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a b s t r a c t

The Open Provenance Model is a model of provenance that is designed to meet the following
requirements: (1) Allow provenance information to be exchanged between systems, by means of a
compatibility layer based on a sharedprovenancemodel. (2) Allowdevelopers to build and share tools that
operate on such a provenancemodel. (3) Define provenance in a precise, technology-agnostic manner. (4)
Support a digital representation of provenance for any ‘‘thing’’, whether produced by computer systems or
not. (5) Allowmultiple levels of description to coexist. (6) Define a core set of rules that identify the valid
inferences that can be made on provenance representation. This document contains the specification of
the Open Provenance Model (v1.1) resulting from a community effort to achieve inter-operability in the
Provenance Challenge series.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Provenance is well understood in the context of art or digital
libraries, where it respectively refers to the documented history
of an art object, or the documentation of processes in a digital
object’s life cycle [1]. Interest for provenance in the ‘‘e-science
community’’ [2] is also growing, since provenance is perceived as a
crucial component of workflow systems [3] that can help scientists
ensure reproducibility of their scientific analyses and processes.

Against this background, the International Provenance and Anno-
tationWorkshop (IPAW’06), held in Chicago, in May 2006, involved
some 50 participants interested in the issues of data provenance,
process documentation, data derivation, and data annotation [4,5].
During a session on provenance standardization, a consensus be-
gan to emerge, whereby the provenance research community
needed to understand better the capabilities of the different
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systems, the representations they used for provenance, their sim-
ilarities, their differences, and the rationale that motivated their
designs.

Hence, the first Provenance Challenge was born, and from the
outset, the challenge was set up to be informative rather than com-
petitive. The first Provenance Challenge aimed to provide a fo-
rum for the community to understand the capabilities of different
provenance systems and the expressiveness of their provenance
representations. Participants simulated or ran a Functional Mag-
netic Resonance Imagingworkflow, fromwhich they implemented
and executed a pre-identified set of ‘‘provenance queries’’. Sixteen
teams responded to the challenge, and reported their experience
in a journal special issue [6].

The first Provenance Challenge was followed by the second
Provenance Challenge, aiming at establishing inter-operability
of systems, by exchanging provenance information. Thirteen
teams [7] responded to this second challenge. Discussions
indicated that there was substantial agreement on a core
representation of provenance. As a result, following a workshop
in Salt Lake City, in August 2007, a data model was crafted and
released as the Open Provenance Model (v1.00) [8].

http://dx.doi.org/10.1016/j.future.2010.07.005
http://www.elsevier.com/locate/fgcs
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mailto:l.moreau@ecs.soton.ac.uk
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The starting point of this work is the community agreement
summarized by Miles [9]. We assume that provenance of objects
(whether digital or not) is represented by an annotated causality
graph, which is a directed acyclic graph, enrichedwith annotations
capturing further information pertaining to execution. For the
purpose of this paper, a provenance graph is defined to be a record
of a past execution (or current execution), and not a description of
something that could happen in the future.

In June 2008, twenty participants attended the first OPM
workshop [10] to discuss the OPM specification v1.00. Minutes
of the workshop and recommendations [11] were published,
and led to version v1.01 of the Open Provenance Model [12],
which was actively used during the third Provenance Challenge,
which aimed at exchanging provenance information encoded in
OPM and answering precise provenance queries. Some 15 teams
participated in this third challenge, and decided to adopt an open-
sourcemodel for the governance [13] of OPM. A series of proposals
were put forward, publicly reviewed, and put to vote [14]; the
result of which is version 1.1 of the Open ProvenanceModel, which
we present in this paper.

2. Requirements

TheOpen ProvenanceModel (OPM) is amodel of provenance that
is designed to meet the following requirements:
• To allow provenance information to be exchanged between

systems, by means of a compatibility layer based on a shared
provenance model.

• To allow developers to build and share tools that operate on
such provenance model.

• To define provenance in a precise, technology-agnosticmanner.
• To support a digital representation of provenance for any

‘‘thing’’, whether produced by computer systems or not.
• To allow multiple levels of description to coexist.
• To define a core set of rules that identify the valid inferences

that can be made on provenance representation.
While specifying thismodel,we also have some non-requirements:

• It is not the purpose of this document to specify the internal
representations that systems have to adopt to store and
manipulate provenance internally; systems remain free to
choose internal representations that are fit for their purpose.

• It is not the purpose of this document to define a computer-
parsable syntax for this model; realisations of OPM in XML, RDF
or others are being specified in separate documents.

• We do not specify protocols to store such provenance
information in provenance repositories.

• We do not specify protocols to query provenance repositories.

3. Basics

The Open Provenance Model allows us to characterize what
caused ‘‘things’’ to be, i.e., how ‘‘things’’ depended on others and
resulted in specific states. In essence, it consists of a directed graph
expressing such dependencies.We introduce here the constituents
of such a graph.

3.1. Nodes

Our primary concern is to be able to represent how ‘‘things’’,
whether digital data such as simulation results, physical objects
such as cars, or immaterial entities such as decisions, came out
to be in a given state, with a given set of characteristics, at a
given moment. It is recognized that many of such ‘‘things’’ can be
stateful: a car may be at various locations, it can contain different
passengers, and it can have a tank full or empty; likewise, a file can
contain different data at differentmoments of its existence. Hence,
from theperspective of provenance,we introduce the concept of an
Fig. 1. Edges in the Open Provenance Model: sources are effects, and destinations
causes.

artifact as an immutable1 piece of state; likewise, we introduce the
concept of a process as actions resulting in new artifacts.

A process usually takes place in some context, which enables
or facilitates its execution: examples of such contexts are varied
and include a place where the process executes, an individual
controlling the process, or an institution sponsoring the process.
These entities are being referred to as Agents. Agents, as we shall
see when we discuss causality dependencies, are a cause (similar
to a catalyst) of a process taking place.

The Open Provenance Model is based on these three kinds of
nodes, which we now define.

Definition 1 (Artifact). Immutable piece of state, which may
have a physical embodiment in a physical object, or a digital
representation in a computer system.

Definition 2 (Process). Action or series of actions performed on or
caused by artifacts, and resulting in new artifacts.

Definition 3 (Agent). Contextual entity acting as a catalyst of
a process, enabling, facilitating, controlling, or affecting its
execution.

