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Software Defined Networking (SDN) has emerged as a new network architecture for dealing

with network dynamics through software-enabled control. While SDN is promoting many

new network applications, security has become an important concern. This paper provides

an extensive survey on SDN security. We discuss the security threats to SDN according to

their effects, i.e., Spoofing, Tampering, Repudiation, Information disclosure, Denial of

Service, and Elevation of Privilege. We also review a wide range of SDN security controls,

such as firewalls, IDS/IPS, access control, auditing, and policy management. We describe

several pathways of how SDN is evolving.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Today Internet-based systems, such as cloud services and

social networks, change their network requirements (e.g.,

bandwidth demand, topology, and routing information)

dynamically. Hardwired networks, however, have very

limited ability to cope up with such frequent changes. To

address this issue, Software Defined Networking (SDN) has

emerged as a new network architecture that allows for more

flexibility through software-enabled network control. The

basic idea is to separate control plane from data plane into a

program, called controller, for dynamic orchestration of

network components.

While SDN is enabling new network applications, security

has become an important concern as security is not yet a

built-in feature in the SDN architecture. Research has shown

that various security attacks can be conducted against SDN
.
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rved.
through different network components. As SDN relies on

software, code vulnerabilities also have an important impact

on SDN security. Moreover, SDN offers abundant opportu-

nities for implementing security controls as SDN controller

applications. Such software solutions can enablemore flexible

security controls in dynamic and virtualized network envi-

ronments. They provide a practical means for software-

defined security control.

In this paper, we conduct an extensive survey on SDN se-

curity. We study the security threats to SDN according to their

effects, i.e., Spoofing, Tampering, Repudiation, Information

disclosure, Denial of Service (DoS), and Elevation of Privilege

(STRIDE). This classification of security threats, known as

STRIDE (Howard and LeBlanc, 2001), has been widely applied

to threat modeling of computer, software, and network sys-

tems. We also review a wide range of SDN security control

applications, such as firewalls, Intrusion Detection/Protection
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System (IDS/IPS), access control, auditing, and policy man-

agement. In addition, we discuss several open issues and

research topics that worth further investigation.

The rest of the paper is organized as follows. To facilitate

discussions on SDN security, Section 2 briefly introduces the

architecture of SDN. Section 3 reviews SDN security threats

and countermeasures according to the STRIDE classification.

Section 4 focuses on SDN security controls. Section 5 con-

cludes this paper.
2. SDN architecture

SDN aims at providing open, centralized, decoupled, pro-

grammable, flow-based, and dynamic network switching

mechanisms.

▪ Open: Traditional networking components such as

switches and routers are vendor specific. They provide

limited ability for users to experiment their own

networking protocols on live networks with real traffic.

With SDN, developers can develop middle-boxes that

interact with the controller and network switches. Many

controller platforms are open source, such as OpenDay-

Light, Floodlight, Ryu, and Beacon.

▪ Centralized: The control of different switches is co-

allocated in one logical place, i.e. the controller. In design

terms, this is about splitting “the what” from “the how”.

Such architecture is capable of handling very dynamic

network situations. For example, network traffic based on

dynamically changing usage demands may require

switches to suddenly join or leave a particular virtual

network.

▪ Decoupled: Network functionalities include tasks related

to two in-cohesive components: control and data. Splitting

data from control improves overall reusability and main-

tainability of network systems. Policies are decoupled from

switches' rules. User level security policies should be

expressive and close to users' language and terms, whereas

network level information (i.e. Flow or firewall rules)

should be simple and close to network attributes.

Furthermore, in SDN, virtual or logical network is decou-

pled from the physical network.

▪ Programmable: Controller can be accessed and pro-

grammed by user level applications or middle-boxes. Such

programmability is considered a major characteristic of

SDN. Developers can modify open source controller mod-

ules. Programmability in SDN can be extended far more

than just writing applications or modifying controller

functionality. It can offer network administrators the

ability to write policies and monitor OpenFlow networks.

▪ Flow-based management: SDN shifts networks from IP-

based to flow-based management and control. While

flow-level control is technically possible in traditional

networks, routing protocols make decisions based on IP

addresses. SDN is a flow-based architecture, where for-

warding decisions in switches aremade according to flows.

Records or rules in switches and firewalls are per flow. This

will impact many applications that depend on network

traffic. For example, typical firewall rules deny or permit
packets based on source or destination IP, MAC addresses

or ports. Future firewall rules may become more dynamic

and be updated frequently based on real time traffic.

▪ Dynamic: A major advantage of software over hardware is

that it can accommodate frequent changes for more dy-

namics and flexibility. Configuration or reconfiguration of

hardware is labor intensive. Software can be programmed

to respond to activities and make decisions dynamically.

