Usage Control (UCON) 
or 
ABAC on Steroids

Prof. Ravi Sandhu 
Executive Director and Endowed Chair

February 26, 2016

ravi.sandhu@utsa.edu 
www.profsandhu.com
Motivation

- Traditional access control models are not adequate for today’s distributed, network-connected digital environment.
  - Authorization only – No obligation or condition based control
  - Decision is made before access – No ongoing control
  - No consumable rights - No mutable attributes
  - Rights are pre-defined and granted to subjects
Motivation

- No access control model available to capture Digital Rights Management (DRM)
  - Control after dissemination
  - IPR protection

- Need for a unified model that can encompass traditional access control models, DRM and other enhanced access control models from recent literature
Usage Control (UCON)

- **Scope**
  - Encompass traditional access controls, trust management, digital rights management and more
  - For sensitive information protection, IPR protection, and privacy protection

- **Model**
  - General purpose, policy neutral models
  - Policy is assumed to be given to the system
  - Transaction based control
  - Existence of right is determined when access is attempted by a subject (no predefined access matrix)
  - Attribute-based access control
Usage Control (UCON)

Security Objectives

- Privacy Protection
- Intellectual Property Rights Protection
- Sensitive Information Protection
- Intellectual Property Rights Protection
- Sensitive Information Protection
- Trust Management

Security Architectures

- Server-side Reference Monitor (SRM)
- Client-side Reference Monitor (CRM)
- Traditional Access Control
- Usage Control

World-Leading Research with Real-World Impact!
Building UCON\textsubscript{ABC} Models

Continuity of Decisions

- Pre
- Usage
- Post

Mutability of Attributes

- Pre
- Ongoing
- Post

Continuity

Decision can be made during usage for continuous enforcement

Mutability

Attributes can be updated as side-effects of subjects’ actions

Subjects (S) → Rights (R) → Objects (O)

Subject Attributes (ATT(S)) → Obligations (B) → Conditions (C) → Object Attributes (ATT(O))
Building UCON_ABC Models

Continuity of Decisions
Decision can be made during usage for continuous enforcement

Mutability of Attributes
Attributes can be updated as side-effects of subjects’ actions

Usage Decisions

Before
pre
ongoing
N/A
After

Continuity

Mutability
Examples

- Long-distance phone (pre-authorization with post-update)
- Pre-paid phone card (ongoing-authorization with ongoing-update)
- Pay-per-view (pre-authorization with pre-updates)
- Click Ad every 30 minutes (ongoing-obligation with ongoing-updates)
- Business Hours (pre-/ongoing-condition)
<table>
<thead>
<tr>
<th></th>
<th>0(Immutable)</th>
<th>1(pre)</th>
<th>2(ongoing)</th>
<th>3(post)</th>
</tr>
</thead>
<tbody>
<tr>
<td>preA</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>onA</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>preB</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>onB</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>preC</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>onC</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

N : Not applicable
A Family of UCON\textsubscript{ABC} Core Models

(a) \[\text{UCON}_A \xrightarrow{\text{on}} \text{UCON}_B \xrightarrow{\text{on}} \text{UCON}_C\]

(b) \[\text{preA}_0 \xrightarrow{\text{on}} \text{preA}_1 \xrightarrow{\text{on}} \text{preA}_2 \xrightarrow{\text{on}} \text{preA}_3\]

(c) \[\text{preB}_0 \xrightarrow{\text{on}} \text{preB}_1 \xrightarrow{\text{on}} \text{preB}_2 \xrightarrow{\text{on}} \text{preB}_3\]

(d) \[\text{preC}_0 \xrightarrow{\text{on}} \text{onC}_0\]
- Online content distribution service
  - Pay-per-view (pre-update)
  - Metered payment (post-update)
• Pay-per-minutes (pre-paid Phone Card)
UCON\textsubscript{preA}: pre-Authorizations Model

- \textbf{UCON}_{\text{preA}0}:
  - S, O, R, ATT(S), ATT(O) and \textit{preA} (subjects, objects, rights, subject attributes, object attributes, and pre-authorizations respectively);
  - \textit{allowed}(s,o,r) \Rightarrow \textit{preA}(ATT(s),ATT(o),r)

- \textbf{UCON}_{\text{preA}1}:
  - \textit{preUpdate}(ATT(s)),\textit{preUpdate}(ATT(o))

