
Int. J. High Performance Computing and Networking, Vol. 9, No. 4, 2016 281

Copyright © 2016 Inderscience Enterprises Ltd.

The integration of access control levels based on
SDN

Izzat Alsmadi
Computer Science Department,
University of New Haven,
West Have, CT, USA
Email: ialsmadi@newhaven.edu

Abstract: Systems and networks include several inputs and outputs from which they are
accessed. Access controls exist to manage authentication and access controls through those
inputs and outputs. One of the significant problems in this scope is the difficulty to have a global
consistent system or network level access control. Such global centralised access control is
needed to make sure that access control decisions taken by different applications at different
levels are consistent. In this paper, we propose an SDN-based access control to approach this
problem. Different access control methods are proposed to handle user and flow level access
information. Access tables in those methods are initiated by network administrators. Concrete
rules in those access tables can change dynamically based on network activities. We believe that
ultimately all access control systems are going to converge in this direction.

Keywords: access control; authentication; authorisation; network security controls; SDN.

Reference to this paper should be made as follows: Alsmadi, I. (2016) ‘The integration of access
control levels based on SDN’, Int. J. High Performance Computing and Networking, Vol. 9,
No. 3, pp.281–290.

Biographical notes: Izzat Alsmadi is currently an Assistant Professor at University of
New Haven, CT, USA. He has his PhD in software engineering from NDSU in 2008. His main
research interests include software engineering, security and SDN.

1 Introduction

Systems, networks and databases are all include one or
more levels of access controls. Authorisation or access
control is considered the second layer of defence after the
initial authentication system that tries to generally identify
where the specific request, user, access, etc. represents a
legitimate one or not. Access control comes next to specify
in details for those legitimate users or access requests their
control on the different system resources or assets. The term
policy indicates a high level vision of system owners or
administrators where those visions are translated in concrete
actions using authentication and access control applications.

While policies are commonly used for security rules,
however, they can be also extended to include: business
processes’ rules, quality assurance (QA) and service level
agreement (SLA) rules. Companies include policies to
regulate employees’ activities, legal practices, codes of
conducts, etc. Currently, most of those kinds of polices are
not implemented or enforced through information systems.
Nonetheless, future trends in policy automation may make
this possible.

Security policies are about ‘Who can access what, under
what condition(s), and for what purpose(s)?’ Security
policies largely exist in firewalls and access control
applications. The objectives for those security controls can
be largely divided into two parts: providing authentication

and authorisation services. In authentication stage which
usually comes first, focus is only whether to allow: user,
host, program, traffic, etc. to access intended resource or
not. Authorisation which usually comes as a second stage
after authentication focuses on giving those authenticated
entities the right level of permission. For example, operating
systems may include users such as: administrators, guests,
power users, etc. Those may all be allowed to access the
computer. However, certain resources will be only accessed
by particular ‘rules’.

Rule-based access control (RBAC) systems maintain a
list of authenticated users and the level of permission they
have on the different computer resources. Attribute-based
access control (ABAC) deals with entities rather than rules.
Entities can be: users, hosts, virtual machines, applications,
etc. Those all have attributes with different possible values.
ABAC can be considered more rich and context driven than
RBAC. For example, the same user can be given in one
scenario an access to a resource and on another scenario
will be denied access to the same resource if the context of
‘permission request’ is different. The context takes variables
related to the entity itself, the resource to access, and the
environment. RBAC has few context related attributes. It
has also other limitations which limit its ability to
successfully express a particular context with the right level
of granularity.

282 I. Alsmadi

RBAC advantage is that it is closer than ABAC to low
level flow rules or firewall rules. Consequently, direct
transformation can be drawn from the RBAC-based system
to those low level rules. However, when it comes to user
level policies that are expected to be very expressive, we
think that ABAC can be better than RBAC. For example, a
high level policy that says (local users should not be able to
access ABC server resources from their BYODs or their
smart devices), this policy looks very complicated to
implement based on RBAC. On the other hand, ABAC can
define objects with attributes. Users, smart devices, and
servers can be defined in the ABAC system as objects with
expressive attributes that can be network independent (i.e.,
no specific IP, MAC addresses, ports, etc.). RBAC has
several other disadvantages in comparison with ABAC. For
examples, in many networks, users can have different rules
(e.g., graduate student and lecturer, network administrator
and user, etc.). RBAC needs such users to keep having the
different roles isolated from each other and used each one
based on intention or convention. In addition, rules can be
hierarchical (e.g. a manager is an employee). RBAC ignores
also information related to the environment and how to
handle those parts in the policies. A large system may
produce a very large number of possible rules. RBAC is not
granular enough to differentiate somewhat similar scenarios.
ABAC, on the other hand, generalises everything into
attributes and includes environment information or
attributes. The subject can be described by one or more
attributes. It can accept composition or hierarchy (e.g., user,
group of users, policy, and policy set). ABAC includes also
obligations which are actions that should be implemented
upon fulfilling policy requirements.