This is extremely important to those applications with

highly dynamic bandwidth demand, such as cloud

computing, dynamic datacenters, smart devices, and social

networks.

Fig. 1 shows an overall architecture of SDN, with the

consideration of the most recent technological advances. We

will use this architecture as a reference throughout the paper.

SDN architecture can be divided largely into controller core

or internal modules and external modules. The core modules

can be seen in the central or inner rectangle of Fig. 1 including:

Network manager, APIs, Network Operating System (NOS),

internal services and drivers. A bare bone controller should at

least contain those modules that represent main functional-

ities. External modules of SDN controller can be divided logi-

cally into 4 parts interacting with the controller from the 4

different directions:

� Southbound section: This can be considered as the most

currently popular direction of interaction between the

controller and its switches. The OpenFlow protocol is a

southbound interface to the controller that represents the

connecting bridge between the controller and forwarding

elements such as switches. Having a non-vendor-specific

protocol is important to allow all vendors join this open

architecture.

Recent improvements on SDN architecture proposed a

service abstraction layer (SAL) or a hypervisor in this sec-

tion to enable controller and protocols to evolve without

impacting each other. Open source FlowVisor can be

considered as an instance of SALs.

� Northbound section: All types of applications (also called

middle-boxes) that want to interact with the controller and

underlying network or traffic can be typically designed in

this section. There are some proposals of a standard pro-

tocol or interface similar to OpenFlow. REST API can be

considered a significant achievement toward that goal

although it does not represent a standard and a secure

method to communicate with the controller. In addition,

there are no clear agreements regarding handshaking

methods between the northbound applications and the

controller, how to manage communicative permissions or

authorization, or how to handle decisions' conflicts. SDN-

specific policy programming languages such as Pyretic

and Frenetic also communicatewith the controller through

northbound section. It is highly desirable that all the se-

curity applications such as firewall, access control, IDS/IPS

use a common API for interactions with the controller.

From security perspectives, many concerns are raised that

enabling applications to interact with controller that may

have special privileges can cause several security risks.

http://dx.doi.org/10.1016/j.cose.2015.05.006
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Fig. 1 e SDN architecture.
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Security may come unintentionally from normal applications

or network users tampering network configuration or archi-

tecture. Risks may also come intentionally from hacking

methods that can possibly compromise those applications.

� East and West sections. Currently both east and west

bound sections are used for the same purpose; manage-

ment of an SDN distributed architecture. For examples

different instances of controllers in a distributed archi-

tecture should communicate frequently and pass control

andmanagement information. There are different possible

SDN distributed architectures to implement. In one type, a

vertical or hierarchical architecture may exist where a top

layer controller may have several low level controllers.

Upper layer controllermain functionalities include control,

management, monitoring and tasks' distribution for the

different SDN low level instances. In other types, different

controllers may perform different functionalities (e.g. load

balancing, security control, layer 3 switching, layer 4

routing, etc.). Further, controllers can share same tasks and

load can be allocated to new instances of controllers in real

time based on resources' needs, consumptions, etc.

There are different kinds of flows that travel through SDN

networks. From a high level perspective, they can be classified

into messages for configuration, feature requests, flow/port/

table modification, installation of forwarding entries, statis-

tics, control-plane protocols and packets’ punting. Here is a

list of those flow messages:

1. OpenFlow messages: Controllers use those messages to

define switches' policies. There is a mode called “in-band”
wherein a virtual switch; vSwitch can include hidden flows

that neither controller nor user can override.

2. Packet in messages: Destiny of new packets entering the

network and reaching a switch is decided by the controller.

When an OpenFlow switch receives packets, it tries to

match them with its flow table rules. If there is no match,

packets are forwarded to the controller to make a decision

about them. The controller makes decisions on all new

packets or packets that do not match any flow rule in the

switch flow table(s). New flow rules are then added

dynamically to switches based on controller decisions.

3. Datapath flows: Those are vSwitch internal flows and can

be used for caching.

4. Controller-to-switch messages: They are initiated or trig-

gered by the controller. Those may include asking a switch

about its features or sending packets to a switch for for-

warding, and flushing earlier packets.

5. Switch to controller notification messages: Those are

usually called event-based messages, such as: packet-in,

flow-removed, port status and errors.

6. Symmetric messages: Two-way messages between

controller and switches such as hello, echo and vendor

messages.

7. Flow statistics: Those are generated by forwarding devices

and collected by the controller.