- \textbf{UCON}_{\text{preA}3}:
  - \textit{postUpdate}(ATT(s)),\textit{postUpdate}(ATT(o))
$L$ is a lattice of security labels with dominance relation $\geq$

- clearance: $S \rightarrow L$
- classification: $O \rightarrow L$

$\text{ATT}(S) = \{\text{clearance}\}$

$\text{ATT}(O) = \{\text{classification}\}$

$\text{allowed}(s, o, \text{read}) \Rightarrow \text{clearance}(s) \geq \text{classification}(o)$

$\text{allowed}(s, o, \text{write}) \Rightarrow \text{clearance}(s) \leq \text{classification}(o)$
DAC in UCON: with ACL ($CON_{preA0}$)

- $N$ is a set of identity names
- $id : S \rightarrow N$, one to one mapping
- $ACL : O \rightarrow 2^{N \times R}$, $n$ is authorized to do $r$ to $o$
- $ATT(S) = \{id\}$
- $ATT(O) = \{ACL\}$
- $allowed(s,o,r) \Rightarrow (id(s), r) \in ACL(o)$
• $P = \{(o,r)\}$
• $ROLE$ is a partially ordered set of roles with dominance relation $\geq$
• $actRole: S \rightarrow 2^{ROLE}$
• $Prole: P \rightarrow 2^{ROLE}$
• $ATT(S) = \{actRole\}$
• $ATT(O) = \{Prole\}$
• $allowed(s,o,r) \Rightarrow \exists role \in actRole(s), \exists role' \in Prole(o,r), role \geq role'$
• $M$ is a set of money amounts
• $\text{credit: } S \rightarrow M$
• $\text{value: } O \times R \rightarrow M$
• $\text{ATT}(s): \{\text{credit}\}$
• $\text{ATT}(o,r): \{\text{value}\}$
• $\text{allowed}(s,o,r) \Rightarrow \text{credit}(s) \geq \text{value}(o,r)$
• $\text{preUpdate(credit(s))}: \text{credit}(s) = \text{credit}(s) - \text{value}(o,r)$
• Membership-based metered payment
  - $M$ is a set of money amount
  - $ID$ is a set of membership identification numbers
  - $TIME$ is a current usage minute
  - $member: S \rightarrow ID$
  - $expense: S \rightarrow M$
  - $usageT: S \rightarrow TIME$
  - $value: O \times R \rightarrow M$ (a cost per minute of $r$ on $o$)
  - $ATT(s): \{member, expense, usageT\}$
  - $ATT(o,r): \{valuePerMinute\}$
  - $allowed(s,o,r) \Rightarrow member(s) \neq \emptyset$
  - $postUpdate(expense(s)): expense(s) = expense(s) + (value(o,r) \times usageT(s))$
UN\textsubscript{onA}: ongoing-Authorizations Model

- **\textbf{UCON}_{onA0}**
  - \(S, O, R, ATT(S), ATT(O)\) and \(onA\);
  - \(allowed(s,o,r) \Rightarrow true\);
  - \(Stopped(s,o,r) \Leftarrow \neg onA(ATT(s),ATT(o),r)\)

- **\textbf{UCON}_{onA1}, UCON_{onA2}, UCON_{onA3}**
  - \(preUpdate(ATT(s)),preUpdate(ATT(o))\)
  - \(onUpdate(ATT(s)),onUpdate(ATT(o))\)
  - \(postUpdate(ATT(s)),postUpdate(ATT(o))\)

- **Examples**
  - Certificate Revocation Lists
  - revocation based on starting time, longest idle time, and total usage time
- **Free Internet Service Provider**
  - Watch Ad window (no update)
  - Click ad within every 30 minutes (ongoing update)
UCON\textsubscript{preB0} \textregistered \text registered

\begin{itemize}
  \item $S$, $O$, $R$, $ATT(S)$, and $ATT(O)$;
  \item $OBS$, $OBO$ and $OB$ (obligation subjects, obligation objects, and obligation actions, respectively);
  \item $preB$ and $preOBL$ (pre-obligations predicates and pre-obligation elements, respectively);
  \item $preOBL \subseteq OBS \times OBO \times OB$;
  \item $preFulfilled$: $OBS \times OBO \times OB \rightarrow \{true, false\}$;
  \item $getPreOBL$: $S \times O \times R \rightarrow 2^{preOBL}$, a function to select pre-obligations for a requested usage;
  \item $preB(s,o,r) = \Lambda (obs\_i,obo\_i,ob\_i) \in getPreOBL(s,o,r) \ preFulfilled(obs_i,obo_i,ob_i)$;
  \item $preB(s,o,r) = true$ by definition if $getPreOBL(s,o,r)=\emptyset$;
  \item $allowed(s,o,r) \implies preB(s,o,r)$.
\end{itemize}

