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Many different demands can be made of intrusion detection systems. An important require-
ment is that an intrusion detection system be effective; that is, it should detect a substantial
percentage of intrusions into the supervised system, while still keeping the false alarm rate at
an acceptable level. This article demonstrates that, for a reasonable set of assumptions, the
false alarm rate is the limiting factor for the performance of an intrusion detection system.
This is due to the base-rate fallacy phenomenon, that in order to achieve substantial values of
the Bayesian detection rate P~IntrusionAlarm!, we have to achieve a (perhaps in some
cases unattainably) low false alarm rate. A selection of reports of intrusion detection
performance are reviewed, and the conclusion is reached that there are indications that at
least some types of intrusion detection have far to go before they can attain such low false
alarm rates.
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1. INTRODUCTION
Many demands can be made of an intrusion detection system (IDS for
short) such as effectiveness, efficiency, ease of use, security, interoperability,
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transparency, and so on. Although much research has been done in the field
in the past 10 years, the theoretical limits of many of these parameters
have not been studied to any significant degree. This article discusses one
serious problem with regard to the effectiveness parameter, especially how
the base-rate fallacy may affect the operational effectiveness of an intru-
sion detection system.

2. INTRUSION DETECTION

The field of automated computer intrusion detection (intrusion detection
for short) is currently about 20 years old [Anderson 1980], with interest
gathering pace during the past 10 years.

Intrusion detection systems are intended to help detect a number of
important types of computer security violations, such as:

—attackers using prepacked “exploit scripts”; primarily outsiders;

—attackers operating under the identity of a legitimate user, for example,
by having stolen that user’s authentication information (password); out-
siders and insiders;

—insiders abusing legitimate privileges, and so on.

Early work (see Anderson [1980], Denning and Neumann [1985], Den-
ning [1987], and Sebring et al. [1988]) identified two major types of
intrusion detection strategies.

Anomaly Detection. The strategy of declaring everything that is unusual
for the subject (computer, user, etc.) suspect, and worthy of further
investigation. The early anomaly detection systems were all self-learn-
ing, that is, they automatically formed an opinion of what the subject’s
normal behavior was.
Anomaly detection promises to detect abuses of legitimate privileges that
cannot easily be codified into security policy, and to detect attacks that
are “novel” to the intrusion detection system. Problems include a ten-
dency to take up data processing resources, and the possibility of an
attacker teaching the system that his illegitimate activities are nothing
out of the ordinary.

Signature detection The detection strategy of deciding in advance what
type of behavior is undesirable, and through the use of predetermined
signatures of such behavior, detecting intrusions.
Signature-based detection systems promise to detect known attacks and
violations easily codified into security policies in a timely and efficient
manner. Problems include a difficulty in detecting previously unknown
intrusions. If a database containing intrusion signatures is employed, it
must be updated frequently.

Early in the research it was suggested in Halme and Kahn [1988] and
Lunt [1988] that the two main methods ought to be combined to provide a
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complete intrusion detection system capable of detecting a wide array of
different computer security violations, including the ones listed above.

For a more in-depth review of these and other intrusion detection
concepts, the interested reader is referred to a survey of intrusion detection
systems [Axelsson 1998] and a taxonomy of intrusion detection systems and
principles [Axelsson 2000a], previously written by us.

We wish to at least make the above division between the different
principles of detection, since it is easy to conjecture that these fundamen-
tally different modes of detection will exhibit different characteristics with
regard to detection and false alarm rates. They probably also show differ-
ent performance in other characteristics as well, such as run-time effi-
ciency, but a discussion of these parameters falls outside the scope of this
article.

3. PROBLEMS IN INTRUSION DETECTION

At present, many fundamental questions regarding intrusion detection
remain unanswered. They include, but are by no means limited to, the
following:

Effectiveness. How effective is the intrusion detection? To what degree
does it detect intrusions into the target system, and how good is it at
rejecting false positives, so-called false alarms?

Efficiency. What is the run-time efficiency of the intrusion detection
system, how many computing resources and how much storage does it
consume, can it make its detections in real-time, and so on?

Ease of use. How easy is it to field and operate for a user who is not a
security expert, and can such a user add new intrusion scenarios to the
system? An important issue in ease of use is the question of what
demands can be made of the person responding to the intrusion alarm.
How high a false alarm rate can he/she realistically be expected to cope
with, and under what circumstances is he/she likely to ignore an alarm?
(It has long been known in security circles that, if you are an attacker,
you should attempt to circumvent an ordinary electronic alarm system
during normal operation of the facility, since if you happened to trigger
the alarm, the supervisory staff would more likely be lax because they
would be more accustomed to false alarms [Pierce 1948].)