The translation between high level policies and concrete
implementation in security mechanisms is conducted in
most cases manually by network administrators. However,
SDN brings to this particular area a new opportunity for
security policies to be interpreted, updated, evaluated and
enforced by automatic tools with least human intervention.
One significant challenge in this area is the difference of
levels of abstraction between what tools can automatically
interpret and between human languages or expressions that
we like policies to be written in. Policy languages are
consequently proposed to formalise the way policy rules are
written and to enable those rules to be compiled and
interpreted similar to programming languages’ code. Policy
languages can also help administrators to define permissions
that can guarantee users the ability to perform tasks no more
and no less.

Current access controls are not expressive enough.
Languages or scripts used to write those rules should give
users the ability to define: wild cards, sub categories,
summation, subtraction, etc. They also need to contain user
visible information. We then think that neither low level
rules should be more expressive, nor high level policies
should be more specific. The solution is to have a third
abstraction layer or adaptor in between both of them. This
mediator layer should be responsible to perform the
two-way interpretation or information exchange.

We argued in this paper that real use cases justified
using different access controllers for different scenarios.
However, a global policy along with an access controller
can organise and orchestrate the process between those
different access points to ensure final decisions consider
information from all those access points.

The rest of this paper is organised as the following: In
Section 2, we will introduce several research papers that are
relevant to the paper subject. In Section 3, we will present
goals and approaches for policy architecture proposed in
this paper for SDN networks. Paper is then concluded with a
summary section.

2 Literature review

Networking trends are moving steadily toward more
virtualisation and software-based network control or
management. Cloud applications and environments take a
significant portion of such direction. Since its early
evolutions, many concerns were raised about security issues
in the cloud (see as examples: Al-Said et al., 2015; Wang
et al., 2015; Ficco, 2013; and many others). To focus this
section, we will only consider a subset related directly to
SDN.

There are many reasons for why current access control
lists (ACLs) are not expressive enough to deal with
evolving network requirements. For example, given the
decisions, ‘deny’ and ‘permit’ related to making a decision
about a flow or a packet; those binary decisions cannot be
expressive in some particular scenarios. Research papers
described examples related to connectivity or directionality
cases. In addition, maybe we want to deny certain traffic for
a certain time or deny it only from going to a certain
destination. In other words, real cases may need some
decisions that they are: neither completely deny nor
completely permit.

Policies should also have auditing or meta data
attributes related to who created the policy, when the policy
was created, etc. Those attributes can be then used to handle
certain cases of conflicts or auditing. A newly added policy
or rule in already existing policies should be automatically
evaluated against possible conflicts. This should happen
automatically without the need for an administrator to go
and edit or review the policies.

In their approach, tables are created and maintained to
include a pair of (header, decision) records (Hinrichs et al.,
2008, 2009). In order to improve performance, headers of
packets are evaluated. If two packets have the same header,
same decision can then be made about both of them (i.e.,
without the need to investigate the second one). Incoming
packets are checked for possible match in those tables. FML
that is proposed in authors’ papers maintains also states
related to lists of users and their devices or hosts.

In classical firewalls, eight fields about flows are
created. Access control decision is then made based on the
values of those flow fields or attributes. Those fields are:
source and destination: hosts, users and access points, along
with protocol and type (e.g., initial message or a response).

 The integration of access control levels based on SDN 283

Those fields include information from higher lever layers in
the network (in comparison to L2–L3 information in typical
ACL). In addition to ‘allow’ and ‘deny’ decision, there are
other decisions in FML: waypoints, avoid, and rate limit.
Waypoints or reference points are defined to mark certain
known points (e.g., hosts, a server, a gateway). ‘Waypoint’
and ‘avoid’ are opposite to each other. They both take one
extra attribute in addition to the eight fields. This attribute is
related to the node that must be visited or avoided. Rate
limit includes also a 9th field that indicates a rate limitation
(i.e., maximum allowance) on the traffic. Authors
demonstrated how conflicts can be resolved based on the
proposed fields using different examples.

Access control in wireless networks, home-networking
and some other similar domain has special challenges
related to the ability to distinguish (AAA): authentication,
access control and accounting (Dangovas and Kuliesius,
2014). In classical networks, network applications do not
distinguish or allow separate accounts between those three
access control requirements. For example, a user who has a
home wireless connection with possible neighbours using
this network will not have the ability to identify, which
activities in particular were accessed by those intruders.
Researchers suggested that SDN can open the possibility to
distinguish those three from each other. Eventually, this
may open the opportunity for many new applications
(Alsmadi and Xu, 2015).

While this early contribution in SDN policies showed a
significant distinction from traditional ACLs, however, we
think that it is not expressive enough to convey more
complex scenarios than those described in the paper. In
addition, FSL focuses only on end-to-end reachability
without giving mechanisms to monitor the traffic.