The virtual switch is a program that processes network

traffic between the Ethernet Network Interface Card (NIC) and

the Virtual Machines (VMs). With virtual switches, virtual

machines can act like real hosts in networks. The open

vSwitch works with a centralized controller to manage virtual

switches as one logical switch. In addition to OpenFlow,

http://dx.doi.org/10.1016/j.cose.2015.05.006
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OVSDB is another type of southbound APIs, designed to pro-

vide advanced management capabilities for Open vSwitches

[Kreutz et al., 2013]. Some controllers support only OpenFlow

in the southbound APIs section. As an open architecture,

OpenDayLight controller tries to extend this limitation to

include a wide range of APIs including, in addition to Open-

Flow and OVSDB: NETCONF, PCEP, SNMP, BGP and LISP. Most

of those protocols were included to cover backward compat-

ibility with traditional networks.

The forwarding engine in SDN switches has no local con-

trol. It is remotely controlled by the central controller.

Switches may lose communication with the controllers. Their

message requests may time out. In some cases, they may try

to communicate with back up controllers, if exist. They can be

switched to “fail secure mode” or “fail standalone mode”

states. Those are the same states that a switch is in when it

just starts a new fresh connection with the controller (i.e. has

an empty flow table). An OpenFlow switch can be set to

different modes. In reactive mode, no default set of flow en-

tries are specified in OpenFlow for new switch connections.

Behaviour of the switch in such cases can depend on whether

it is an OpenFlow only or a hybrid (i.e. OpenFlow and legacy).

As an alternative, some initial default rules can be added or

flushed to the switch where such mode can be a mixed be-

tween passive or traditional switching and new or reactive

switching modes.

Digital certificates are communicated between switches

and the controller. They usually include embedded informa-

tion from hardware components and are signed by site-

specific private keys. This occurs from both ways; the

controller and each switch. Digital certificates, widely used in

e-commerce, are electronic identity credentials that use

encryption methods. The strength of encryption scheme de-

pends onwhether the users use strong encryption keys or not.

Switches communicate by default with the controller through

port 6653. Controllers include, or should include, a certificate

manager, to issue and maintain certificates for authenticated

users and switches. When switches join the network or the

controller, they may have flow records in their flow tables.

Controller can have the option to delete all those flows or keep

them.

Security testing of communication channels in SDN should

include the evaluation of several aspects. Handshaking or

communication methods between the different parties (e.g.

controller, switches, and top level applications) should be

thoroughly evaluated to make sure that attacks such as Man

in the Middle (MiM) are not possible. Control and conflict

management should be also evaluated to make sure that

messages from different parties will not cause any conflict or

at least there is a clear conflict resolution scheme. All security

applications/controls such as those listed later in this paper

should eventually have one common Application Peripheral

Interface (API), with all issues we mentioned earlier formal-

ized. This API/protocol should provide interactions between

those security, control or management applications and the

controller.

Given that SDN is a new architecture that is expected to

impact several traditional applications or environments, we

will focus on showing how security threats and controls will

be influenced by SDN. We will then show how such
components are going to be implemented in SDN environ-

ment and what are some of the distinguished characteristics

in comparison with traditional systems or networks.
3. SDN security threats and
countermeasures

In this section, we will use traditional STRIDE threats model

[Howard and LeBlanc, 2001] to analyze the type of threats that

SDN network can be exposed to. While this model is proposed

based on traditional networks, threats described below can be

generic and be applicable to networks in general. As an

alternative, threats on SDN can be classified based on SDN

major functional components described earlier in Fig. 1 and

the type and nature of attacks that each component can be

subjected to. Attacks on SDN can be also classified based on

the type of assets or resources a typical SDN may have. For

example, attacks can be focused on switches' flow tables

where those flow tables include information related to

network management; switching, routing and access control.

Attacks can be also focused on the controller as the central

location for management and control. The channel between

the controller and the switches is another major attacks’

target where such channel involves important messages that

can be hijacked. At the top level, controller communicates

with high level applications using a standard interface (e.g.

REST). Such interface can be also attacked in order to trick the

controller to allow malicious applications to join the network

and interact with the controller, the network and its traffic.

3.1. Spoofing

Spoofing refers to a process where network information (e.g.

IP, MAC, ARP, etc.) is forged intentionally to hide the actual

identity of traffic originator or attacker. For example, users

may use spoofed IP addresses to access network resources.

Spoofing is often part of a larger attack, such as SYN flooding,

Smurf, and DNS amplification [Yao et al., 2011]. Spoofed ad-

dresses can also be part of a botnet or a zombie network to

launch Distributed DoS; (DDoS) attacks. Currently spoofing

threats in SDN primarily include Address Resolution Protocol

(ARP) spoofing and IP spoofing.