Security. Whenever more intrusion detection systems are fielded, one
would expect ever more attacks directed at the intrusion detection
system itself, to circumvent it or otherwise render the detection ineffec-
tive. What is the nature of these attacks, and how resilient is the
intrusion detection system to them?

Interoperability. As the number of different intrusion detection systems
increase, to what degree can they interoperate and how do we ensure
this?
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Transparency. How intrusive is the fielding of the intrusion detection
system to the organization employing it? How many resources will it
consume in terms of manpower, and the like?

Collaboration. The best effect is often achieved when several security
measures are brought to bear together. How should intrusion detection
collaborate with other security mechanisms to achieve this synergy
effect? How do we ensure that the combination of security measures
provides at least the same level of security as each applied singly would
provide, or that the combination does not in fact lower the overall
security of the protected system?

Although interest is being shown in some of these issues, with a few
notable exceptions (mainly Helman and Liepins [1993]), they remain
largely unaddressed by the research community. This is perhaps not
surprising, since many of these questions are difficult to formulate and
answer.

This article is concerned with one aspect of one of the questions above,
that of effectiveness. More specifically, it addresses the way in which the
base-rate fallacy affects the required performance of the intrusion detection
system with regard to false alarm rejection.

In what follows, Section 4 gives a description of the base-rate fallacy.
Section 5 then continues with an application of the base-rate fallacy to the
intrusion detection problem, given a set of reasonable assumptions. Section
6 describes the impact the results presented in the previous section would
have on intrusion detection systems. Section 7 considers future work, with
Section 8 concluding the article. Appendix A reproduces a base-rate fallacy
example in diagram form.

4. THE BASE-RATE FALLACY

The base-rate fallacy1 is one of the cornerstones of Bayesian statistics,
stemming as it does directly from Bayes’ famous theorem that states the
relationship between a conditional probability and its opposite, that is,
with the condition transposed:

P~AB! 5
P~A! z P~BA!

P~B!
. (1)

Expanding the probability P~B! for the set of all n possible, mutually
exclusive outcomes A, we arrive at Eq. (2),

P~B! 5 O
i51

n

P~Ai! z P~BAi!. (2)

1The idea behind this approach stems from Matthews [1996; 1997].
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Combining Eqs. (1) and (2), we arrive at a generally more useful
statement of Bayes’ theorem:

P~A!B 5
P~A! z P~BA!

O
i51

n P~Ai! z P~BAi!
(3)

The base-rate fallacy is best described through example.2 Suppose that
your doctor performs a test that is 99% accurate; that is, when the test was
administered to a test population all of whom had the disease, 99% of the
tests indicated disease, and likewise, when the test population was known
to be 100% free of the disease, 99% of the test results were negative. Upon
visiting your doctor to learn the results, he tells you he has good news and
bad news. The bad news is that indeed you tested positive for the disease.
The good news however, is that, out of the entire population, the rate of
incidence is only 1 / 10000; that is, only 1 in 10000 people have this
ailment. What, given this information, is the probability of your having the
disease? The reader is encouraged to make a quick “guesstimate” of the
answer at this point.

Let us start by naming the different outcomes. Let S denote sick, and
¬S, that is, not S, denote healthy. Likewise, let R denote a positive test
result and ¬R denote a negative test result. Restating the information
above: given: P~RS! 5 0.99, P~¬R¬S! 5 0.99, and P~S! 5 1 / 10000,
what is the probability P~SR!?

A direct application of Eq. (3) gives:

P~SR! 5
P~S! z P~RS!

P~S! z P~RS! 1 P~¬S! z P~R ¬S!
. (4)

The only probability above that we do not immediately know is
P~R¬S!. This is easily found though, since it is merely 1 2 P~¬R¬S!
5 1% (likewise, P~¬S! 5 1 2 P~S!). Substituting the stated values for
the different quantities in Eq. (4) gives:

P~SR! 5
1/10000 z 0.99

1/10000 z 0.99 1 ~1 2 1/10000! z 0.01
5 0.00980. . . ' 1%. (5)

That is, even though the test is 99% certain, your chance of actually
having the disease is only 1 / 100, because the population of healthy people
is much larger than the population with the disease. (For a graphical
representation, in the form of a Venn diagram, depicting the different
outcomes, see the Appendix). This result often surprises people, ourselves
included, and it is this phenomenon—that humans in general do not take
the basic rate of incidence, the base-rate, into account when intuitively

2This example is hinted at in Russel and Norvig [1995].
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solving such problems of probability—that is aptly named “the base-rate
fallacy.”