In order to improve expressiveness in network and
security policies, Voellmy et al. (2012) introduced Procera,
a control architecture that includes a declarative policy
language based on functional reactive programming. It can
be used to describe reactive and temporal behaviours.
Procera tries to help network designers to implement
expressive policies without the need to use programming
languages. This is since earlier OpenFlow policies are not
expressive enough to handle reactive and temporal
situations related to flow content, time issues, size of traffic,
bandwidth consumption, etc. Reactive policies are policies
that should be dynamic and be able to revisit or update
themselves based on changes that are related to: traffic,
time, etc. For example, we may have a particular policy that
is dedicated to guest users which includes a timeout value to
specify when this policy should expire. This policy will be
frequently revisited as it is a temporal policy. If today is the
day number 4, it will permit traffic. However, at the end of
the fifth day, it will make a different decision (e.g., denies
the host from accessing the network). In another example, a
user should have a bandwidth quota for the current month.
After reaching this quota, account will be banned or denied.
As an alternative, user may get a message that future
bandwidth consumption will be over-charged. Same policy
should be reactivated or reinitialised at the beginning of the

new month. Those examples show that the policy is
interacting in two ways with the state of the traffic;
affecting and being affected by it. It is also interacting with
time or even with some other domain environments (e.g.,
start watching user web surf when they log-in). Currently,
OF flow entries include idle_timeout and hard_timeout
attributes in which flow rules themselves can be designed to
be temporal.

Procera includes signals and signal functions as reactive
concepts. Signals are like transient functions where
functions are attached with a period of time. Signal
functions or constructs cause transformations on signals.
Event streams can have different operations: filtering,
transforming, merging, and joining. Authors introduced
several language constructs or signal functions and showed
how they could be used to manipulate signals. Internet
service providers (ISPs) have several policies related not
only to security but also to; monitoring, billing, accounting,
etc. SDN programmability can help ISPs provide services
that can be customised for users based on their requests on
demands and that can vary from one customer to another.
Bismark (2015) project also aims at extending SDN to home
networking by including OpenFlow technology in home
small access points or routers. Based on such proposed
modification, router or access points should then have
modules to detect security attacks and automatically update
flow tables to counter those attacks.

In Casado et al. (2007), ethane system described the
interaction between the controller and security policies
injected by the controller in switches. Those however were
imitating traditional ACLs (Casado et al., 2007). In Nayak
et al. (2009), resonance is a security mechanism for
dynamic access control evaluation based on flow level
information. It interacts with high level policies to make
decisions on flows. Authors used a policy specification
framework based on traditional or existing access control
frameworks.

Feamster et al. (2010) used OpenFlow to solve policy
problems in campus and enterprise networks. Specifically,
they tackled two challenges; access and information flow
controls. The decouple and the gap between high level
expressive policies and low level access controls exist in
switches or firewalls continue to be a serious challenge for
administrators in dealing with large networks. Authors
showed how the programmability nature of OpenFlow can
help solving the described challenges. The paper presented
two products: resonance; access control and Pedigree;
information flow control. Authors described problems in
those two controls (i.e., access and information flow
controls) and traditional approaches to solve those
problems. Authors then introduced OpenFlow-based
solutions to those problems and showed how they can
outperform traditional solutions. For information flow
control, major problem is that traditional approaches to this
type of control are host based. Hence, if the host is
compromised, the information flow can go out of control.
Tracking information leakage can be also very challenging.
From the network side, only general features about the flow

284 I. Alsmadi

such as IP address and port number can be tracked. If
information control policy is integrated with the network
layer, information can be tracked while traversing the
network not only in the host or destination points. Pedigree
is proposed with two components: A trusted tagger to tag
packets with information extracted from the source process
and an arbiter to make decisions on traffic. Same thing can
be applied for incoming packets. Some of the open research
issues authors discussed include: First, the need to have a
language and a method to enforce such policies. The second
challenge was related to the ability of decoupling network
policies from topologies. In other words, there is a need for
a flexible interface to isolate high level policies from low
level implementation details. Policies themselves need not
to have any reference to low level details (e.g., switch, port,
IP address, MAC address, etc.).

SE-floodlight, an enhanced version of FRESCO (Shin
et al., 2013) proposed a RBAC. Authors approach is
considered the most mature one presented in literature
related to policy management and enforcement. The
framework includes six main security features that are
implemented in SE-floodlight: least privilege module to
allow northbound applications work outside controller
context, RBAC for conflicts resolution, digital
authentication for flow rules, packet-out control, inline flow
rules’ conflict resolution and security audit. Authors
described several security directives to deal with the
problem of translating high level policies to low level flow
rules. However, we think that such solution is not scalable
or reusable in different contexts of other security appliances.
We described earlier the need to isolate high level rules or
policies from low level flow rules using a separate module.

3 An SDN-based global access control

Our proposed solution focuses on proposing a system global
access control solution. The apparent objective for such
proposal is to reduce conflicts in decision between the
different access control decision points. For example, a
traffic that is allowed is expected by a layer 7 application
can be possible blocked by an access control in layer 2 or 3.
Not only rules are written separate in those different access
controls, but also the information they can see about the
network, topology, threats, etc. are typically at different
levels of abstraction. As such, direct translation or
interpretation from one access control to another is
impossible.

The idea of fine grained access control was presented as
one of the first show cases for SDN (Ethan; Casado et al.,
2007). The goal was to enable access control decisions for
example to admit certain user requests and deny others from
the same user, based on the specific application, context,
etc. Classically, such as controls are static and broader in
context. We will revisit this paper in this section as it’s the
most relevant to our paper.

Fine grain access control can be utilised in several
different manners. This includes for example, the ability to

provide temporary access (e.g., BYOD or guests access) or
also help ISPs provide customised services.