\begin{itemize}
  \item Example: License agreement for a whitepaper download
\end{itemize}
• $S, O, R, ATT(S), ATT(O), OBS, OBO$ and $OB$;
• $T$, a set of time or event elements;
• $onB$ and $onOBL$ (on-obligations predicates and ongoing-obligation elements, respectively);
• $onOBL \subseteq OBS \times OBO \times OB \times T$;
• $onFulfilled$: $OBS \times OBO \times OB \times T \rightarrow \{true, false\}$;
• $getOnOBL$: $S \times O \times R \rightarrow 2^{onOBL}$, a function to select ongoing-obligations for a requested usage;
• $onB(s,o,r) = \bigwedge_{(obs_i,obo_i,ob_i,t_i) \in getOnOBL(s,o,r)} onFulfilled(obs_i,obo_i,ob_i,t_i)$;
• $onB(s,o,r) = true$ by definition if $getOnOBL(s,o,r) = \emptyset$;
• $allowed(s,o,r) \Rightarrow true$;
• $Stopped(s,o,r) \iff \neg onB(s,o,r)$.

• Example: Free ISP with mandatory ad window
• Location check at the time of access request
• Accessible only during business hours

**Usage Decision**

- Location check at the time of access request
- Accessible only during business hours

**Update of Attributes:** No-Update is possible
UCON\textsubscript{preC0}: pre-Condition model

- \( S, O, R, ATT(S), \text{ and } ATT(O) \);
- \( \text{preCON} \) (a set of pre-condition elements);
- \( \text{preConChecked}: \text{preCON} \rightarrow \{\text{true},\text{false}\} \);
- \( \text{getPreCON}: S \times O \times R \rightarrow 2^\text{preCON} \);
- \( \text{preC}(s,o,r) = \bigwedge_{\text{preCon}_i \in \text{getPreCON}(s,o,r)} \text{preConChecked}(\text{preCon}_i) \);
- \( \text{allowed}(s,o,r) \Rightarrow \text{preC}(s,o,r) \).

- Example: location checks at the time of access requests
**UCON\textsubscript{onC0}: ongoing-Condition model**

- \( S, O, R, ATT(S), \text{ and } ATT(O) \);
- \( \text{onCON} \) (a set of on-condition elements);
- \( \text{onConChecked: } \text{onCON} \rightarrow \{\text{true}, \text{false}\} \);
- \( \text{getOnCON: } S \times O \times R \rightarrow 2^{\text{onCON}} \);
- \( \text{onC}(s,o,r) = \Lambda_{\text{onCon}_i \in \text{getOnCON}(s,o,r)} \text{onConChecked}(\text{onCon}_i) \);
- \( \text{allowed}(s,o,r) \Rightarrow \text{true} \);
- \( \text{Stopped}(s,o,r) \leftarrow \neg \text{onC}(s,o,r) \)

- Example: accessible during office hour
- **Free ISP**
  - Membership is required *(pre-authorization)*
  - Have to click Ad periodically while connected *(on-obligation, on-update)*
  - Free member: no evening connection *(on-condition)*, no more than 50 connections *(pre-update)* or 100 hours usage per month *(post-updates)*
Beyond the $\text{UCON}_{\text{ABC}}$ Core Models

- **Objects (O)**
- **Consumer Subjects (CS)**
- **Provider Subjects (PS)**
- **Identifiee Subjects (IS)**

Usage Controls:
- Parallel
- Serial
Logic Model of UCON

- Actions: boolean expressions built from attributes in two states.
  - Alice.credit' = Alice.credit - $50.0
- Two types of actions:
  - Control actions: change the state of single usage process
    - Actions performed by the subject
    - Actions performed by the system
  - Obligation actions:
    - Actions that have to be performed before or during an access.
    - May or may not be performed by the requesting subject and on the target object.
Summary of UCON

- Coined the concept of Usage Control for modern computing systems.
- Developed a family of UCON_{ABC} core models for Usage Control (UCON) to unify traditional access control models, DRM, and other modern enhanced models.
- UCON_{ABC} model integrates authorizations, obligations, conditions, as well as continuity and mutability properties.
Discuss Pretschner 2006 paper