3.1.1. ARP spoofing
ARP spoofing involves linking an attacker MAC address to a

legitimate IP address. The original purpose of ARP is to resolve

IP to MAC addresses. The ARP spoofing attack may cause

traffic to be hijacked from the original intended receiver and,

as a result, a legitimate user or host is knocked out of the

network. IP to MAC mapping tables can be used to detect ARP

spoofing.

[Matias et al., 2012] proposed an Address Resolution Map-

ping (ARM) module in the controller that tracks MAC ad-

dresses from authorized users or hosts. Controller then

consults this ARPmodule and discards ARP responses that are

not verified by the ARPmodule. In OpenFlow, ARP poisoning is

possible between the controller and switches if the optional

SSL encryption is not used. ARP cache poisoning occurs when

an attacker is located in the same subnet of the victim

http://dx.doi.org/10.1016/j.cose.2015.05.006
http://dx.doi.org/10.1016/j.cose.2015.05.006


c om p u t e r s & s e c u r i t y 5 3 ( 2 0 1 5 ) 7 9e1 0 8 83
network (e.g. internal attacks). Attacker can use scanners to

listen to network traffic between network components. [Al-

Shabibi, 2014] has developed an anti ARP poisoning switch

application in the POX OpenFlow controller.

ARP spoofing attacks can be countered with packet level

information. [Zaalouk et al., 2014] divided attacks' detection
methods into high and low resolution methods based on the

amount of information given to it as input. Low resolution

attacks require information at the flow, not the packet level.

Packet level details are only required at high resolution level

attacks. For example, attacks like DoS and Domain Name

Server (DNS) amplification can be handledwith information at

the flow level details. On the other hand, ARP spoofing and

cache poisoning attacks require information at the packet

level.

3.1.2. IP spoofing
IP spoofing is usually used as an opening to other types of

security attacks, such as DNS tampering or amplification. A

DNS is a directory that associates IP addresses to domain

names. To reroute traffic to illegitimate websites, an attacker

maymanipulate DNS directory. This can be also part of a large

flooding or worm spreading attacks. What all spoofing

methods have in common is that they try to redirect traffic to

illegitimate hosts. They can also be considered to achieveMan

in the Middle (MiM) attacks. Spoofing can be mitigated by a

proper authentication scheme. Strong password and encryp-

tion methods should be enforced to avoid unauthenticated

intrusion.

IP address validation methods can be also used to counter

IP spoofing. Internet Engineering Task Force (IETF) formalized

a standard for Source Address Validation Improvement

(SAVI). SAVI verifies addresses of packets based on a binding

validation. Based on OpenFlow Virtual source Address Vali-

dation Edge (VAVE), [Yao et al., 2011] extended SAVI to solve

the address resolution problem. VAVE module, embedded in

the controller, verifies the address of external packets that

have no records in the flow table. Flow entries are inspected

based on the validation module and based on a dataset of

white lists to judge whether to allow or drop the flows. An

explicit rule to drop the flow is added in the flow table once

spoofing is detected. [Feng et al., 2012] extended the solution

of VAVE using OpenRouter; an OpenFlow extension of tradi-

tional routers. Each router has a collective network view of

address assignment and routing. Software Defined Filtering

Architecture (SEFA); another countermeasure of the same IP

based or router based spoofing, is a successor to VAVE [Yao

et al., 2014]. In addition to collecting and building flow rules

in routers, SEFA adds filtering rules based on spoofing

occurrences.

Existing research discussed hiding hosts' identities to

protect them against several types of attacks including

spoofing [Jafarian et al., 2012; Kampanakis et al., 2014, and Yao

et al., 2011]. This is a form of dynamic network configuration

where network information is either frequently changing or is

hidden from externals. Network information not only in-

cludes IP or MAC addresses, but also topology and routing

tables. In an attempt to hide end users’ identities and protect

them from scanners and spoofing, [Jafarian et al., 2012] pro-

posed a moving target defence approach. End hosts and their
identities should be continuously and randomly changed to

avoid being targeted by adversaries. OpenFlow assigns virtual

IP addresses to end hosts that can be mapped to actual or

physical IP addresses.

In SDN, controller should have a method to isolate its local

network information from the external networks. Similar to

Network Address Translation (NAT), controller can have ta-

bles to transform external to internal addressing. In fact,

OpenFlow can do this natively as OpenFlow devices can

rewrite the packets’ header fields which will make them

appear as coming from external addresses. This NAT trans-

lation should be communicated with many middleboxes

while at the same time be hidden from externals

[Fayazbakhsh et al., 2013]. OpenFlow networks and other

network virtualization methods allow users to divide the

network into slices and make flows behave differently in the

different slices regardless if they will have the same real IP

addresses or not. For example, it may be required for business

purposes to direct some particular flows to a security control

(e.g. a firewall). Alternatively it may be required to allocate

more bandwidth and resources to some particular traffic.