Ethan discussed a policy-based network where
controller is expected to make decisions on flows. The
paper also proposed a global policy that decides the fate of
all flows. In addition, the controller plans the route of
permitted flows. Entities (e.g., hosts, users, etc. register with
the controller and their bindings with low level information
(i.e., port number, MAC and IP addresses) are also
recorded. Poleth policy language is proposed. Nonetheless,
little information has been published since then about Poleth
policy language and its implementation. In addition, while
authors discussed issues related to access control, however,
focus on flow tables where in routing tables and not access
tables. In addition, little information is shown on how to
handle difference in levels of abstraction between high level
policies and flow information. For example, how does the
controller make (permit, deny, forward decisions)? And
what are the information controllers uses to deny or permit a
flow? How does access control information is integrated
with the controller to make decisions? In some controller,
when a firewall module is added, it can override rules of the
controller, what if there is another access controller? How
could controller guarantee consistency of final decision? We
think that Ethan focuses on decision related to traffic
steering but not access control. This explains why most
controllers include a firewall northbound API module.
Nonetheless, access control has more attributes than those
included typically in firewalls. Controller in general should
receive the following information to help making routing
and access control decisions: network registered hosts, users
(applications), binding between those users/applications and
(IP and MAC addresses) for hosts/users and port number for
applications.

3.1 Flow rules vs. ACLs

In pure SDN, flow rules represent ACLs. They represent the
lowest level of ACLs that are network specific. This is
since in networking ACLs exist in several networking or
security devices such as: firewalls, operating system
active directories, authentication, authorisation or identity
management systems, routers, port ACLs, etc. Computers
are accessed by: user names, roles, IP, MAC addresses, and
ports. Those are generally the identities, at different levels,
that authentication or identity management systems use.
Typically, an authentication system will have a white or
black list. If it contains a black list, those in the list are
denied access and everyone else is permitted. In the
opposite terminologies, white list will be applied. So no
matter of what level, authentication system will work, it will
have this simple approach. There is a need for a global
authentication system so that conflict based on different
identities will not occur. For example, a particular flow will
come from a particular host, user, IP address, MAC address,
application and port. Hence, it does not make sense that this
flow will be denied at one level based on IP address for
example and then permitted based on user name. The

 The integration of access control levels based on SDN 285

problem is that different information is evaluated at
different levels and most likely by different authentication
systems. There is one more challenge in this aspect between
white and black listing. If one authentication system focuses
on black listing, then in reality this system block only what
it knows. Hence, if there is another identity management
system in which a particular flow was permitted based on
the first black list and black listed in the other one, it may
make sense to block this flow assuming that there is a
further knowledge in the later system that justified blocking
this particular flow. In other words, as a defensive security
approach, it makes sense to follow – deny-override – if two
identity management systems have conflicting decisions for
the same flow. In other scenarios, however, it can be more
justifiable to follow ‘permit-override’ rather than
‘deny-override’. Notice that this conflict cannot be
discovered by one system and needs a global identity
management system to be able to discover such conflict.
Figure 1 shows general architecture for central access
control. We call the modules to handle access information
(i.e., user, application, port number, IP and MAC addresses)
as access switches. We call their black/white list tables as
access tables.

Globally identity management system should be
extracted from high level or global policies. Those can be
then interpreted for the different identity management
systems based on their local terminologies. For example, in
reference to the global policy: “Employees should not be
able to use chat programs during working or office hours”,
for a port ACL, we need to identify known ports used by
chat programs (e.g., instant messenger: 443, MS messenger
1,863, AOL: 5190). Users which this policy is applied on
are employees. System can then have a list of users, and
their MAC addresses. If no DHCP is used, system can also
have a list of their IP addresses. In this specific example, the
application and the port number are the most important
information in this policy as white and black list will be
based them.

Figure 1 shows depicted architecture of central access
control based on global policy. Zone attribute refers to
whether policy is applied to: incoming traffic, outgoing
traffic or both. Schedule includes any time related attributes
regarding the policy. Zone and schedule attributes do not
include white/black lists.

User and application information are (L4–L7)
information, IP, MAC and port values are (L2–L3)
information. High level or global policies may have L4–L7
information but should not include network level
information (i.e., L2–L3) information. Translation is hence
necessary. Tools can be developed with rule sets and data to
generate L2–L3 information that can also depend on run
time information. For example, from current topology,
information about network components and their IP
addresses can be collected. Users, virtual machines or hosts
IP and MAC addresses can be recorded and used. Port
numbers that are typically used by different types of
applications can be also collected and recorded.

Figure 1 Global polices – central access control (see online
version for colours)

IP
address

MAC
address

Port
number

User App. Zone Schedule

White/
black list

White/
black list

White/
black list

White/
black list

White/
Black List

Central access control
and conflict resolution

All earlier objects (or access switches) should support also
groups. For example, we may need to refer to a group of IP
addresses, ports, MAC addresses or users. Certain
constructs should support this. Those include:

1 Any, or do not care, where the input can accept all valid
values.

2 A continuous range where input will include first and
last values.

3 Non-contiguous range where input will include all
values enumerated.

Zone values relate to which interfaces policy should be
applied on.

Access requests come from either users or applications
or from the network. In addition to global policies, those are
the inputs to the access controller (Figure 2).

