 295–309.

[2] M. Roopaei, P. Rad, and K.-K. R. Choo, “Cloud of things
in smart agriculture: Intelligent irrigation monitoring by ther-
mal imaging,” IEEE Cloud Comput., vol. 4, no. 1, pp. 10–15,
Jan./Feb. 2017.

[3] S. Singh, C. Mayfield, S. Prabhakar, R. Shah, and S. Hambrusch,
“Indexing uncertain categorical data,” in Proc. IEEE Int. Conf. Data
Eng., Istanbul, Turkey, 2007, pp. 616–625.

[4] Y. Tao, X. Xiao, and R. Cheng, “Range search on multidimensional
uncertain data,” ACM Trans. Database Syst., vol. 32, no. 3, p. 15, 2007.

GUO et al.: SECURE RANGE SEARCH OVER ENCRYPTED UNCERTAIN IoT OUTSOURCED DATA 1529

[5] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in Proc. IEEE Symp. Security Privacy, Berkeley, CA,
USA, 2000, p. 44.

[6] B. Dan, G. D. Crescenzo, R. Ostrovsky, and G. Persiano, Public
Key Encryption With Keyword Search. Heidelberg, Germany: Springer,
2004.

[7] C. Guo et al., “Fine-grained database field search using attribute-based
encryption for E-healthcare clouds,” J. Med. Syst., vol. 40, p. 235,
Nov. 2016.

[8] Y. Liu, C. Cheng, T. Gu, T. Jiang, and X. Li, “A lightweight authenticated
communication scheme for smart grid,” IEEE Sensors J., vol. 16, no. 3,
pp. 836–842, Feb. 2016.

[9] Y. Liu, W. Guo, C.-I. Fan, L. Chang, and C. Cheng, “A practical privacy-
preserving data aggregation (3PDA) scheme for smart grid,” IEEE Trans.
Ind. Informat., to be published.

[10] Y. Zhang, W. Zhang, Q. Lin, X. Lin, and H. T. Shen, “Effectively index-
ing the multidimensional uncertain objects,” IEEE Trans. Knowl. Data
Eng., vol. 26, no. 3, pp. 608–622, Mar. 2014.

[11] J. L. Bentley, “Multidimensional binary search trees used for asso-
ciative searching,” Commun. ACM, vol. 18, no. 9, pp. 509–517,
1975.

[12] B. Dan, E. Kushilevitz, R. Ostrovsky, and W. E. Skeith, III,
“Public key encryption that allows PIR queries,” in Proc. 27th Annu.
Int. Cryptol. Conf. Adv. Cryptol., Santa Barbara, CA, USA, 2007,
pp. 50–67.

[13] C. Guo et al., “Dynamic multi-phrase ranked search over encrypted data
with symmetric searchable encryption,” IEEE Trans. Services Comput.,
to be published, doi: 10.1109/TSC.2017.2768045.

[14] Y. C. Chang and M. Mitzenmacher, “Privacy preserving key-
word searches on remote encrypted data,” in Proc. Int. Conf
Appl. Cryptography Netw. Security, New York, NY, USA, 2005,
pp. 442–455.

[15] E.-J. Goh, “Secure indexes,” IACR Cryptol. ePrint Archive, vol. 2003,
p. 216, 2003.

[16] J. Li et al., “Fuzzy keyword search over encrypted data in cloud
computing,” in Proc. IEEE INFOCOM, San Diego, CA, USA, 2014,
pp. 1–5.

[17] C. Guo et al., “Key-aggregate authentication cryptosystem for data shar-
ing in dynamic cloud storage,” Future Gener. Comput. Syst., vol. 84,
pp. 190–199, Jul. 2018.

[18] D. Barbará, H. Garcia-Molina, and D. Porter, “The management of
probabilistic data,” IEEE Trans. Knowl. Data Eng., vol. 4, no. 5,
pp. 487–502, Oct. 1992.

[19] V. S. Lakshmanan et al., “ProbView: A flexible probabilistic database
system,” ACM Trans. Database Syst., vol. 22, no. 3, pp. 419–469,
1997.

[20] Y. Zhang, X. Lin, W. Zhang, J. Wang, and Q. Lin, “Effectively indexing
the uncertain space,” IEEE Trans. Knowl. Data Eng., vol. 22, no. 9,
pp. 1247–1261, Sep. 2010.