Spoofing or forged IP addresses may occur from within the

network. Based on the nature of IP address forging, source

address validation from within the network can be difficult to

detect. [Xiao et al., 2013] extended an earlier research about

OpenRouter. In general, an SDN approach may not need a

dedicated router where routing functionalities are included in

OpenFlow controller and switches.

3.2. Tampering

Tampering is the deliberate and unauthorizedmodification or

destruction of network information, such as topology, flows in

flow tables, policies, and access lists. For example, an intruder

may try to inject flow rules that will cause network mis-

behaviour. Theymay inject flow table or firewall rules thatwill

deny legitimate hosts or allow illegitimate hosts. Intruders

may also try to tamper topology information and conse-

quently cause some traffic to be hijacked. In SDN controller

distribution, different controllers communicate with impor-

tant information. It is very important to secure this commu-

nication channel from being hijacked or tampered [Othman

and Okamura, 2013].

Security threats may target firewall or flow table rules.

[Porras et al., 2012a,b] described the security problem of dy-

namic flow tunnelling related to conflicts in interpreting flow

rules. This problem occurs since rules are evaluated one by

one. An attacker may try to orchestrate more than one rule

where all those flows collectively violate firewall rule(s) while

on the other hand, no single flow violates any firewall rule. In

their proposed solution, they tried to check the conflict be-

tween flows and firewall rules based on all possible combi-

nations of incoming flows. Nonetheless, this may not be

scalable or applicable to complex scenarios.

As a flow-based traffic management, SDN can help pre-

venting unintended traffic tampering. Packets can be inspec-

ted before they go on the wire for their destination for some

integrity attributes. Validation results can be carried out with

the traffic to be checked at the destination point. Tampering

can be mitigated by distributing auditing and monitoring

http://dx.doi.org/10.1016/j.cose.2015.05.006
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across several network points [Bellessa et al., 2011]. If one

point is attacked, the rest of the network points can be used to

detect and correct such tampering.

To protect against tampering, controller should manage

and routinely check encryption methods and legitimate con-

nections. The main limitations of Transport Layer Security

(TLS) encryption used in OpenFlow are that first it is optional

to use or enforce by users and second is that many actual

controllers are not even implementing or adopting it. Another

related issue is controller failure modes (fail safe and fail

secure modes). It is possible to compromise integrity or

confidentiality when controller or switches are pushed to

switch to one of those failure modes.

In virtual environments, different logical networks share

the same physical or network resources. As a result, there is a

serious concern about the level of correctness and integrity

not only from external editing or tampering but also from

internal modifications. Existing experiments showed that

slices or VMs in the same tenant or cloud datacentre have a

possibility that one VM may access resources from the other

VMs sharing the same physical resources [Ristenpart et al.,

2009; Zhang et al., 2012]. Same concern can be also

mentioned in other scenarios where virtual separated re-

sources share same physical resources (e.g. different testbed

experiments, different wireless or home network users, etc.).

Can security tools verify beyond doubt that logical separation

or isolation guarantees no interactions between the different

virtual networks?! How could this be guaranteed and what

kinds of tests to be conducted to proof or certify that? It is

expected in future that such certificates will be possibly

required or demanded from cloud or ISP service providers.

3.3. Repudiation

“Repudiation is the denial by one of the entities involved in a

communication of having participated in all or part of the

communication” (ISO, 1989). Non-repudiation, which is

considered as a legal rather than technical concept, tries to

make sure that such denial does not occur. The receiver needs

to verify that packets are sent from the actual sender included

in the packet header and the sender needs to verify that

packets sent to the actual receiver included in the packet

header. Non-repudiation is often related to accountability,

which is about holding individuals or entities accountable or

liable for their actions.

3.3.1. Non-repudiation verification
In current web, e-commerce, etc. indirect or remote types of

communication, this repudiation or denial from one party

that they were part of this communication can be caused

typically as a result of Man in the Middle (MiM) attacks in

which an intruder in the middle masquerades to both parties

that he/she is the other party. As such, encryption can be an

effective MiM counter measure and hence repudiation. Based

on this assumption, we describe encryption basedmethods in

this section for non-repudiation verification.

Encryption methods are used to verify to communication

partners that messages were authenticated from originating

sources and were not tampered throughout the network.