Figure 2 Access controller architecture (see online version
for colours)

 Global
policies

User and

application
requests

Flow and
packets’
requests

A
cc

es
s c

on
tro

l l
ev

el
s (

le
ft)

A

cc
es

s c
on

tro
l a

pp
lic

at
io

ns
 (r

ig
ht

)

Here is policy 1 (from policy examples) expressed in earlier
terms:

286 I. Alsmadi

• “IP_address=any, port=any, MAC_address=any,
user=employee, application=”chat-programs”,
zone=In/Out, schedule=8-5h/5d/12m”.

Each policy should contain only one instance of objects
described earlier. Group policies may combine more than
one policy together. Application object can include in
addition to the application name other information such as:
Protocol, port number, etc.

An action field should be also included in each policy.
In addition to permit and deny actions, count and log can be
also added and those can be selected in addition to permit or
deny.

L2–L3 information is usually extracted at later stages
and should not be included at first level global policies.

As another example, for the policy to deny internet
connections to websites with improper contents, the real
challenge is how we define improper content. The easiest
way is to have a black list of those websites and keep
adding to it. Content-based approaches are also used to
search for certain keywords that can be used as flags for
websites with improper content. For simplicity, if we
assume one known website to black list (and then repeat the
process for all black listed websites), policy can be
written as: “IP_address=any, port=80, MAC_address=any,
user=employee, application=”browser”, website=A,
action=deny”.

3.1.1 Predicate access control

The central access control and conflict resolution module
acts as a policy controller. Access switches (IP, MAC, port,
user and application) include access rules. In addition to the
particular access switch information, access rule
includes also information related to zone and schedule.
Tables 1 and 2 include examples of access rules that can
exist in IP and port access table.

Table 1 IP access rules

IP Action Zone In-activity
timeout Schedule

192.168.1.1 Deny In/out 2000 s 24h/7d/12m
212.33.45.6 Permit In 2000 s 8-5

SMTWTF

Table 2 Port access rules

Port Action Zone In-activity
timeout Schedule

80 Permit Out 2000 s 24h/7d/12m
80 Deny In 2000 s 24h/7d/12m
1,030 Deny In/Out 2000 s 8–5 SMTWTF

Different access tables are maintained by the central access
controller. Access requests are sent to the central access
controller.

In comparison with firewall access controls or rule-sets,
this approach can be called firewall tables, or more generic

access control tables. The major difference is that those
tables will be dynamic and not static as in firewalls. The
idea extends flow tables in switches that largely make
decision for routing and not access control. Access control
switches should focus on access control or authentication.

3.1.2 Access registration and binding

Different access switches proposed in our access control
architecture should have the ability to register new entities.
New applications can register as they are installed, users are
registered when they are created and logged in, and so on.
Journaling and tracking this information is a key process to
the NAC process. Binding is about relating the different
access entities or switches with each other. For example, a
user can be associated with a host, a host with an IP and
MAC addresses, an application with a host and port number
and so on.

3.1.3 Access controller – security mode

The access controller should analyse incoming access
request and come up with one of the following decisions.
The access controller has two modes: security and normal
modes.

Security mode is considered as a defensive approach.
For a flow to be permitted, it should be permitted by more
than one access control. This is since many security attacks
target access controls. For example, ARP spoofing typically
attack IP-MAC binding and a legitimate MAC can be
falsely claimed by an illegitimate IP address. IP spoofing
also occurs when illegitimate IP addresses impersonate
legitimate ones. Hence, a defensive mode should require
more than permit decision and deny decisions should be
dominant. In addition to attacks, sometimes a specific
access list information can be changed and others are
necessary to verify it. For example, a DHCP server changes
IP-host binding frequently. Users may change their Ethernet
cards. Applications may bind to different ports.

To demonstrate the idea of dynamic binding, let us
consider the following example. By having port 80
permitted by a rule, such generic rule may not limit
intruders who are trying to use this port. In reality, such
intruders were not and should not be denied due to using
port 80 only. In other words, there are other information that
should be added to this to make a deny decision. Let us
assume that this addition is the IP address (192.168.1.1).

SDN should be able to deal dynamically with changing
hosts, accounts, IP addresses, etc. However, the ability to
dynamically handle such cases should not compromise
security. In other words, such cases should not opportunities
for illegitimate users, hosts, etc. to access the network.
Security binding of different access controls can be an
affective counter measure to many security attacks. Binding
here is not static. In other words, IP addresses are not linked
to hosts, MAC addresses, etc. Each one of them is stored in
a different access switch table. Binding only occurs based
on the current access request (i.e., based on what the request
includes). Information in access switch tables are not

 The integration of access control levels based on SDN 287

statically connected to neither high level policies, nor low
level or physical network devices.

In security mode, deny override is considered if for the
same request there are different decisions from the different
access controls. In addition, if access control mode is
‘security’ access requests that can find no match in any
access table, will be denied. On normal mode, the two cases
are reversed. Namely, if there are match conflicts between
the different access controls, permit-override is enabled and
access request will be permitted. Similarly, if access request
has no match in any access control, access request is
allowed. Here is the step access controller takes to make a
request decision.