5. THE BASE-RATE FALLACY IN INTRUSION DETECTION

In order to apply this reasoning in computer intrusion detection, we must
first find the different probabilities, or if such probabilities cannot be
found, make a set of reasonable assumptions regarding them.

5.1 Basic Frequency Assumptions

Let us, for the sake of further argument, hypothesize a figurative computer
installation with a few tens of workstations, a few servers (all running
UNIX), and a couple of dozen users. Such an installation could produce on
the order of 1,000,000 audit records per day with some form of “C2”
compliant logging in effect [US Department of Defense 1985], in itself a
testimony to the need for automated intrusion detection.

Suppose further that, in such a small installation, we would not experi-
ence more than a few, say one or two, actual attempted intrusions per day.
Even though it is difficult to get any figures for real incidences of at-
tempted computer security intrusions, this does not seem to be an unrea-
sonable number.

Furthermore, assume that, at this installation, we do not have the
manpower to have more than one site security officer (SSO for short), who
probably has other duties, and that the SSO, being only human, can only
react to a relatively low number of alarms, especially if the false alarm rate
is high (50% or so).

Even though an intrusion could possibly affect only one audit record, it is
likely, on average, that it will affect a few more than that. Furthermore, a
clustering factor actually makes our estimates more conservative, so it was
deemed prudent to include one. Using data from a previous study of the
trails that SunOS intrusions leave in the system logs [Axelsson et al. 1998],
we can estimate that 10 audit records would be affected in the average
intrusion.

5.2 Human-Machine Interaction in Intrusion Detection

The previous assumptions are “technical” in nature; that is, anyone well
versed in the field of computer security can make similar predictions, or
adjust the ones above to suit their liking. It is a simple matter to verify or
predict similar measures. However, the factor of the performance of the
human operator does not lend itself to the same technological estimates.
Thus, a crucial question in this discussion is the capacity of the human
operator to correctly respond to the output of the system, especially his/her
capacity to tolerate false alarms.

Unfortunately, there have been no experiments concerning these factors
in the setting of computer security intrusion detection. There is, however,
some research in the context of process automation and plant control, such
as would be the case in a (nuclear) power station, paper mill, steel mill,
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large ship, and so on [Rasmussen 1986; Wickens 1992; Nygren 1994;
Deatherage 1972]. These studies seem to indicate that our required level of
false alarms, 50%, is a very conservative estimate. Most human operators
will have completely lost faith in the device at that point, opting to treat
every alarm with extreme skepticism, if one would be able to speak of a
“treatment” at all. The intrusion detection system would most likely be
completely ignored in a “civilian” setting. More research into this issue is
clearly needed.

5.3 Calculation of Bayesian Detection Rates

Let I and ¬I denote intrusive and nonintrusive behavior, respectively, and
A and ¬A denote the presence or absence of an intrusion alarm. We start
by naming the four possible cases (false and true positives and negatives)
that arise by working backwards from the above set of assumptions:

Detection rate (or true positive rate) is the probability P~AI !; that is,
that quantity that we can obtain when testing our detector against a set
of scenarios we know represent intrusive behavior;

False alarm rate is the probability P~A¬I !, the false positive rate,
obtained in an analogous manner.

The other two parameters, P~¬AI !, the False Negative rate, and
P~¬A¬I !, the True Negative rate, are easily obtained since they are
merely

P~¬AI ! 5 1 2 P~AI !;P~¬A¬I! 5 1 2 P~A¬I !. (6)

Of course, our ultimate interest is that both:

—P~IA!, that an alarm really indicates an intrusion (henceforth called
the Bayesian detection rate), and

—P~¬I¬A!, that the absence of an alarm signifies that we have nothing
to worry about,

remain as large as possible.
Applying Bayes’ theorem to calculate P~IA! results in:

P~IA! 5
P~I ! z P~AI !

P~I ! z P~AI ! 1 P~¬I ! z P~A ¬I !
. (7)

Likewise, for P~¬I¬A!:

P~¬I¬A! 5
P~¬I ! z P~¬A¬I !