Research has showed security problems with Secure Socket
Layer/Transport Layer Security (SSL/TLS) encryption that is

used in OpenFlow algorithm for the communication between

controller and switches. [Namal et al., 2013] proposed alter-

native encryption schemes, HIP-BEXv1 and HIP-EEX that offer

better security features for non-repudiation, DoS, and MiM

threats.

Third party verifications (e.g. Public Key Encryption PKE

and digital certificates) can be used to eliminate repudiation.

Currently, such security mechanism and architecture (i.e.

PKE) is used widely in e-commerce systems and business

transactions. Message transfer digests are also used to provide

digital receipts regarding a message. Signal chaining can be

also used to provide non-repudiation. For example, an audit

system should include the step routes or sequence that a

message or a packet went through between original sender

and final receiver.

Proper auditing and logging methods for all types of ac-

tivities that occur in flow tables can help in non-repudiation.

Those can be provided as proofs about traffic activities.

However, trade-off between performance and logging should

be put in place to properly select what exactly to audit. Even

logging and auditingmethods themselves can be tampered by

some security attacks. [Porras et al., 2012a,b] proposed Fort-

Nox, a flow-based authentication system, to provide a security

audit trail for flow rule commands, rules’ conflicts, and reso-

lution outcomes. It is not clear; however, what Meta infor-

mation is included in the audit or how conflicts can be

handled. In addition to flow attributes described in OpenFlow

specifications, for auditing we may need to know other in-

formation such as application ID, privilege level, flow time and

date. If a security breach occurs, this information is useful for

incident investigation.

[Andersen et al., 2008] proposed Accountable Internet

Protocol (AIP) as a replacement to the Internet Protocol IP. The

goal was to add more information in addition to those typi-

cally exist in packet headers that can uniquely identify the

sender application, user, machine, etc. [Bifulco and Karame,

2014] proposed a location based identification of hosts in

addition to the IP address that is associated with the public

key encryption of the user or the host.

Non-repudiation verification in very agile and dynamic

networks can be difficult to achieve. There are many SDN use

cases (e.g. Bring You Own Device (BYOD), campus networks,

peer to peer networks) that require non-repudiation-related

qualities where current networks can hardly provide

[Feamster et al., 2013a,b; Bakshi, 2013]. In these networks,

users and their network preferences vary all the time.

Handling non-repudiation is nontrivial given the large num-

ber of users and the agility of the network. SDN programma-

bility and its ability to define users or hosts based on flows can

be important tools to achieve such quality attributes more

robustly.

3.3.2. Accountability
Current SDN architecture holds each controller accountable

for its own switches. Inter-domain communication exchange

between the different controllers is not supported [Huang

et al., 2013; Huang et al., 2014]. Packets related to switches in

other controllers’ networks are going to be dropped by the

local controller. However, there are many use cases that

http://dx.doi.org/10.1016/j.cose.2015.05.006
http://dx.doi.org/10.1016/j.cose.2015.05.006
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justify the need for different controllers to exchange infor-

mation especially as a single controller network is not a

practical network design for most production networks.

Different controllers should exchange information through

well defined-interfaces so that they will not interfere with

each other or cause security problems.

[Karame, 2013] discussed accountability issues related to

QoS. Communication partners need to exchange information

related to: Response time, error rate, etc. This is one of the

current serious challenges in cloud computing related to

Service Level Agreement (SLA). Network attacks can have a

direct impact on network metrics where they may delay

response time or cause some traffic not to be sent on time or

correctly. Who should be liable in such cases?! How could is-

sues related to conflicts in SLA and accountability be solved?!

Karame, 2013 proposed a security approach based on Open-

Flow that can handle some of the concerns in this specific

aspect.

Accountability can be challenged by several network

components including security controls. Security controls in

most cases act as barriers that limit the ability to audit traffic

resources. For example, NAT or proxy systems hide the

identity of internal hosts where a firewall may not be able to

know traffic source or actual host IP address. This is because

there is an internal mapping in the NAT/proxy between in-

ternal to external IP addresses. In this scope, [Fayazbakhsh

et al., 2013] proposed FlowTags as a system to allow security

middle-boxes to identify applications. Tagging information

should be integrated with flow information. Different appli-

cations which generate flows are expected to add this flow tag

information based on a uniform standard (i.e. Through a

FlowTag controller module). FlowTag module should handle

rewriting packets’ headers to include FlowTag information

from originating middle-box.