The Open Provenance Model is a model of artifacts in the
past, explaining how they were derived. Likewise, processes also
occurred in the past, i.e. they have already completed their
execution; in addition, processes can still be currently running
(i.e., they may have not completed their execution yet). In no case
is OPM intended to describe the state of future artifacts and the
activities of future processes.

To facilitate understanding and promote a shared visual
representation, we introduce a graphical notation for provenance
graphs. Specifically, artifacts are represented by ellipses; processes
are represented graphically by rectangles; finally, agents are
represented by octagons.

3.2. Dependencies

The Open Provenance Model aims to capture the causal depen-
dencies between the artifacts, processes, and agents. Therefore, a
provenance graph is defined as a directed graph, whose nodes are
artifacts, processes and agents, and whose edges belong to one of
the following categories depicted in Fig. 1. An edge represents a

1 In the presence of streams,we consider an artifact to be a slice of stream in time,
i.e. the stream content at a specific instant in the computation. A future version of
OPM will refine the model to accommodate streams fully as they are recognized to
be crucial in many applications.
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causal dependency, between its source, denoting the effect, and its
destination, denoting the cause.

The first two edges express that a process used an artifact and
that an artifact was generated by a process. Since a process may
have used several artifacts, it is important to identify the roles
under which these artifacts were used. (Roles are denoted by letter
‘R’ in Fig. 1.) Likewise, a processmayhave generatedmany artifacts,
and each would have a specific role. For instance, the division
process uses two numbers, with roles dividend and divisor, and
produces two numbers, with roles quotient and rest. Hence, roles
are similar to parameters of a function, except that they are used to
distinguish inputs and outputs. Consequently, roles aremeaningful
only in the context of the process where they are defined. The
meaning of roles is not definedbyOPMbut by applicationdomains;
OPM only uses roles syntactically (as ‘‘tags’’) to distinguish the
involvement of artifacts in processes.

A process is caused by an agent, essentially acting as a catalyst
or controller: this causal dependency is expressed by the was
controlled by edge. Given that a process may have been controlled
by several agents, we also identify their roles as controllers.
We note that the dependency between an agent and a process
represents a control relationship, and not a data derivation
relationship. It is introduced in the model to express easily how
a user (or institution) controlled a process.

Even though an artifact A2 may have been generated by a
process that used some artifacts, this does not tell us which
artifact A2 actually depends upon. Hence, tomake this dependency
explicit, it is required to assert that artifact A2 was derived from
another artifact A1. This edge gives us a dataflow oriented view of
provenance.

It is also recognized that we may not be aware of the exact
artifact that a process P2 used, but that there was some artifact
generated by another process P1. Process P2 is then said to have
been triggered by P1. In contrast to edge was derived from, a
was triggered by edge allows for a process oriented view of past
executions to be adopted. (Since these edges summarize some
activities forwhich all details are not being exposed, it was felt that
it was not necessary to associate a role with them.)

As far as conventions are concerned, we note that causality
edges use past tense to indicate that they refer to past execution.
Causal relationships are defined as follows.

Definition 4 (Causal Relationship). A causal relationship is repre-
sented by an arc and denotes the presence of a causal dependency
between the source of the arc (the effect) and the destination of the
arc (the cause).

Five causal relationships are recognized: a process used an artifact,
an artifact was generated by a process, a process was triggered by a
process, an artifact was derived from an artifact, and a process was
controlled by an agent. Bymeans of annotations (see Section 8), we
allow edges to be further subtyped from these five categories.

Multiple notions of causal dependencies were considered for
OPM. A very strong notion of causal dependency would express
that a set of entities was necessary and sufficient to explain the
existence of another entity. It was felt that such a notion was not
practical, since, with an open world assumption, one could always
argue that additional factors may have influenced an outcome
(e.g. electricity was used, temperature range allowed computer
to work, etc.). It was felt that weaker notions, only expressing
necessary dependencies, were more appropriate. However, even
then, one can distinguish data dependencies (e.g. where a quotient
is clearly dependent on the dividend and divisor) from a control
dependency where the mere presence of some artifact or the
beginning of a process can explain the presence of another entity.
A number of factors have influenced us to adopt a weak notion of
causal dependency for OPM.
• Expressibility. It is anticipated that systems will produce de-
scriptions of what their components are doing, without having
intimate knowledge of the exact internal data and control de-
pendencies.Weaknotions of dependency are necessary for such
systems to be able to use OPM in practice.

• Composability. We shall see how OPM supports multi-level
descriptions (Section 4). In a system consisting of the parallel
composition of two subcomponents, the high-level summary of
the system requires a weaker notion of dependency than the
low-level descriptions of its subcomponents.

Hence, we adopt the following causal dependencies in OPM.
We anticipate that subclasses of these dependencies, capturing
stronger notions of causality, may be defined in specific systems,
and over time, may be incorporated in OPM.

Definition 5 (Artifact Used by a Process). A ‘‘used’’ edge from
process to an artifact is a causal relationship intended to indicate
that the process required the availability of the artifact to be able
to complete its execution. When several artifacts are connected to
a same process bymultiple ‘‘used’’ edges, all of themwere required
for the process to complete.

Alternatively, a stronger interpretation of the used edge could
have required the artifact to be available for the process to be
able to start. (Such an interpretation corresponds to a call-by-value
procedure invocation where the arguments are required for the
procedure to be invoked.) It is believed that such a notion may be
useful in some circumstances, and it may be defined as a subtype
of used . We note that both interpretations of used coincide, when
processes aremodelled as instantaneous. However, such a stronger
notion is not compositional: an artifact A may have been required
to begin execution of P1, but it does not mean that A was required
to begin P2, a super-process of P1.

Definition 6 (Artifacts Generated by Processes). A ‘‘was generated
by’’ edge from an artifact to a process is a causal relationship
intended to mean that the process was required to initiate its
execution for the artifact to have been generated. When several
artifacts are connected to a same process by multiple ‘‘was
generated by’’ edges, the process had to have begun, for all of them
to be generated.

A stronger interpretation is that the process had to complete
for the artifact to be generated. This alternative interpretation was
rejected because it made it difficult to model pipelined processes
exchanging artifacts.

Definition 7 (Process Triggered by Process). An edge ‘‘was triggered
by’’ from a process P2 to a process P1 is a causal dependency that
indicates that the start of process P1 was required for P2 to be able
to complete.

We note that the relationship P2 was triggered by P1 (like the
other causality relationships we describe in this section) only
expresses a necessary condition: P1 was required to have started
for P2 to be able to complete. This interpretation is weaker than
the common sense definition of ‘‘trigger’’, which tends to express
a sufficient condition for an event to take place.