P~¬I ! z P~¬A¬I ! 1 P~I ! z P~¬AI !
. (8)

These assumptions give us a value for the rate of incidence of the actual
number of intrusions in our system, and its dual (10 audit records per
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intrusion, 2 intrusions per day, and 1,000,000 audit records per day).
Interpreting these as probabilities:

P~I ! 5 1Y1 z 106

2 z 10
5 2 z 1025;

P~¬I ! 5 1 2 P~I ! 5 0.99998. (9)

Inserting Eq. (9) into Eq. (7),

P~IA! 5
2 z 1025 z P~AI !

2 z 1025 z P~AI ! 1 0.99998 z P~A¬I !
. (10)

Studying Eq. (10), we see the base-rate fallacy clearly. By now it should
come as no surprise to the reader, since the assumptions made about our
system make it clear that we have an overwhelming number of nonevents
(benign activity) in our audit trail, and only a few events (intrusions) of any
interest. Thus, the factor governing the detection rate ~2 z 1025! is com-
pletely dominated by the factor (0.99998) governing the false alarm rate.
Furthermore, since 0 # P~AI ! # 1, the equation will have its desired
maximum for P~AI ! 5 1 and P~A¬I ! 5 0, which results in the most
beneficial outcome as far as the false alarm rate is concerned. While
reaching these values would be an accomplishment indeed, they are hardly
attainable in practice. Let us instead plot the value of P~IA! for a few
fixed values of P~IA! (including the “best” case P~AI ! 5 1), as a func-
tion of P~A¬I ! (see Figure 1). It should be noted that both axes are
logarithmic.

It becomes clear from studying the plot in Figure 1 that, even for the
unrealistically high detection rate 1.0, we have to have a very low false
alarm rate (on the order of 1 z 1025) for the Bayesian detection rate to have
a value of 66%, that is, about two-thirds of all alarms will be a true
indication of intrusive activity. With a more realistic detection rate of, say,
0.7, for the same false alarm rate, the value of the Bayesian detection rate
is about 58%, nearing 50-50. Even though the number of events (intrusions/
alarms) is still low, it is our belief that a low Bayesian detection rate would
quickly “teach” the SSO to (un)safely ignore all alarms, even though their
absolute numbers would theoretically have allowed a complete investiga-
tion of all alarms. This becomes especially true as the system grows; a 50%
false alarm rate of a total 100 alarms would clearly not be tolerable. Note
that even quite a large difference in the detection rate does not substan-
tially alter the Bayesian detection rate, which instead is dominated by the
false alarm rate. Whether such a low rate of false alarms is at all
attainable is discussed in Section 6.

It becomes clear that, for example, a requirement of only 100 false alarms
per day is met by a large margin with a false alarm rate of 1 z 1025. With
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105 “events” per day, we will see only 1 false alarm per day, on average. By
the time our ceiling of 100 false alarms per day is met, at a rate of 1 z

1023 false alarms, even in the best-case scenario, our Bayesian detection
rate is down to around 2%,3 by which time no one will care less when the
alarm goes off.

Substituting (6) and (9) in Eq. (8) gives

P~¬I¬A! 5
0.99998 z ~1 2 P~A¬I !!

0.99998 z ~1 2 P~A¬I !!12 z 1025 z ~1 2 P~AI !!
. (11)

A quick glance at the resulting Eq. (11) raises no cause for concern. The
large P~¬I ! factor (0.99998) will completely dominate the equation, giving
it values near 1.0 for the values of P~A¬I ! under discussion here,
regardless of the value of P~AI !.

This is the base-rate fallacy in reverse, if you will, since we have already
demonstrated that the problem is that we will set off the alarm too many
times in response to nonintrusions, combined with the fact that, to begin
with, we do not have many intrusions: truly a question of finding a needle
in a haystack.

3Another way of calculating that differs from Eq. (10) is of course to realize that 100 false
alarms and only a maximum of 2 possible valid alarms gives: 2 / ~2 1 100! ' 2%.
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The author does not see how the situation underlying the base-rate
fallacy problem will change for the better in years to come. On the contrary,
as computers get faster, they will produce more audit data, while it is
doubtful that intrusive activity will increase at the same rate. In fact, it
would have to increase at a substantially higher rate for it to have any
effect on the previous calculations, and were it ever to reach levels
sufficient to have such an effect, say 30% or more, the installation would no
doubt have a serious problem on its hands, to say the least!