3.4. Information disclosure

Information disclosure attacks have no direct intention to

destroy or disrupt the network but to spy on its information. In

addition to the sensitive information that attackers try to get,

they will initially try to sniff network information such as to-

pology, nodes' features, or communication details among

nodes.The impactsofSDNarchitectureonscanningattackscan

be mixed. The controller is a central location for control of all

network switches. Being able to invade the controller, the

attacker can have a tremendous network access. On the other

hand, data is isolated from the controller, unlike traditional

switches where control is co-located with the data inside the

switch. In SDN, flow rules exist in switches’ flow tables. If in-

truders succeed to access those switches directly, they can

tamper flow rules and cause traffic to go to wrong destinations.

If they succeed to disconnect a switch from communicating

with the controller, they can assume control and cause a sig-

nificant trafficmiss-direction. If they could hijack traffic from a

legitimate host, they can impersonate that host and join the

network as a spy. Man in the Middle (MiM) attack is an infor-

mation disclosure attack that targets information in transit and

not in premises. MiM attacks are currently seen to be signifi-

cantly possible in the current OpenFlow architecture [Benton

et al., 2013]. Current encrypted scheme in OpenFlow
communication,TLS, isoptional. Inaddition, communication in

the northbound interface with the controller is not yet stan-

dardized. Added applications with possible vulnerabilities can

be used to launch MiM attacks and access controller resources.

3.4.1. Scanning countermeasures
Scanning methods and tools are often used in the initial steps

of information disclosure attacks. Network scanners search

through the network for potential information leakage and

vulnerability.

Encryptionmethods can be used to counter scanning based

attacks. The fact that the switches in SDN are remotely

controlled can be a security threat by itself. As mentioned

before, TSL/SSL encryption between the controller and its

switches is left optional as of the last visited version of

OpenFlow (i.e., 1.4). It is not clear whether OpenFlow switches

only ensure one-to-one control relation (i.e. between each

switch and its controller) and how it is enforced. In other

words, can an intruder succeed in having a secondary control

rule on the switch without disconnecting the actual

controller? Does the switch or the controller guarantee that

there is only one controller connection coming to or going

from the switch?

Active securitymethods can be used to detect scanners (i.e.

if external tools are used to scan the target network). [Mehdi

et al., 2011] described using OpenFlow flow information for

traffic anomaly detection including the detection of scanning

worms. [Schehlmann and Baier, 2013] extended the approach

and made it more scalable at ISP level networks. They used

NetFlow to filter initial suspicious traffic and then redirect it

for further analysis to OpenFlow based detection system.

Several methods have been proposed to prevent OpenFlow

network scanning. Some of them used an active approach to

counter sniffer/scanner attackers [Hand et al., 2013]. Some are

based on responding to the scanner with incorrect or fake

traffic or fighting back by flooding the attacker with large

traffic. Other methods continuously change the identity of

hosts [Jafarian et al., 2012; Kampanakis et al., 2014].

Some methods for hiding local identities from external

users can also be used to counter sniffers or scanners. They

include Virtual Private Networks (VPNs), Network Address

Translation (NAT), and proxy, although their original pur-

poses are not related to hiding hosts identities. For example,

[Mendonca et al., 2012] introduced AnonyFlow, an OpenFlow-

based anonymization service. Unlike traditional NAT where

translation occurs between virtual and real IP addresses,

AnonyFlow uses special anonymity IDs that other parties can

only see instead of the IP addresses.

3.4.2. Information disclosure countermeasures
To protect private information, there are other actions to

consider. White listing and black listing can be used to filter

traffic. White and black listings in traditional networks are

defined based on IP andMAC addresses. They can be also used

in OpenFlow networks. As OpenFlow switches can interact

with flow level information, we can define metrics based on

flows and then define black and white listings based on flow

level information. This may prevent some attacks that use for

example large traffic where some attributes can't be identified

based on IP or MAC addresses.

http://dx.doi.org/10.1016/j.cose.2015.05.006
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[Kloeti et al., 2013] proposed several recommendations to

reduce information disclosure in OpenFlow networks. For

example, intelligent rules for time out randomization can

make it difficult for scanners or sniffers to understand

network patterns. Similarly this can be applied to the

response time between controller and switches. A monitoring

tool can detect the difference in response time between

sending a new and an existing flow rule. The existence of such

difference in response time is an indicator of an OpenFlow

network. Countering this type of information sniffing can take

several scenarios. In one option, this can be countered using a

fully proactive approach where all flow rules are installed by

network administrators. Directed and intelligent counter

measure methods can be also effective in making fake

response time based on the nature of the network attack.

Attack treemodels proposed by [Kloeti et al., 2013] and several

other researchers can be used to automatically detect the type

of network attack. However, such models still seem to be

highly semantic and do not include metrics that can be

directly interpreted or related to flow or packet level data.