1 Upon request arrival, access controller uses a special
module will extract the following information from the
access request: (user, application, port number, IP
address, MAC address, zone and schedule).
Information that has no value in the policy
description is skipped or left empty.

2 For each access table of the five tables (user,
application, port number, IP and MAC addresses),
access controller looks for a match between the current
access request and access rules in each access table.
Decisions for matched records are extracted. In security
mode, one ‘deny’ is enough to cause the whole request
to be denied. Security mode is a defensive mode where
access control system can be switched to this mode in
occasions of security breaches, or when this access
control system is running in a server hosting important,
sensitive information. This mode hence adopts a white
list approach where only those explicitly allowed to
access will be allowed to access. In addition, no single
access switch should explicitly deny the subject access
request.

Security modes typically should work with a proactive
mode where network administrator is expected to add
access rules to switches. This is security mode by default
deny flows with no records in access switches. Hence, if all
access switches are empty, no flow will be allowed at all.

For example, in terms of ports, the administrator may
decide to open the following ports only: 80, 8080, 1030, etc.
Those are opened only based on the known permitted
applications. This means that in security mode and based on
port access only, no flow will be permitted to access the
network if it is not coming from or destined to one of those
ports regardless of the other values in the other access
switches.

This mode can be very defensive and secure where it
will not permit unauthorised access. However, it may
prevent legitimate flows from accessing the network. How
real-time information can change access tables? If flows are
added with values that are not in access switches, those
values are added to the access switch with their decision.

The most important aspect in security mode is that while
rules can be added dynamically, however, rules added
manually in the initial mode by administrators (as default

values) can never be overridden or removed by dynamic
flows).

3.1.4 Access controller – normal mode

In normal mode, one ‘permit’ is enough to cause the request
to be permitted. In any table, no match is considered ‘deny’
in security mode and ‘permit’ in normal mode. Normal
mode can be selected in regular working time. If the subject
request is not listed in any access table, it will be granted
access (i.e., black list mode). Further, if different access
switches have conflicting decisions, permit decision is
assumed.

3 If the access request has no match at all, in security
mode, it will be denied and in normal mode it will be
permitted.

4 Based on the result of the access request, the access
controller writes a record in each access table.

In addition to security and normal modes, access controller
can take active or proactive mode. In active mode, initial
generic access rules can be added to all access tables to
decide on access requests that have no match. On the other
hand, in proactive mode, access tables are left empty and
rules are added dynamically based on real-time access
requests. Proactive mode allows also network administrators
to inject manually certain rules to override any possible
decisions made at real-time. Based on special cases, the list
of access switches can be extended. For example, it is
possible to have an e-mail-access switch for an e-mail
server, or websites access switch for a web server and so on.

Normal mode can work with proactive network where
access switches can start empty and decisions are made
based on traffic. Rules can be added by network
administrators in normal mode. However, those rules can be
possibly overridden by dynamic flows. For example, if a
network admin has one rule in ports access control to deny
port 80. And we have a flow of (IP:192.168.1.1, port:80)
while the IP addresses was permitted in the IP access table,
the flow will be permitted and the record of denying port 80
will be changed to ‘permit’.

3.1.5 Examples

We will consider several examples to demonstrate how data
is added to access switches and how access authorisation is
applied.

• Let us start with a normal mode where all tables are
empty (i.e., switches’ flows tables and entities access
tables). For simplicity assume zone is (in), i.e., flow is
coming to the network and that there is no time
constraint in (schedule). Flow attributes: IP:
192.168.1.1, MAC:a.b.c, and port number=8000. As
access controller is in security mode, and as there are
no records in switches, flow will be permitted and
access controller will write a rule in each one of the
three access switches (IP: 192.168.1.1, MAC: a.b.c and
port: 8000), with “permit” decision zone=”in” and

288 I. Alsmadi

schedule = “any”. In normal mode, those can work as a
bulk permission. In other words, any flow coming to
port “8000” will be permitted, any flow coming to
MAC “a.b.c” will be permitted and so for the IP
address. It is clear that this mode favours performance
on security where security breaches may happen if for
example an IP-spoofing case occurs and the flow will
be authorised based on the IP address only without
verifying the port, MAC address, etc.

3.1.6 A hybrid approach

While we think that both earlier described modes have their
applicable use cases, however, in most scenarios, security
mode is very rigid and many false positive cases may occur
where access controller will be denying legitimate flows.
On the other hand, ‘normal’ mode is very lenient, and many
false negative cases where access controller will allow
illegitimate traffic may occur. We assume that if the flow
matches no record in any switch, it will be permitted in the
normal mode. In the hybrid mode, this will not be allowed.
This means that administrators should have some initial
default values that can be used as default values.

A hybrid approach should be able to compromise
between the two modes. The idea of the hybrid approach is
that we assume that most security attacks succeed in
breaking one access control at a time. Hence, each flow is
only required to get two kinds of verifications to be allowed
to pass through the access controller.

This mode should also work in active and proactive
cases. However, access switches cannot be empty. For
example, network administrators can flush IP and MAC
addresses of all their local users. They can also select very
specific ports in port access control based on known
applications.

Permit override is decided if flow succeeds in acquiring
two ‘permit’ decisions from two different access switches.