6. IMPACT ON INTRUSION DETECTION SYSTEMS

The previous section developed requirements regarding false alarm rates
and detection rates in intrusion detection systems in order to make them
useful in the stated scenario, where we would have 100,000 “events” (each
consisting of 10 audit records), and only 2 intrusions per day, affecting 1
event each. This section compares these requirements with reported results
on the effectiveness of intrusion detection systems.

As stated in the introduction, approaches to intrusion detection can be
divided into two major groups, signature-based and anomaly-based. It can
be argued that our scenario does not apply to anomaly-based intrusion
detection as it, in some cases, tries not to detect intrusions per se, but
rather to differentiate between two different subjects, flagging anomalous
behavior in the hopes that it is indicative of a stolen user identity. From
that perspective, our assumption that an “attack” only affects one event (10
audit records) in the audit logs would be less well founded, since it is
possible that a masquerader would affect considerably more audit records
than that. Lane and Brodley [1999] study the problem of how to differenti-
ate between different users based on the traces their actions leave in audit
logs. However, we still think our scenario is useful as a description of a
wide range of more “immediate,” often network-based, attacks, where we
will not have had the opportunity to observe the intruder for an extended
period of time “prior” to the attack. Since anomaly-based intrusion detec-
tion systems promise other advantages, the ability to detect “novel” intru-
sions, or the ability to operate without a well-defined security policy, they
would of course be most valuable if they were applicable to the situation in
our more direct scenario as well.

6.1 ROC Curve Analysis

Plotting the detection rate as a function of the false alarm rate, we end up
with what is called a ROC (receiver operating characteristic) curve. (For a
general introduction to ROC curves, and detection and estimation theory,
see Trees [1968]. A shorter introduction that attempts to tie detection and
estimation theory to intrusion detection can be found in Axelsson [2000b].)

A few points about ROC curve analysis are worth mentioning here,
however. First, the points ~0;0! and ~1;1! are members of the ROC curve
for any intrusion detector. Obviously, if we say that that all events are
intrusions, the detection rate is 1, but in doing so we will incorrectly
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classify all benign activity as intrusive, and consequently we will have a
false alarm rate of 1 as well.4 Conversely, the same can be said for the case
where the rates are 0. (Classifying all activity as benign will not give us
any false alarms, but also no detections.) There are general results in
detection and estimation theory that state that the detection and false
alarm rates are linked [Trees 1968], although the extent to which these
results are applicable in the intrusion detection case is still an open
question. Intuitively however, we see that by classifying more and more
events as intrusive—in effect relaxing our requirements on what consti-
tutes an intrusion—we will increase our detection rate, but also misclassify
more of the benign activity, and hence increase our false alarm rate.

Note also that we can easily construct a detector with the performance
equal to any point along the straight line between ~0;0! and ~1;1! by
making a randomized decision. If we wanted a detector with a 50% false
alarm, and detection rate, we would simply say detection in half the cases
(randomly) and no detection in the other. Thus all operational points of
sensible detectors should lie strictly above the diagonal. This argument is
valid for any two points on the ROC-curve. A randomized detector would
then choose between randomly applying the detector represented by the
rightmost operating point and the leftmost operating point, the average of
the random decisions biased for how close we want to be to one or the other
operating points. Because of this the curve between the endpoints should
be convex; the ROC-curve cannot contain dips between any two operating
points, as that would in effect indicate a faulty, nonoptimal detector, since
a randomized test would then be better.

For reference, the ROC curve that depicts our scenario laid out in Section
5 (i.e., a required detection rate of 0.7 at a false alarm rate of 1 / 100,000)
is plotted in Figures 2 and 3 as “Assumed ROC.” For reasons of clarity, the
ROC diagrams do not display the results for larger values of the false
alarm rates (i.e., the horizontal axis is truncated), since this would make
the scale much too small to discern the regions of interest in the diagrams.
In all cases, the plot of the curves continues uneventfully along the straight
lines to the ~1;1! point.

