Public-Key Certificates

Prof. Ravi Sandhu
Executive Director and Endowed Chair

Lecture 4

ravi.utsa@gmail.com
www.profsandhu.com
Public-Key Certificates

- authenticated distribution of public-keys
- public-key encryption
 - sender needs public key of receiver
- public-key digital signatures
 - receiver needs public key of sender
- public-key key agreement
 - both need each other’s public keys
<table>
<thead>
<tr>
<th>Version</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial Number</td>
<td></td>
</tr>
<tr>
<td>Signature Algorithm</td>
<td></td>
</tr>
<tr>
<td>Issuer (Certificate Authority)</td>
<td></td>
</tr>
<tr>
<td>Validity</td>
<td></td>
</tr>
<tr>
<td>Subject</td>
<td></td>
</tr>
<tr>
<td>Subject Public Key Info</td>
<td></td>
</tr>
<tr>
<td>Signature</td>
<td></td>
</tr>
</tbody>
</table>
X.509v1 Certificate

<table>
<thead>
<tr>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234567891011121314</td>
</tr>
<tr>
<td>RSA+SHA-3, 2048</td>
</tr>
<tr>
<td>C=US, S=TX, O=UTSA, OU=CS</td>
</tr>
<tr>
<td>1/1/17-12/31/18</td>
</tr>
<tr>
<td>C=US, S=TX, O=UTSA, OU=CS, CN=Ravi Sandhu</td>
</tr>
<tr>
<td>RSA, 2048, xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx</td>
</tr>
<tr>
<td>SIGNATURE</td>
</tr>
</tbody>
</table>
Certificate Trust

- How to acquire public key of the issuer to verify signature
- Whether or not to trust certificates signed by the issuer for this subject
 - Prefix rule is not universally applicable
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1234567891011121314</td>
<td></td>
</tr>
<tr>
<td>RSA+SHA-3, 2048</td>
<td></td>
</tr>
<tr>
<td>C=US, S=VA, O=GMU, OU=ISE</td>
<td></td>
</tr>
<tr>
<td>1/1/17-12/31/18</td>
<td></td>
</tr>
<tr>
<td>C=US, S=TX, O=UTSA, OU=CS, CN=Ravi Sandhu</td>
<td></td>
</tr>
<tr>
<td>RSA, 2048, xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx</td>
<td></td>
</tr>
<tr>
<td>SIGNATURE</td>
<td></td>
</tr>
</tbody>
</table>
SET CA Hierarchy

- Root
 - Brand
 - Brand
 - Brand
 - Geo-Political
 - Bank
 - Acquirer
 - Customer
 - Merchant
Certificate Revocation Lists (CRLs)

- Signature Algorithm
- Issuer
- Last Update
- Next Update
- Revoked Certificates
 - Signature
 - Serial Number
 - Revocation Date
X.509 Certificates

- X.509v1
 - very basic

- X.509v2
 - adds unique identifiers to prevent against reuse of X.500 names

- X.509v3
 - adds many extensions
 - can be further extended
X.509v3 Innovations

- distinguish various certificates
 - signature, encryption, key-agreement
- identification info in addition to X.500 name
 - internet names: email addresses, host names, URLs
- issuer can state policy and usage
 - ok for casual email but not for signing checks
- extensible
 - proprietary extensions can be defined and registered
- attribute certificates
 - to enable attribute-based authorization
X.509v2 CRL Innovations

- CRL distribution points
- indirect CRLs
- delta CRLs
- revocation reason
- push CRLs
General Hierarchical Structure
General Hierarchical Structure with Added Links
Top-Down Hierarchical Structure
Multiple Root CA's Plus Intermediate CA's

Model on the web today
Certificate Triangle

User (Identity)

Attributes

Public-keys + Secured secrets