Definition 8 (Artifact Derived from Artifact). An edge ‘‘was derived
from’’ from artifact A2 to artifact A1 is a causal relationship that
indicates that artifact A1 needs to have been generated for A2 to be
generated. The piece of state associated with A2 is dependent on
the presence of A1 or on the piece of state associated with A1.

Definition 9 (Process Controlled by Agent).Anedge ‘‘was controlled
by’’ from a process P to an agent Ag is a causal dependency that
indicates that the start and end of process P was controlled by
agent Ag .
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Fig. 2. Provenance of ‘‘Atlas X Graphic’’ in first Provenance Challenge workflow.
3.3. Roles

Roles are constituents of ‘‘used’’, ‘‘was generated by’’, and ‘‘was
controlled by’’ edges, aimed at distinguishing the nature of the
dependency when multiple such edges are connected to a same
process.

Definition 10 (Role). A role designates an artifact’s or agent’s
function in a process.

A role is used to differentiate among several use, generation, or
controlling relations.
1. A process may use (resp, generate) more than one artifact.

Each ‘‘used’’ (resp, ‘‘was generated by’’) relation may be
distinguished by a role with respect to that process. For
example, a process may use several files, reading parameters
fromone (role = ‘‘parameters’’), and reading data from another
(role = ‘‘data’’).

2. An artifact might be used by more than one process, possibly
for different purposes. In this case, the ‘‘used’’ relations can
be distinguished by their associated roles. For example, a
dictionary might be used by one process to look up the
spelling of ‘‘provenance’’, (role = ‘‘look up provenance’’), while
another process uses the same dictionary to hold open the door
(role = ‘‘doorstop’’).

3. An agent may control more than one process. In this case, the
different processes may be distinguished by the role associated
with the ‘‘was controlled by’’ relation. For example, a gardener
may control the digging process (role = ‘‘dig the bed’’), as well
as planting a rose bush (role = ‘‘plant’’) and watering the bush
(role = ‘‘irrigating’’).

4. A process may be controlled by more than one agent. In this
case, each agent might have a distinct controlling function,
whichwould be distinguished by roles associatedwith the ‘‘was
controlled by’’ relations. For example, boarding the train may
be controlled by the ticket agent (role = ‘‘sell ticket’’), the gate
agent (role = ‘‘take ticket’’) and the steward (role = ‘‘guide to
seat’’).

From an OPM’s perspective, roles have a syntactic nature and
are scoped by the process which they are related to. A role has
meaning only within the context of a given process (and/or agent).
For a given process, each ‘‘used’’, ‘‘was generated by’’ or ‘‘was
controlled by’’ relation has a role specific to the process, though
the rolesmay have nomeaning outside that process. OPM does not
mandate the uniqueness of roles for a given process. For example,
baking a cake with two eggs, may define each egg as a separate
artifact, and the two used edges might have the identical role,
say, egg. (In such a case, there is nothing that distinguishes the
involvement of one egg from the other in this process.)

Roles should always be specified. For inter-operability, commu-
nities should define standard sets of roles with agreed meanings
(by means of profiles, defined in Section 9). In addition, a reserved
value is defined for ‘‘undefined’’, which should be used when the
role is not known or omitted.
Fig. 3. Victoria sponge cake provenance.

3.4. Examples

An example illustrating all the concepts and a few of the causal
dependencies is displayed in Fig. 2. The context of Fig. 2 is the
first Provenance Challenge [6], where an fMRI workflow operated
on a series of images and headers, and produced an average
image according to different axes. Fig. 2 displays a subset of the
provenance for one of the outputs ‘‘Atlas X Graphic’’, which was
generated by an execution of First Provenance Challengeworkflow
using several inputs; the User who controlled this process was
John Doe. Edges of type ‘‘used’’, ‘‘was generated by’’, and ‘‘was
controlled by’’ are represented by dotted lines, annotated with
their role in bracket. Data derivations are explicitly represented by
‘‘was derived from’’ edges, represented by plain lines.We note that
the fact that a process used an artifact and generated another does
not imply the latterwas derived from the former; such relationship
needs to be asserted explicitly.

OPM is in no way limited to digital artifacts and processes. In
Fig. 3, a provenance graph expresses that John baked a cake with
ingredients butter, eggs, sugar and flour.

While graphs can be constructed by incrementally connecting
artifacts, processes, and agents with individual edges, themeaning
of the causality relations can be understood in the context of all the
used (or wasGeneratedBy) edges, for each process. By connecting a
process to several artifacts by used edges, we are not just stating
the individual inputs to the process. We are asserting a causal
dependency expressing that the process could take place and
complete only because all these artifacts were available. Likewise,
when we express that several artifacts were generated by a
process, we mean that these artifacts would not have existed if
the process had not begun its execution; furthermore, all of them
were generated by the process; one could not have been generated
without the others. The implication is that any single generated
artifact is caused by the process, which itself is caused by the
presence of all the artifacts it used. We will investigate transitive
closures of causality relations in Section 6.

We can see here the crucial difference between artifacts and the
data they represent. For instance, the data may have existed, but
the particular artifact did not. For example, a BLAST search can be
given a DNA sequence and return a set of ‘‘similar’’ DNA sequences;
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Fig. 4. Examples of provenance graph.
however, these returned sequences all existed prior to the process
(BLAST) invocation, but the artifacts are novel.

As illustrated by the two examples above, the entities and
edges introduced in Fig. 1 allow us to capture many of the use
cases we have come across in the provenance literature. However,
they do not allow us to provide descriptions at multiple level of
abstractions, or from different view points. To support these, we
allow multiple descriptions of a same execution to coexist.

4. Overlapping and hierarchical descriptions

Fig. 4 shows two examples of provenance graphs describing
what led the list (3, 7) to being as it is. According to the left-
hand graph, the list was generated by a process that added one
to all constituents of the list (2, 6). According to the right-hand
graph, the derivation process of (3, 7) required the list to be created
from values 3 and 7, respectively obtained by adding one to 2 and
6, themselves being the data products obtained by accessing the
contents of the original list (2, 6). To facilitate the understanding of
these figures, edges of the type ‘‘was derived from’’ are subtyped,
and their subtype made explicit as a label to the edge. (We will
come back to the notion of subtyping in Section 8.)