From the diagrams, we see that the required ROC curve has a very sharp
rise from ~0;0! since we quickly have to reach acceptable detection rate
values ~0.7! while still keeping the false alarm rate under control. Note
that we have indicated the possible randomized detectors by plotting the
interpolated lines from ~0;0! and ~1;1! to our required operational point.
We have also plotted similar interpolation lines for all other detectors, the
results of which we report. Even so, it should be pointed out that we do not
seriously advocate the construction of a randomized detector as outlined
above, instead the interpolated lines serve only as a sanity check when
comparing against a new detector, or when we have varied the parameters

4If you call everything with a large red nose a clown, you will spot all the clowns, but also
Santa’s reindeer, Rudolph, and vice versa.
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for our detector, resulting in a new operating point. The new operating
point must lie above the interpolated lines; otherwise, we have not improved
on our detector, since a naive randomized detector would outperform it.
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6.2 Previous Experimental Intrusion Detection Evaluations

As previously mentioned, the literature is not overladen with experimental
results from tests of intrusion detection systems. Ideally, we would like
several different results from the different classes of intrusion detection
systems. Unfortunately, there only exists one report of anomaly detection
performance in this regard (with a strong theoretical foundation), [Helman
and Liepins 1993]. However, several signature-based detectors have been
tested for DARPA by Lincoln Labs [Lippmann et al. 2000] in the by far
most ambitious evaluation of intrusion detection systems to date.

Unfortunately, we are not able to evaluate the suitability of this study for
our purposes since the data are unavailable to us for independent evalua-
tion because of US export restrictions.

What has been made known about the latter study indicates that it was
conducted using a simulated network of workstations, transmitting simu-
lated traffic. This traffic was generated based on real traffic observed on a
large US Air Force base, and a large research institute. This lends some
credibility to an argument about the generality of the background traffic,
but no such argument is made by the authors. Of course, the degree to
which the background traffic is representative of the background traffic in
the field is a crucial question when it comes to the question of the value of
the test as an indicator of false alarm rates during normal usage.

In the test, a number of different attacks were then inserted into the
simulated network, including denial of service attacks against the network,
and “root” exploits against individual workstations. The experimenters
invited several different intrusion detectors to participate in the study.
These were all signature-based detectors operating on either network or
host data. Even though there is considerable variation in the study (the
detection rate varies between approximately 20% to 90% for the best
scoring detector for all attacks) we limit the presentation to the best overall
scores for the best of the participating detectors; we take “best” here to
mean the highest detection rates, coupled with the lowest false alarm rates.

Also not all detectors performed equally well when dealing with all
intrusions, and it is a general criticism that in the case of signature-based
detection, the designer of the signature can easily trade off detection rate
for false alarm rate by varying the generality of the signature. The more
general, abstract if you will, it is, the more variations of the same intrusive
behaviour it will detect, but at the cost of a higher false alarm rate. It is not
known to what extent the DARPA evaluation used variations of the attacks
presented to the designers of the intrusion detection systems for training
purposes, in the final evaluation. This is an important point in that when
such systems are commercialized, it will be impossible to keep the detection
signatures secret from the would-be intruders, and the more savvy among
them will of course attempt to vary their techniques to evade the intrusion
detection system.5

5Compare with a so-called polymorphic computer virus, that will undergo random semantic
preserving code transformations, in order to avoid detection by virus scanning tools.
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Furthermore, when the detectors were subjected to previously unknown
attacks, their detection rates fell sharply. Their false alarm rates did not
see a corresponding increase, but we conjecture that this is because while
the attacks in this case were varied between the training data and test
data, the background traffic was not. This in turn will favor intrusion
detection systems with an overly specific view of what the background
traffic consists of; it will not be stressed sufficiently to expose lower false
alarm rejection capabilities in a novel, but benign, situation. We would
have liked to confirm or reject such a hypothesis, but as mentioned before,
the evaluation data are not available to us.

Much more can be said about this evaluation. For an independent and
detailed critique of the DARPA evaluation, the reader is directed to
McHugh [2000], which raises some of the above questions and many others,
in detail.

The second study [Warrender et al. 1999] lists test results for six
different intrusion detection methods that have been applied to traces of
system calls made into the operating system kernel by nine different
privileged applications in a UNIX environment. Most of these traces were
obtained from “live” data sources; that is, the systems from which they
were collected were production systems. The authors’ hypothesis is that
short sequences of system calls exhibit patterns that describe normal
benign activity, and that different intrusion detection mechanisms can be
trained to detect abnormal patterns, and flag these as intrusive. The
researchers thus trained the intrusion detection systems using part of the
“normal” traffic, and tested their false alarm rate on the remaining
“normal” traffic. They then trained the systems on intrusive scenarios, and
inserted such intrusions into normal traffic to ascertain the detection rate.
The experimental method is thus close to the one described in Sections 4
and 5. This study evaluated as one of the systems the unconventional
self-learning detector, RIPPER, described by Lee [1999].