Example

In the hybrid mode, default values are expected in all access
switches. Those however can be overridden dynamically.
Assume that local network IP addresses are all virtual
192.x.x.x. Assume also that network administrators
included all registered MAC addresses in the MAC access
controller. Further, the following ports are open: 80, 8080,
and 1030. Network can handle normal traffic and if a user
wants to add a new application that wants to open a new
port, they need to have legitimate IP and MAC addresses. In
that case, the access controller will automatically allow or
permit this request. In addition, this new port can be open
for other users given that it was opened by a legitimate user.

The same scenario can be applied if request is from
users or applications. At the high level, request should
include user and application. In addition, at least one of the
low level information (i.e., MAC, IP addresses or port
number) should be included, or collected using the request.

For example, a user may install a new application that
has no record in the access control. In the first time, they

can use it only from existing legitimate user account and
also verified IP or MAC address. While such hybrid
approach can ensure secure access control verification, it
can also accommodate changes dynamically.

Global policy and central access controller can hence
achieve the following goals:

• Policies should be read from all access control systems.
Decisions made about an access request should
consider all access control systems.

• A policy driven network that is driven by high level
policies.

• The ability to automate policy different activities
including policy enforcement, implementation,
orchestration, configuration, etc.

For simplicity, it is possible to have two tables rather than
one in each access switch (black and white list tables). In
that case, decision field will be eliminated and this may
accelerate the process of finding a possible match. Of
course, each table can be also divided into source and
destination or based on the zone attribute value (i.e.,
in/out/both).

Some firewalls or access controllers handle conflict
between different access lists by giving priorities. For
example this is a sequence in one of Cisco firewalls (MAC
egress, IP egress, MAC ingress, and IP ingress). In addition,
specific rules supersede general rules. For example, a rule
that deny a specific IP address has more priority on a rule
that permits all IP addresses (i.e., using any keyword).

4 Three-layer policy architecture

Policies orchestrate and translate interactions between
humans and machines. On the other hand, this should not be
a one way interaction (i.e., instructions from humans to
machines). In the network case, in particular, network
should be able to pass back information about traffic and
network status and such information should impact policies.

There are two modes in OpenFlow networks to add
policies from the controller to flow tables. In the reactive
mode, no initial rules are inserted and controller inserts
rules in real-time based on incoming or outgoing traffic.
The advantage of this approach is that it is real-time and is
optimised to the exact traffic network. The disadvantage is
that initially or for a starting period (that can be short or
long) network response time will be slow as each flow will
be sent to the controller to make judgement about. In
addition, controller will be overwhelmed with many flows.

In the proactive mode, network administrators can
define based on their network a file of initial flow rules. The
controller can then flush them one time to switches flow
tables. Unlike the reactive approach, those rules may not be
completely optimised to the current network. However,
from a performance perspective, this can be a better
approach lowering the overhead on the network and the
controller in particular.

 The integration of access control levels based on SDN 289

Proactive controllers can then have a very intelligent list
of policies in which it knows exactly what to do with each
traffic. Occasions should rarely occur when the controller is
not sure what to do with a particular flow. False positive
decisions can result in dropping very important traffic and
false negative decisions may cause serious malicious traffic
to go through the network. The ability for the controllers to
make such proper decisions depends on the tool it has to
make such decisions. A controller supporting module (i.e.,
an ABAC authorisation module) can be one of those very
important supporting modules.

We can summarise objectives that should exist in future
policies:

• A global policy architecture where high level and low
level policies are connected to each other.

• Policy sets should be written in a language close to
human languages and use expressive text understood by
administrators.

• Policy sets should be abstract and should be location
independent and not be tied to a particular network,
topology, etc. We mentioned earlier that network and
traffic should be monitored and this information should
impact policies. This may contradict the requirement of
having policies that are network independent. We will
elaborate on this later on.

• Rules should be implemented with location, network
and topology variables.

• Users manually write or modify policies.
Everything else should be automated through software
programs. The policy activities to automate include:
implementation (i.e., translating policy sets to policies
and then to flow rules), enforcement (i.e., check based
on incoming and outgoing traffic whether policies are
observed or violated and permit/deny based on that),
migration (transferring policies from other networks or
systems), reconfigured or transformed (i.e., if the
network is changed, where a switch or a host is added
for example, policy or policies should be accommodate
that automatically).

Policies in network security serve three different levels:

1 At the application level, users write policies to regulate
users-applications-systems interactions. They can
specify who can do what, when and how. However, at
this level, users are not identified as individuals but as
groups. Network, systems and applications are only
identified by general names without any technical
terms. Typically, we expect policies such as:
• Employees should not be able to access accounting

services remotely.
• Students should not be allowed to use smart

devices during exams.
• Users can have unlimited internet download speed

only after working hours.

 In those examples, we showed that at this level, policies
or policy sets should be for groups and not individuals
(as individuals represent instances of their groups
which can be specified in level 2). Similarly,
applications and devices are known by general
categories that can have several instance examples
(e.g., accounting, smart devices, and internet). For
simplicity we will call them at the first level as policy
sets, at the second level as policies and at the third level
as rules. Policy sets include policies and policies
include rules.