Assuming these two graphs refer to the same lists (2, 6) and
(3, 7), they provide two different explanations of how (3, 7)
was derived from (2, 6): these explanations would offer different
levels of details about the same derivation. The requirement of
providing details at different levels of abstraction or from different
viewpoints is common for provenance systems, and hence, we
would expect both accounts to be integrated in a single graph.
In Fig. 5, we see how the two provenance graphs of Fig. 4 were
integrated, by selecting different colors for nodes and edges. The
lighter (red) part belonged to the left graph of Fig. 4, whereas
the darker (black) part is the alternate description from the right
graph of Fig. 4. (Graphs in this paper are better viewed in color.)
The darker and lighter subgraphs are two different overlapping
accounts of the same past execution, offering different levels of
explanation for such execution. Such subgraphs are said to be
Fig. 5. Overlapping and hierarchical accounts in a provenance graph. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

overlapping accounts because they share some common nodes (2,
6) and (3, 7). Furthermore, the darker part (black) provides more
details than the lighter subgraph (red): the darker part is said to
be a refinement of the lighter graph. (The term ‘refinement’ is to
be understood as a more complete description of execution, and
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Fig. 6. Hierarchy of accounts in a provenance graph. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

is inspired by the concept of specification refinement in formal
methods [15].)

Observing Fig. 5, it becomes crucial to contrast the edges ‘‘was
generated by’’ originating from artifact (3, 7) with the edges ‘‘used’’
originating from the constructor process. Indeed, the edges ‘‘used’’
out of the constructor process mean that both artifacts 3 and 7
were required for the process to take place. On the other hand,
since the edges ‘‘was generated by’’ from artifact (3, 7) are colored
differently, they indicate that alternate explanations exist for the
process that led to such artifact being as it is.

It is possible to use refinements repeatedly to create a hierarchy
of accounts, as illustrated in Fig. 6. We see that a third account
(blue) is introduced, to explain how one of the +1 processes was
performed.

By combining several accounts, we can obtain cycles, as
illustrated by Fig. 7(left). Here, in the first account (darker, black),
a description of two processes p1a and p1b is presented, and
their dependencies on artifacts a0, a1, a2 and a3. In the second
account (lighter, red), it is stated that the two processes p1a and
p1b constitute a single process operating on inputs a0 and a2,
and producing a1 and a3. If we combine the two views, a cycle
of ‘‘used’’ and ‘‘was generated by’’ edges has been created: a2 →

p2 → a1 → p1 → a2. In the right-hand side of Fig. 7, we
make data derivations explicit: in this example, we observe that
no cycle of ‘‘was derived from’’ is created, since the two accounts
are compatible (since one provides more details than the other). In
the most general case, where accounts may be conflicting, we can
anticipate cycle of ‘‘was derived from’’ edges to be resulting from
the union of several accounts.

While overlapping accounts are intended to allow various
descriptions of a same execution, it is recognized that these
accounts may differ in their description’s semantics. In general,
such semantic differences may not be expressed by structural
properties we can set constraints on in the model (beyond the
constraints identified in this document).
Fig. 7. Multiple Accounts Creating Cycle: without (left) and with (right) ‘‘was
derived from’’ edges. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

5. Temporal constraints and observation time

The Open Provenance Model allows for causality graphs to
be decorated with time information. In this model, time is not
intended to be used for deriving causality: if causal dependencies
exist, they need to be made explicit with the appropriate edges.
OPM is compatible with causality in distributed systems [16]:
when an effect event is caused by a cause event, then the
cause ‘‘happened before’’ the effect (where ‘‘happened before’’ is
Lamport’s partial ordering [16]). Furthermore, given that timemay
have been observed by an observer, we would expect such time
information to be compatible with causal dependencies. If a same
clock is used to measure time for both the effect and cause, then
the time of an effect should be greater than the time of its cause.
Hence, time is useful in validating causality claims.

In the Open Provenance Model, time may be associated to
instantaneous occurrences in a process. We currently recognize
four instantaneous occurrences, which have a reasonable shared
understanding in real life and computer systems. Two of them
pertain to artifacts, whereas the other two relate to processes. For
artifacts, we consider the occurrences of creation and use, whereas
for processes, we consider their starting and ending.

The rationale for choosing instantaneous time for the OPM
model is the same as for adopting artifacts as immutable pieces
of state. At a specific time, an object we consider was in a specific
state, which we refer to as artifact, and for which we can express
the causality path that led to the object being in such a state.

In some scenarios, occurrences of use or creation of objects
and occurrences of starting or ending of processes may not be
instantaneous. To capture such scenarios, detailed processes and
artifacts, and their respective causal dependencies, need to be
made explicit, in order to be expressible in the OPM model.
For instance, the starting of a nuclear power plant or of a job
scheduling activity is not usefully modelled as an instantaneous
occurrence, when one tries to understand failures that occurred
during this activity; hence, this whole starting occurrence must be
modelled by one process (or possibly several), which in turn have
instantaneous beginnings and endings.
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Fig. 8. Time in the provenance model.

In the Open Provenance Model, time information is expected
to be acquired by an observer’s observing a clock2 when an
occurrence occurs. Given that time is observed, time accuracy is
limited by the granularity of the clock and the granularity of the
observer’s activities. Hence, while the notion of time we consider
is instantaneous, the model allows for an interval of accuracy to
support granularity of clocks and observers. In the OPM model, an
instantaneous occurrence happening at time t is specified in term
of two observation times tm, tM , such that the occurrence is known
to have occurred no later than tM and no earlier than tm. Hence,
t ∈ [tm, tM ].

Concretely, for an artifact, we will be able to state that it was
used (or generated by) no earlier than time t1 and/or no later than
time t2. For a process, wewill be able to state that it was started (or
terminated), no earlier than time t1 and/or no later than time t2.

In Fig. 8, we revisit OPM entities indicating how time
information may be expressed in the model. We note again that
time information is optional in OPM and is expressed as an
observation time interval.

Edges ‘‘used’’ and ‘‘was generated by’’ can be extended with
an optional timestamp, indicating that the associated artifact was
known to be generated or used, at a given time.

For a ‘‘was controlled by’’ edge, we allow two optional
timestamps marking when the process was known to be started
or terminated, respectively. In a given account, for a process that is
not source of a ‘‘was controlled by’’ edge, we allow the process to
be decorated by two timestamps directly.

For a ‘‘was derived from’’ edge, one optional timestamp is
permitted, which indicates when the artifact was used. Likewise,
for ‘‘was triggered by’’ edge, we also allow one optional timestamp
that marks the time when the communicated artifact was used by
the edge source.