The third study [Helman and Liepins 1993] is a treatise on the funda-
mental limits of the effectiveness of intrusion detection. The authors
construct a model of the intrusive and normal processes and investigate the
properties of this model from an anomaly intrusion detection perspective
under certain assumptions. Their approach differs from ours in that they
do not provide any estimates of the parameters in their model, opting
instead to explore the limits of effectiveness when such information is
unavailable. Of greatest interest here is their conclusion in which the
authors plot experimental data for two implementations, one a frequentist
detector that (it is claimed) is close to optimal under the given circum-
stances, and an earlier tool designed by the authors, Wisdom and Sense
[Vaccaro and Liepins 1989]. These tools are interesting in that their
outputs are continuous, increasing with decreasing observed frequency of
the measured phenomenon. The operator decides when he wants to flag a
particular behavior as intrusive by applying a threshold, such that the
alarm will be raised when the output signal exceeds that threshold. By
varying the threshold the performance point of the detector can be tuned to
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meet the requirements of the operating environment. Thus, by raising the
threshold we will lower our false alarm rate, but also lower our detection
rate, and vice versa. The same general argument is also valid for “Ripper”
although it is not an “anomaly” system per se, and the particulars of the
implementation are different. Hence these systems begin to trace out the
convex ROC curve that is familiar to those accustomed to studying ROC
curves of, for example, digital radio communications detectors.

Unfortunately, only one type of anomaly detection system, one that
operates with descriptive statistics of the behavior of the subject, is
covered. More “sophisticated” detectors, such as neural network-based
detectors (such as Debar et al. [1992]), that take time series behavior of the
subject into account, are unfortunately not covered.

Lack of space precludes a more detailed presentation of these experi-
ments, and the interested reader is referred to the cited papers where
available.

6.3 Interpretation of Results

The results from the three cited studies above have been plotted in figures
2 and 3. Where a range of values were given in the original presentation,
the best, most “flattering” value was chosen. Furthermore, since not all the
work cited provided actual numerical data, some points are based on our
interpretation of the presented values. In the case of the DARPA study the
results were rescaled to conform to our requirements. (The original DARPA
test assumes 66,000 events per day instead of our 100,000 events per day.)
Even though it is difficult to express with certainty how many audit records
these events consist of, there is some indication that they are variable in
size, and perhaps larger than ours. We feel that these values are accurate
enough for the purpose of giving the reader an idea of the performance of
the systems, in relation to our stated scenario.

The cited work can be roughly divided into two classes depending on the
minimum false alarm rate values that are presented, and hence, for clarity,
the presentation has been divided into figures, where the first (Figure 2)
presents the first class, with larger values for the false alarm rate. These
consist of all the anomaly detection results in this study, and the DARPA
results “E2” and “DM.” In the figure, “Helman frequentist” and “W&S”
denote the detection results from Helman and Liepins [1993]. It is interest-
ing, especially in the light of the strong claims made by the authors of this
evaluation, to note that all of the presented false alarm rates are at least
an order of magnitude larger than the requirements put forth in Section 5.
We also put the two DARPA results here, since they are at least an order of
magnitude from the top performer (E1) in the DARPA evaluation, and
hence would fall to the right of Figure 3.

The second class of detectors, depicted in Figure 3, consists of the
average results of Ripper [Lee 1999], a high performance hidden Markov
model detector (labeled “HMM” in the figure) tested by Warrander et al.
[1999], and the top performer from the DARPA results, listed as E1. Here
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the picture is less clear. Warrander et al. report false alarm results close to
zero for lower detection rates, with one performance point nearly overlap-
ping our required performance point. The HMM detector is also close to
what we would require. It is more difficult to generalize these results, since
they are based on one method of data selection, and the authors do not
make as strong a claim as those made for the previous set of detectors. The
DARPA data from Lippmann et al. [2000], show up as “E1” in Figure 3. It
too is close to our required performance. It is unfortunately impossible to
give a better name to the systems participating in the DARPA evaluations,
or to compare these results with other reported results, since the names of
the participating systems have been intentionally withheld in the cited
study.

As we can see in the figures above, several systems are between one and
three orders of magnitude larger than our false alarm requirement, and
some of them not even reaching our 70% target detection rate, at this high
false alarm rate. As is evident from Figure 1, this would result in Bayesian
detection rates on the order of 0.15 to 0.0015; that is, 1 in 10 alarms to 1 in
1,000 alarms would be correctly indicating an intrusion. Sifting through
that many false alarms, especially on the higher end, would of course be
anything from discouraging to completely infeasible for the human opera-
tor.