2 Level two should include information typically
included in ACLs. This is an intermediate stage
between high level policy sets and low level rules.
Every authorised person, application, or service should
have an entry in this access control system. There are
currently several examples of ACLs such as those that
exist in operating systems, databases or websites active
directory or user management, ACLs in firewalls, port
control, and routers. Information in those control lists
can be rule-based (RBAC) or attribute-based (ABAC).

3 Rules in flow tables and firewalls in particular. Those
should have the same attributes exist in flows so that it
is possible to check and match those rules with flows
can be simple, dynamic and direct. Since those rules
will talk to and direct low level network components,
for performance issues, they need to be simple and
straightforward.

Two-way communication should be designed between each
two consecutive layers. From top to bottom, special tools
should be developed to allow automatic translation from
high to low level terminologies. On the other hand,
information from bottom up should be used to improve
policies. ACLs in the middle layer provide constraints on
flows at the low level. On the other hand, a special module
should be developed to support a feedback control where
information from network flows can be used to trigger
future rules in ACL. Data mining, AI and patterns’
recognition methods can be used to analyses network traffic
and make rules’ recommendations. Those can be triggered
for security purposes such as security breaches or attacks or
they can be triggered for QA purposes (e.g., performance).
Between ACLs and high level policies, modules should be
developed to allow automatic translation of policies to
ACLs. On the other hand, feedback control is also
recommended to re-evaluate existing policies or trigger
adding new ones based on network traffic and environment.

5 Conclusions

Access control is one of the most important tasks in the
management of systems, networks, databases, etc.
Ultimately, the goal is to allow all legitimate users to have
exactly access levels they are supposed to have and also
prevent any illegitimate user or request to access internal
assets or resources. This is all should be accomplished with

290 I. Alsmadi

both extremely high level of accuracy and also performance.
While those two quality attributes typically contradict each
other, such access control systems should achieve high
percentages in both quality attributes.

Most classical access control systems work in different
layers or levels of abstractions. For many practical reasons,
a global central access control system is seen unrealistic. In
this paper, we proposed a global central access control
system utilising SDN. We demonstrated the design and
feasibility of such a system. We believe that the advantages
of achieving such global access control systems surpass any
challenges to design or implement them.

References
Al-Said, T., Rana, O. and Burnap, P. (2015) ‘VMInformant: an

instrumented virtual machine to support trustworthy cloud
computing’, International Journal of High Performance
Computing and Networking, Vol. 8, No. 3, pp.222–234, DOI:
10.1504/IJHPCN.2015.071257.

Alsmadi, I. and Xu, D. (2015) ‘Security of software defined
networks: a survey’, Computers & Security, Vol. 53,
pp.79–108.

Bismark (2015) The Broadband Internet Service Benchmark
[online] http://projectbismark.net/ (accessed November 2015).

Casado, M., Freedman, M.J., Pettit, J., Luo, J., McKeown, N. and
Shenker, S. (2007) ‘Ethane: taking control of the enterprise’,
in ACM SIGCOMM Computer Communication Review,
ACM, Vol. 37, No. 4, pp.1–12.

Dangovas, V. and Kuliesius, F. (2014) ‘SDN-driven authentication
and access control system’, in The International Conference
on Digital Information, Networking, and Wireless
Communications (DINWC2014), The Society of Digital
Information and Wireless Communication, pp.20–23.

Feamster, N., Nayak, A., Kim, H., Clark, R., Mundada, Y.,
Ramachandran, A. and Tariq, M.b. (2010) ‘Decoupling policy
from configuration in campus and enterprise networks’, in
2010 17th IEEE Workshop on Local and Metropolitan Area
Networks (LANMAN), IEEE, pp.1–6.

Ficco, M. (2013) ‘Security event correlation approach for cloud
computing’, Int. J. of High Performance Computing and
Networking, Vol. 7, No. 3, pp.173–185.

Hinrichs, T.L., Gude, N., Casado, M., Mitchell, J. and Shenker, S.
(2008) Expressing and Enforcing Flow-based Network
Security Policies, University of Chicago, Tech. Rep.

Hinrichs, T.L., Gude, N., Casado, M., Mitchell, J.C. and
Shenker, S. (2009) ‘Practical declarative network
management’, in WREN, pp.1–10.

Nayak, A., Reimers, A., Feamster, N. and Clark, R. (2009)
‘Resonance: inference-based dynamic access control for
enterprise networks’, in Proceedings of the Workshop on
Research on Enterprise Networking (WREN), Barcelona,
Spain, 21 August, pp.11–18.

Shin, S., Porras, P.A., Yegneswaran, V., Fong, M.W., Gu, G. and
Tyson, M. (2013) ‘FRESCO: modular composable security
services for software-defined networks’, NDSS 2013.

Voellmy, A., Kim, H. and Feamster, N. (2012) ‘Procera: a
language for high-level reactive network control’, in
Proceedings of the 1st Workshop on Hot topics in Software
Defined Networks, ACM, August, pp.43–48.

Wang, H., Zheng, Z. and Yang, B. (2015) ‘New identity-based
key-encapsulation mechanism and its applications in cloud
computing’, Int. J. of High Performance Computing and
Networking, Vol. 8, No. 2, pp.124–134.