Themodel of causality in OPM is essentially timeless since time
precedence does not imply causality: if a process P1 ‘‘happened
before’’ a process P2, in general, we cannot infer that P1 caused P2
to happen. However, the converse implication holds; furthermore,
assuming time is measured according to a single clock (or
synchronized clocks), time observations will be comparable.

Fig. 9 displays the various ‘‘happened before’’ relationship that
must be satisfied in OPM. We write T1 ≤ T3 to express that the
event observed at time T1 happened before the event observed
at time T3. When the two time observations are made with the

2 OPM assumes that all clocks are properly synchronized.
same clock (or synchronized clocks), then time observations can
be compared. According to Fig. 9, an artifact must exist before it is
being used (T1 ≤ T3 and T4 ≤ T6). If an artifact is used by a process,
it will actually be used after the start of the process (T2 ≤ T3)
and before the end of the process (T3 ≤ T5). A process generates
artifacts before its end (T4 ≤ T5), and a process starts precedes its
generation of artifacts (T2 ≤ T4) and its end (T2 ≤ T5).

6. Completion and inferences

The Open Provenance Model has defined the notion of
OPM graph based on a set of syntactic rules and topological
constraints. Provenance graphs are aimed at representing causality
graphs explaining how processes and artifacts came out to
be. It is expected that a variety of reasoning algorithms will
exploit this data model, in order to provide novel and powerful
functionality to users. It is beyond the scope of this document to
include an extensive coverage of relevant reasoning algorithms.
However, provenance graphs, by means of edges, capture causal
dependencies, which can be summarized by means of transitive
closure that we describe in this section. First, we introduce
completion rules, and then define multi-step inferences.

6.1. Completion rules

In Section 3, we have introduced the two causal dependencies
‘‘was triggered by’’ and ‘‘was derived from’’ as summary edges
for a process view (where an intermediary artifact was unknown)
and a data view (where an intermediary process was unknown),
respectively. Figs. 10 and 11 describe completion rules, i.e. one-step
transforms that can be performed in the Open Provenance Model.
A rule explains how a subgraph can be converted into another
subgraph.

Fig. 10 displays a bidirectional transformation. According to
the forward transformation (referred to as artifact elimination), a
‘‘was triggered by’’ edge can be obtained from the existence of
‘‘used’’ and ‘‘was generated by’’ edges.We note that the novel ‘‘was
triggered by’’ edge belongs to the set of accounts given by the
intersection3 of accounts of the ‘‘used’’ and ‘‘was generated by’’
edges.

Fig. 10 shows a bidirectional completion rule: artifact introduc-
tion allows us to establish that the ‘‘was triggered by’’ edge is hid-
ing the existence of some artifact used by P2 and generated by P1.
The novel edges ‘‘used’’ and ‘‘was generated by’’ are asserted in the
same account context as the original ‘‘was triggered by’’ edge. The
completion rule allows us to establish the existence of some arti-
fact but it does not tell us what their id is. This is the consequence
of using ‘‘was triggered by’’, which is a lossy summary of the com-
position of ‘‘used’’ and ‘‘was generated by’’.

In Fig. 11, there is only one completion rule, referred to as
process introduction: a ‘‘was derived from’’ edge hides the presence
of an intermediary process. Novel edges are asserted with the
same accounts as the original edge. The converse rule does not
hold however, since, without any internal knowledge of P , it is
impossible4 to ascertain there is an actual dependency between A1
and A2.

3 Taking the intersection of accounts ensures that the edges derived by artifact
elimination are meaningful in the account they are declared to be member of.
Furthermore, this ensures that completion rules preserve the effective account
membership of all nodes in the graph.
4 It is suggested that a profile could offer an annotation indicating that all outputs

of a process are dependent on all its inputs. For processes annotated in this way, the
converse inference, i.e. process elimination, would hold.
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Fig. 9. Relation ‘‘happened before’’ in the Open Provenance Model.
Fig. 10. Completion: artifact introduction and elimination.

Fig. 11. Completion: process introduction.

6.2. Multi-step inferences

When users want to find out the causes of an artifact or a
process, they may not just be interested in direct causes, but in
indirect causes, as well, involving multiple transitions. Hence, for
the purpose of expressing queries or expressing inferences about
provenance graphs, we introduce four new relationships, which are
multi-step versions of existing relationships.We first introduce the
multi-step ‘‘was derived from’’ relation, fromwhich other versions
are obtained.

Definition 11 (Multi-Step WasDerivedFrom). An artifact a1 was
derived from a2 (possibly using multiple steps), written as
a1 →

∗ a2, if a1 ‘‘was derived from’’ an artifact that was a2 or that
was itself derived from a2 (possibly using multiple steps). In other
words, it is the transitive closure of the edge ‘‘was derived from’’.
It expresses that artifact a2 had an influence on artifact a1.
FromDefinition 11,we formulate conveniencemulti-step relations
as follows.

Definition 12 (Secondary Multi-Step Edges).

• Process p used artifact a (possibly usingmultiple steps), written
p→

∗ a, if p used an artifact that was a or was derived from a
(possibly using multiple steps).

• Artifact a was generated by process p (possibly using multiple
steps), written a→

∗ p, if a was an artifact or was derived from
an artifact (possibly using multiple steps) that was generated
by p.

• Process p1 was triggered by process p2 (possibly using multiple
steps), written p1 →

∗ p2, if p1 used an artifact that was
generated or was derived from an artifact (possibly using
multiple steps) that was itself generated by p2.

Intuitively, multi-step edges can be inferred from single-step
edges, by ‘‘eliminating’’ artifacts that occur in chains of dependen-
cies. (Note that inferences do not allow process elimination.)

The four relationships, and associated inferences, are illustrated
in Fig. 12. In this figure, plain edges represent single-step de-
pendencies, whereas dashed edges represent multi-step depen-
dencies. For instance, from p2 → a3 → a2 we can infer
p2→

∗ a3→
∗ a2 and p2→

∗ a2, by ‘‘eliminating’’ a3.

7. Provenance graph definition

We assume the existence of a few primitive sets: identifiers for
processes, artifacts and agents, roles, and accounts. These sets of
identifiers provide identities to the corresponding entities within
the scope of a given provenance graph. A given serialization will
standardize on these sets, and provide concrete representations for
them.

It is important to stress that the purpose of identifiers is to
define the structure of graphs: they are not meant to define
identities that are persistent and reliably resolvable over time.