We feel a more detailed discussion would be of little additional value,
since our model is really quite simple. It only deals with one kind of
intrusion, with a fixed unit of measurement. The cited work somewhat
departs from such a simple model, since the systems were all tested in an
environment with at least two different types of intrusions.

7. FUTURE WORK

One sticking point is the basic probabilities on which the previous calcula-
tions are based. These probabilities are subjective at present, but future
work should include measurement either to attempt to calculate these
probabilities from observed frequencies, the frequentist approach, or to
deduce these probabilities from some model of the intrusive process and the
intrusion detection system, the objectivist approach. The latter would in
turn require real-world observation to formulate realistic parameters for
the models.

Furthermore, this discourse treats the intrusion detection problem as a
binary decision problem, that is, deciding whether there has been an
“intrusion.” The work presented does not differentiate between the differ-
ent kinds of intrusions that can take place, nor does it recognize that
different types of intrusions are not equally difficult or easy to detect. Thus
on a more detailed level, the intrusion detection problem is not a binary but
rather an n-valued problem, where in reality we would make binary
decisions between n different types of intrusions.

Closely related is the unit of analysis problem; that is, how many data
does the individual intrusion detection system need to examine before it
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can detect the intrusion, or perhaps more important from our perspective,
before it can be said to have missed the detection of an intrusion. Here we
have somewhat skirted the issue, by declaring the unit length to be 10
audit records. Even though we are not alone in treating the problem in this
way [Warrender et al. 1999], we believe a more detailed study would define
different units of measurement for both different intrusion detection mech-
anisms, and different types of intrusions.

Another area that needs attention is that of the SSO’s capabilities. How
does the human-computer interaction take place, and precisely which
Bayesian detection rates would an SSO tolerate under what circumstances?

The other parameters discussed in the introduction (efficiency, etc.) also
need further attention.

8. CONCLUSIONS

This article aims to demonstrate that intrusion detection in a realistic
setting is perhaps harder than previously thought. This is due to the
base-rate fallacy problem, because of which the factor limiting the perfor-
mance of an intrusion detection system is not the ability to identify
behavior correctly as intrusive, but rather its ability to suppress false
alarms. That is, one should measure the false alarm rate in relation to how
many intrusions one would expect to detect, not in relation to the maximum
number of possible false alarms. Thus, a very high standard, less than
1 / 100,000 per “event” given the stated set of circumstances, will have to
be reached for the intrusion detection system to live up to these expecta-
tions as far as effectiveness is concerned.

The cited studies of intrusion detector performance that were plotted and
compared indicate that anomaly-based methods may have a long way to go
before they can reach these standards, since their false alarm rates are
several orders of magnitude larger than what we demand. When we come
to the case of signature-based detection methods the picture is less clear.
Even though the cited work seems to indicate that current signature
intrusion detectors can operate close to the required performance point,
how well these results generalize in the field is still an open question.

Of course, whether some of the more difficult demands, such as the
detection of masqueraders or the detection of novel intrusions, can be met
without the use of anomaly-based intrusion detection is still an open
question.

Much work still remains before it can be demonstrated that current IDS
approaches will be able to live up to real-world expectations of effective-
ness. However, we would like to stress that, the present results notwith-
standing, an equal amount of work remains before it can be proven that
they cannot live up to such high standards.
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APPENDIX

A. VENN DIAGRAM OF THE BASE-RATE FALLACY EXAMPLE

The Venn diagram in Figure 4 depicts the situation in the medical
diagnostic example of the base-rate fallacy given earlier.

Although for reasons of clarity the Venn diagram is not to scale, it clearly
demonstrates the basis of the base-rate fallacy, that is, that the population
in the outcome S is much smaller than that in ¬S, and hence, even though
P~RS! 5 99% and P~¬R¬S! 5 99%, the relative sizes of the missing
1% in each case—areas 2) and 4) in the diagram—are very different.

Thus, when we compare the relative sizes of the four numbered areas in
the diagram, and interpret them as probability measures, we can state the
desired probability, P~SR!, that is, “What is the probability that we are in
area 3) given that we are inside the R-area?” It may be seen that, area 3) is
small relative to the entire R-area, and hence, the fact that the test is
positive does not say much, in absolute terms, about our state of health.
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