[21] F. Angiulli and F. Fassetti, “Indexing uncertain data in general metric
spaces,” IEEE Trans. Knowl. Data Eng., vol. 24, no. 9, pp. 1640–1657,
Sep. 2012.

[22] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in Proc. Int. Conf. Theory Appl. Cryptograph. Techn.,
1999, pp. 223–238.

[23] R. A. Popa, F. H. Li, and N. Zeldovich, “An ideal-security protocol
for order-preserving encoding,” in Proc. IEEE Symp. Security Privacy,
Berkeley, CA, USA, 2013, pp. 463–477.

[24] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill, “Order-preserving
symmetric encryption,” in Proc. Int. Conf. Theory Appl. Cryptograph.
Techn. Adv. Cryptol. (EUROCRYPT), Cologne, Germany, Apr. 2009,
pp. 224–241.

[25] B. Dan, E. J. Goh, and K. Nissim, Evaluating 2-DNF Formulas on
Ciphertexts. Heidelberg, Germany: Springer, 2005.

[26] D. Catalano and D. Fiore, “Using linearly-homomorphic encryption
to evaluate degree-2 functions on encrypted data,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Security, Denver, CO, USA, 2015,
pp. 1518–1529.

[27] F. Kerschbaum and A. Schroepfer, “Optimal average-complexity ideal-
security order-preserving encryption,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Security, 2015, pp. 275–286.

[28] J. Graff, Introduction to Modern Cryptography. New York, NY, USA:
Springer-Verlag, 2000.

Cheng Guo received the B.S. degree in computer
science from the Xi’an University of Architecture
and Technology, Xi’an, China, in 2002, and the
M.S. degree and Ph.D degree in computer appli-
cation and technology from the Dalian University
of Technology, Dalian, China, in 2006 and 2009,
respectively.

From 2010 to 2012, he was a Post-Doctoral
Fellow with the Department of Computer Science,
National Tsing Hua University, Hsinchu, Taiwan.
Since 2013, he has been an Associate Professor with

the School of Software Technology, Dalian University of Technology. His
current research interests include information security, cryptology, and cloud
security.

Ruhan Zhuang was born in Benxi, China, in 1994.
She received the B.S. degree in software engineering
from the Dalian University of Technology, Dalian,
China, in 2016, where she is currently pursuing the
M.S. degree in software engineering.

Her current research interests include cryptogra-
phy, private data protection technology, and cloud
storage technology.

Yingmo Jie received the B.S. degree in information
and computing science from the Tianjin University
of Technology and Education, Tianjin, China, in
2011, and the M.S. degree in applied mathematics
from the Civil Aviation University of China, Tianjin,
in 2015. She is currently pursuing the Ph.D. degree
at the School of Mathematical Sciences, Dalian
University of Technology, Dalian, China.

Her current research interests include information
security and game theory.

Kim-Kwang Raymond Choo (SM’15) received
the Ph.D. degree in information security from the
Queensland University of Technology, Brisbane,
QLD, Australia, in 2006.

He currently holds the Cloud Technology
Endowed Professorship with the University of Texas
at San Antonio (UTSA), San Antonio, TX, USA,
and has a courtesy appointment with the University
of South Australia, Adelaide, SA, Australia.

Dr. Choo was a recipient of the 2018 UTSA
College of Business Col. Jean Piccione and Lt. Col.

Philip Piccione Endowed Research Award for Tenured Faculty, the ESORICS
2015 Best Paper Award, the 2014 Highly Commended Award by the Australia
New Zealand Policing Advisory Agency, the Fulbright Scholarship in 2009,
the 2008 Australia Day Achievement Medallion, and the British Computer
Society’s Wilkes Award in 2008. In 2016, he was named the Cybersecurity
Educator of the Year—APAC (Cybersecurity Excellence Awards are produced
in cooperation with the Information Security Community on LinkedIn), and
in 2015 he and his team won the Digital Forensics Research Challenge orga-
nized by Germany’s University of Erlangen–Nuremberg. He is a Fellow of
the Australian Computer Society and an Honorary Commander of the 502nd
Air Base Wing, Joint Base San Antonio–Fort Sam Houston.

Xinyu Tang received the B.S. degree in soft-
ware engineering from the Dalian University of
Technology, Dalian, China, in 2016, where he is
currently pursuing the M.S. degree in software engi-
neering.

His current research interests include cryptogra-
phy and cloud security.

http://dx.doi.org/10.1109/TSC.2017.2768045

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