The Open Provenance Model is defined according to the
following rules.

1. An OPM entity can be a node, an edge, a role, an account, or a
graph.

2. Accounts are identified by unique identifiers. An account
represents a description at some level of detail as provided by
one or more observers. Two accounts are equal if and only if
they have the same identifier.
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Fig. 12. Inference: multi-step edges.

3. Artifacts are identified by unique identifiers. Artifacts are
entities that represent an application instantaneous piece of
state. Two artifacts are equal if and only if they have the same
identifier (irrespective of the state they represent5). Artifacts
can optionally belong to accounts: account membership is
declared by listing the accounts an artifact belongs to.

4. Processes are identified by unique identifiers. Processes
represent applications activities. Two processes are equal
if and only if they have the same identifier. Processes
can optionally belong to accounts: account membership is
declared by listing the accounts a process belongs to.

5. Agents are identified by unique identifiers. Agents represent
contextual entities controlling processes. Two agents are
equal if and only if they have the same identifier. Agents
can optionally belong to accounts: account membership is
declared by listing the accounts an agent belongs to.

6. Edges are identified by their source, destination, and role (for
those that include a role). Edges represent causal dependencies
between their source (the effect) and their destination (the
cause). The source and destination consist of identifiers for
artifacts, processes, or agents, according to Fig. 1. Edges can
also optionally belong to accounts: account membership is
defined by listing the accounts an edge belongs to. Structural
equality applies to edges: two edges of type ‘‘used’’ (resp. ‘‘was
generated by’’, or ‘‘was controlled by’’) are equal if they have
the same source, the same destination, the same role, and the
same accounts; two edges of type ‘‘was derived from’’ (resp.
‘‘was triggered by’’) are equal if they have the same source,
the same destination, and the same accounts. The meaning
of roles is not defined by OPM but by application domains;
OPM only uses roles syntactically (as ‘‘tags’’) to distinguish the
involvement of artifacts and agents in processes.

5 In the Open Provenance Model, artifact identifiers are the only way to
distinguish artifacts in the graph structure. Two artifacts differ if they have different
ids, even though they may refer to a same application data product. Two different
artifacts are therefore separate nodes in a provenance graph: they have two
different computational histories.
7. Roles are mandatory in edges ‘‘used’’, ‘‘was generated by’’,
and ‘‘was controlled by’’. The meaning of a role is defined by
the semantics of the process they relate to. Role semantics is
beyond the scope of OPM.

8. To ensure that edges establish a causal connection between
actual causes and effects, the model assumes that if an edge
belongs to an account, then its source and destination also
belong to this account. In other words, the effective account
membership of an artifact/process/agent is its declared account
membership and the account membership of the edges it is
adjacent to (i.e., it is source and destination of).

9. An OPM graph consists of artifacts, processes, agents, edges,
and accounts, as specified above. OPM graphs may be dis-
connected. OPM graphs can be compared by using structural
equality. The empty set is an OPM graph. A singleton contain-
ing an artifact, a process or an agent is an OPMgraph. The set of
OPM graphs is closed under the intersection and union opera-
tions,6 i.e. the intersection of two OPM graphs is an OPM graph
(and likewise for union). We note at this stage that syntacti-
cally valid OPM graphs may not necessarily make sense from a
provenance viewpoint.

10. A view of an OPM graph according to one account, referred to
as account view, consists of elements whose effective account
membership for artifacts, processes, and agents, and account
membership for edges contain the account.

11. While cycles can be expressed in the syntax of OPM, an account
view is legal if it is free of cycle of ‘‘was derived from’’ edges and
if it contains at most one ‘‘was generated by’’ edge per artifact.
This ensures that within one account, an OPM graph captures
proper causal dependencies, and that a single explanation of
the origin of an artifact is given.

12. Hence, a legal OPM graph is one for which all account views are
legal.

13. Legal account views are OPM graphs. The union of two legal
account views is an OPM graph (it is not necessarily a legal
view since it may contain cycles). The intersection of two legal
account views is a legal account view.

14. A provenance graph is not required to contain time informa-
tion.

15. Edges can optionally be decorated with time information
(as per Fig. 9). In a given account, a Process without ‘‘was
controlled by’’ edge can also optionally be decoratedwith time
information.

16. Within an account, time information must be consistent with
causality. To this end, the definition of legality of an account
view is extended with an extra condition requiring that
causation is time monotonic, as displayed in Fig. 9 (for identical
or synchronized clocks).

All observed times are pairs of instantaneous time values.
For T1 = (tm1 , tM1 ), with tm1 ≤ tM1 , and T2 = (tm2 , tM2 ), with
tm2 ≤ tM2 inequality is defined as follows: T1 ≤ T2 if tm1 ≤ tM1 ≤

tm2 ≤ tM2 .
17. Two account views are said to be overlapping if the views have

some artifact, process or agent in common.7

6 Equality, union and intersection of OPM graphs require a predicate to be
provided allowing nodes and edges to be compared across graphs. For instance,
such a predicate can make use of the global, persistent name (pname) introduced
in Section 8.2.
7 Whilst one could infer whether two graphs actually overlap, this would

typically require the graphs to be parsed fully in order to make such an inference;
instead, explicit declarations of such overlapping properties can be considered to
facilitate the processing and traversal of graphs.
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18. An account view v1 is a refinement of another account view
v2 if the set of multi-step dependencies that can inferred in
v1 after application of completion rules is a superset of multi-
steps dependencies that can be inferred in v2 after application
of completion rules.

19. In an OPM graph, relations between accounts (overlap,
refinement, and any other) may be asserted. Account relation
assertions are legal if two account asserted to be in relationship
satisfy this relationship’s definition.

8. Annotations

Practical experience with the third Provenance Challenge has
shown the need for ‘‘extra information’’ to be added to OPM
entities. Such extra information is typically required for inter-
operability purpose, to allow meaningful exchange of provenance
information. Examples include subtyping of edges, descriptions of
processes, and reference to values of artifacts. To accommodate
‘‘extra information’’ in an extensiblemanner, the Open Provenance
Model allows for all its entities to be annotated, by means of the
OPM annotation framework, which we describe below.

8.1. The OPM annotation framework

The OPM annotation framework is defined according to the
following rules.

1. OPMannotations are alsoOPMentities, forming a class of objects
distinct from the other OPM entities.

2. An annotable entity can be an OPM graph,8 an OPM node, an
OPMedge, anOPMaccount, an OPM role, or anOPMannotation.

3. An annotated entity is an annotable entity associated with one
or more instances of annotations.

4. Every annotated entity must be uniquely identifiable in the
context of an OPM graph by means of an identifier.

5. An annotation instance is an object of the class OPMAnnotation
and consists of the following:
• a subject: an annotable entity (identified by its identifier) to

which the annotation is attached;
• a non-empty set of property-value pairs:

– the property includes a namespace to represent its scope,
– the value must be typed;

• a list of accounts, which must be a subset of the effective
accounts of the annotated entity.

The intended meaning of a property-value pair is that the
annotated entity (i.e. the subject) is provided with additional
descriptions, each consisting of a property of the subject and
the value of this property for the subject, in the context of some
accounts.

Multiple property-value pairs are allowed within an anno-
tation instance. It is legal for a same property to occur multiple
times with different values.

6. Annotations can themselves be annotated and subtyped.

Fig. 13 illustrates how annotations have been added to Fig. 3.
We have two9 annotations represented as a ‘‘post-it’’, with
property ‘‘quality’’ and value ‘‘yummy’’ for the cake, and property
‘‘type’’ and value ‘‘raising’’ from flour. Also the edges ‘‘was derived
from’’ were subtyped, and their type added as a label.

8 OPM is intended to be technology agnostic. However, there is an acknowledge-
ment that annotating a graphmay present challenges with some technologies such
as RDF. The implications of such capability are currently under investigation.
9 In fact, all nodes and edges are annotated because they all have a label. We

did not make the ‘‘label’’ annotation explicit in the graphical representation of
annotations since the label is already displayed in nodes and along side edges.
8.2. Common OPM properties

For inter-operability purpose, OPM defines a set of common
properties. We identify each property by a unique URI; we define
the expected type of subjects and values associated with such
property. Finally, we state the intended meaning of the property.

type Subject: An annotable entity
Property: http://openprovenance.org/property#type
Value: A URI
Meaning: Denotes the subtype of an OPM entity. Such subtypes are

represented by a URI.
pname Subject: An annotable entity

Property: http://openprovenance.org/property#pname
Value: A URI
Meaning: Denotes a persistent name that can be used by OPM

graph queriers to compare OPM entities across graphs.
The scope of this name is intended to be global.

label Subject: An annotable entity
Property: http://openprovenance.org/property#label
Value: A string
Meaning: This property provides a human-readable version of an

OPM entity.
value Subject: An artifact

Property: http://openprovenance.org/property#value
Value: A typed value
Meaning: Denotes a serialization of an application value

associated with an OPM entity. Such serialization should
have a type (expressed in a type system suitable for the
serialization). Serialization technologies include XML,
JSON, and ntriples.

encoding Subject: An artifact or an OPM graph
Property: http://openprovenance.org/property#encoding
Value: A URI
Meaning: Denotes how a serialization was constructed. For

instance, using the Java bean serializer to create an XML
document, by applying a specified transformation to the
application data, e.g. anonymisation, by passing a
reference to the actual value, or by creating a set of RDF
triples.

profile Subject: An OPM graph
Property: http://openprovenance.org/property#profile
Value: A URI
Meaning: This property applies to an OPM graph and denotes a

profile that is supported by that graph

9. OPM profiles

OPM is a top-level representation framework for provenance,
and we recognize that some communities will develop their
own best practice and usage guidelines. To encourage such a
notion of best practice or usage guideline, we formalize it by
means of the concept of an OPM profile. For instance, a set of
conventions is currently emerging to represent ‘‘collections’’ in
OPM; it is suggested that all these conventions can be expressed in
a ‘‘collection profile’’ [17]. Whenever an OPM graph adopts these
conventions, it can be annotated with this profile so that queriers
may exploit this declaration in order to process the graph.

An OPM profile is intended to define a specialisation of OPM,
and therefore must remain compatible with the semantics of
OPM described in this document. Concretely, this means that a
profile-compliant OPM graph is an OPM graph, whose semantics
is described in this document. This implies that all inferences
specified by this document remain valid in a profile-compliant
OPM graph. For the avoidance of doubt, any extension of OPM
that does not preserve the OPM semantics must not be defined
as a profile, and must not be referred to as OPM. Profiles are
specified in separate documents that are independent of this core
specification.

http://openprovenance.org/property#type
http://openprovenance.org/property#pname
http://openprovenance.org/property#label
http://openprovenance.org/property#value
http://openprovenance.org/property#encoding
http://openprovenance.org/property#profile
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Fig. 13. Annotation in the victoria sponge cake provenance.
An OPM profile consists of the following elements:

1. A mandatory unique global identifier for the profile.
Such a profile identifier must be used as the value of

the profile property in an annotation to the OPM graph that
supports such a profile.

2. An optional controlled vocabulary for annotations.
In this context, a controlled vocabulary for annotations is a

specification of the properties, its permitted subjects, and its
permitted values (such as types or enumerated values). Such a
controlled vocabulary may be used for some of the following:
(a) Subtyping edges and nodes in OPM graphs by means of the

type property;
(b) Defining application-specific properties: for instance, a

position property attached to nodes can be exploited by a
visualization tool to render OPM graphs.

3. Optional general guidance to express OPM graphs.
There are typically many different ways in which OPM can

be used to describe an execution. For inter-operability purpose,
it is therefore good to provide some guidance on how to
structure OPM graphs. For instance, it may be useful to identify
several types of accounts (e.g., for high-level and low-level
descriptions) and to mandate that each account contains edges
of specific subtypes.

Likewise, common software engineering patterns involved
in the design and implementation of an application may also
be reflected in OPM graphs; for instance, the publish/subscribe
pattern of an application can result in a set of OPM conventions
to express publisher and consumer processes and the flow of
information between them.

4. Optional profile expansion rules.
In some specific circumstances, it may not be necessary to

express all edges or nodes related to an execution because they
can be derived. Hence, profiles may contain rules, referred to as
expansion rules to convert a profile-compliant OPM graph into
another OPM graph. The process of applying profile expansion
rules to generate an OPM graph is called profile expansion, and
the resulting graph is said to be profile expanded. We draw
the reader’s attention to the terminology adopted here. Profile
expansion should be distinguished from the completion rules
and multi-step inferences defined in Section 6.

Profile expansion constructs a profile-expanded OPM graph
by adding new elements (and possibly removing some),
satisfying the following constraints:
(a) A profile-compliant graph is an OPM graph;
(b) A profile-expanded graph is an OPM graph,
(c) The semantics of the profile-compliant graph and of

the profile-expanded graph are solely defined by this
document;
(d) Any multi-step edge that can be inferred between two
nodes in a profile-compliant graph must also be inferable
in the profile-expanded graph (but not vice versa)10;

(e) Provided that condition (4d) holds, the profile expansion
process is:
• node preserving: any node in the profile-compliant graph

also belongs to the profile-expanded graph;
• single-step edge lossy: single-step edges in the profile-

compliant graph may not necessarily belong to the
profile-expanded graph;

• multi-step edge preserving: multi-step edges that can
be inferred in the profile-compliant graph must also be
inferable in the profile-expanded graph;

• annotation lossy: profile-specific annotations in the
profile-compliant graph may not necessarily belong to
the profile-expanded graph.

As a result, there is not need of knowing about a profile to
be able to analyse a profile-expanded graph. From a reasoning
perspective, an OPM reasoning engine is only required to
implement the inference rules described in this document.
Profile-compliant OPM graphs can be translated into OPM
graphs by the profile expansion process. Alternatively, a
reasoning engine may be profile aware, and may be able to
reason on profile-compliant OPM graphs without requiring
profile expansion to take place.

5. Optional serialization specific syntax.
A profile may introduce syntactic short-cuts for specific

serializations. The serialization needs to explain how such
short-cuts can be translated into core OPM, and vice versa.

We can envisage that controlled vocabularies, patterns and
inference rules may all be expressed in some declarative language,
which could be used to automatically check whether an OPM
graph is compliant with a profile, and to perform profile expansion
automatically. There is however no off-the-shelf solution that
we can reuse for this purpose. Hence, our assumption is that
profiles will be mostly specified in natural language, and that
profile compliance and profile expansion routines will have to be
implemented by hand. We welcome solutions to make these steps
as automatic as possible.

10 In fact, the profile expansion rules generate an OPM graph that is a refinement
of the original graph. Any node of the profile-compliant graph is also a node of the
profile-expanded graph (but the latter may contain extra nodes). Any multi-step
edge that can be inferred in the profile-compliant graph can also be inferred in the
profile-expanded graph.
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10. Discussion, related and future work

OPM addresses the requirements identified in Section 2. Four-
teen teams participating in the third Provenance Challenge have
demonstrated that OPM can be used to exchange provenance in-
formation. Common tools are emerging (see openprovenance.org),
such as visualization and conversion, some of which were demon-
strated in the Third Provenance Challenge (see papers in this spe-
cial issue).

This specification defines the Open Provenance Model in
a technology-agnostic manner, and is used to generate the
provenance of data products produced usingmultiple technologies
(e.g., C#, Java, Kepler, Taverna, PASS, VisTrails). The specification
also defines the kind of inferences that are permitted; they can
be classified in three categories: completion (Section 6.1), multi-
step inference (Section 6.2) and profile expansion (Section 9). The
concept of account allows multiple descriptions to coexist. Finally,
the cake example, though contrived, illustrates that OPM can be
applied to physical artifacts. OPM is described as an abstractmodel,
but serializations to XML andRDF (and associatedXML Schema and
OWLontology) are being proposed (openprovenance.org) andhave
actively been used in the Third Provenance Challenge.

Prior to the first OPM specification, multiple provenance
technologies had been developed, but none aimed at defining a
technology-agnostic provenance data model for inter-operability
purpose. For instance, PASOA [18] offers a model that aimed
at inter-operability between execution technologies: it focuses
on distribution (message-passing systems) and its definition
is bound to XML. So, OPM is the first model to be purely
technology agnostic. A companion paper [19] defines its formal
semantics. Since the conception of OPM, other models have
emerged. Hartig [20] proposes the provenance vocabulary, which
we conjecture can be defined as a profile of OPM, to describe
the provenance of Linked Data over the Web. His model accounts
for the creation and access of RDF data, and is strongly bound to
RDF technology. Sahoo et al. [21] define a provenance ontology
based on three entities similarly to OPM, but their design is
influenced by scientific experiments; their analogous of artifact
denotes potentially stateful electronic data (including collections
which OPM defines in a separate profile). In addition, relationships
between entities are not all causal.

The Proof Markup Language (PML) [22], conceived indepen-
dently in the context of the SemanticWeb, includesmetadata such
as authorship and authoritativeness of a source, and a detailed
trace of inference rules applied. Relationships, which capture no-
tions of Consequent andAntecedents to a proof step, the succession
of which consists of a proof, bear some strong similarity with OPM
concepts.

TheW3C Incubator on Provenance [24] has identified use cases
and requirements for provenance in the context of theWeb, and is
proposing a mapping of the above models of provenance to OPM.

OPM is a language to describe dependencies between artifacts,
processes, and agents. Since the Third Provenance Challenge did
not test agents much, further guidance is needed on how best to
describe systems in the presence of agents. For instance, in the
OPM 1.01 specification [12], we identified alternate patterns by
which agents controlled processes, according to different accounts.
Further work is required to develop profiles, based on community
experience with these OPM constructs.

Scientists regularly manipulate sets of data as first-class
entities. While such sets, referred to as collections, can be
represented in OPM as artifacts, their provenance is typically
tightly linked to the provenance of their constituents. However, no
guidance is provided by OPM to express such collections and their
relation to their constituents. To acknowledge the importance of
collections, a whole section on collections was introduced in OPM
1.01. Since then, the concept of profile has been formulated, and a
collection profile has been drafted [17]. During the design phase of
OPM v1.1, a vote unanimously opted to keep the collection profile
separate from OPM core. Furthermore, OPM considers artifacts
as immutable pieces of state; guidance is required to represent
stateful objects in OPM.

OPM does not provide any specific mechanism to assert
attribution of a provenance graph or portion thereof. It is
generally recognized that annotations are themechanism to do so;
attribution could be attached, as an annotation, to accounts or to
the graph itself, for example. Work is underway to define a Dublin
Core profile for OPM [23],which dealswith some of these concepts.

11. Conclusion

The document has introduced the Open Provenance Model,
consisting of a technology independent specification and a
graphical notation, to express causality graphs representing past
executions. Work is in progress to define several useful profiles,
such as the Dublin Core and the Collections profiles, specify
serialization formats to XML and RDF, and formalize the OPM
semantics. We will also specify protocols by which provenance of
entities can be queried, and protocols for applications to record
descriptions of their execution.
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