Some useful flow or packet metrics are APf (Average Number

of Packets in Per Flow (ANPPF), Average of Bytes per flow (ABf),

Average of Duration per flow (ADf), Percentage of Pair-flow

(PPf) and Growth of Single flow (GSf) [Feng et al., 2009].

3.5. DoS

DoS attacks are among the most serious threats because they

affect network performance, increase latency, and drop of

legitimate packets. They may even disable the whole network

or stop it from functioning. For OpenFlow networks, DoS can

be more devastating as there is a continuous flow between

controller and switches. The continuous communication be-

tween controller and switches can tempt attackers to push

flows between the controller and the switches and interrupt

the normal network activities. Flooding and DNS amplifica-

tion are considered as flow level resolution attacks because

flow-level information is enough for detecting such attacks

[Zaalouk et al., 2014]. Flow level information is usually enough

to detect most types of DoS attacks. Typically traffic infor-

mation collected from flow header is at the flow level. Flow

based attack detection systems that rely only on the header

information can address the following network threats: DoS,

scans, worms and botnets. Those four types of attacks have

some common signatures. For example, they have a large

unbalanced traffic between fan in and fan out where most

traffic is going in one direction. In most cases large traffic will

be coming in. However, if the local machine is a botnet or a

victim, it can be sending a large volume of traffic. Port number

can be also a valuable information in those types of attacks

where there are known ports to be widely used. Other types of

network attacksmay require packet level information in order

to be detected. As flow-based networks, SDN provides native

methods for DoS detection [Sperotto et al., 2010]. Information

extracted from flow headers is valuable for DoS detection.

Some DoS attacks cause variation in traffic volume that is

visible from flow view. Semantic-based DoS attacks, however,

may not be detected by traffic volume change.

The main distinguished feature of DoS attacks is the large

traffic size. Methods to detect the large size of traffic are the
most popular techniques used to detect flooding or DoS.

However, false positive alarms may arise where such large

traffic is coming from or going to legitimate hosts. There are

other methods to detect possible flooding. One method is

related to studying the difference in volume between

incoming and outgoing traffic. Typically in communication

between a source and a destination, there will be traffic going

from the two sides. If traffic is large and going from one side

with no single response from the other side, this can be an

indication of a flooding case. In TCP transmission for example,

even if data is from one side to the other, receiver will send

ACK messages periodically. Even UDP transmission will have

a request/response from the application layer.

In DNS amplification, public DNS servers can be used to

increase the effect of DDoS. This can cause a very large scale

network or Internet disruption. Recent reports (2013) showed

one of the largest DoS attacks in history on the website (www.

Spamhaus.Org) that is launched based on DNS amplification.

Monitoring and continuously retrieving the top DNS queries

can help us detect DNS amplification. For example a query

that asks the name server for all the records in that domain

results in a large response that causes traffic amplification.

Controller (limit traffic) decision choice can be designed in a

way that limits such cases.

Loops can cause DoS or can be used for network attacks. In

such loops, packets travel from one switch to another without

reaching their final destination. [Kazemian et al., 2013;

Kordalewski and Robere, 2012] have discussed how to

handle loops in OpenFlow networks.

To conduct DoS attacks in SDN, attacker may push a large

volume of traffic that keeps randomly changing flow attri-

butes [Shin and Gu, 2013; Shin et al., 2013a,b]. This is to ensure

that every flow is new, from the switch perspective, and hence

will be sent to the controller for making a decision about. An

attacker can use a traffic generator that ensures to change

attribute values per flow. As each attribute has a wide range of

valid and invalid inputs (e.g. IP address: 0.0.0.0 to

255.255.255.255), the number of possible flows can be enor-

mous. Such attack can have two goals: First, it will flood the

switch flow table and saturate it with illegitimate rules. This

may disable the flow table ability to accept legitimate rules.

The second goal for attackers to send this large amount of

flows is that this flood of flows will keep the controller busy

from responding to legitimate flows from other switches and

may bring it to a failure. Strong and reliable encryption

methods can help in securing the private communication

between switches and the controller. However, they cannot

prevent flooding or DoS as those are launched from hosts

sending traffic to OpenFlow networks. The Avant-Guard sys-

tem proposed in [Shin et al., 2013a,b] as an enhancement to

OpenFlow, showed that it is possible to handle DoS attacks

and eliminate their negative impact on the network.

3.5.1. Detection of DoS
[Braga et al., 2010] discussed a lightweight method to detect

DDoS attacks in SDN. The main challenge was to distinguish

normal packets from DDoS flooding packets. They classified

network traffic into an attack or normal traffic based on Self

OrganizingMaps (SOM). The flow features selectedwere based

on earlier approaches [Feng et al., 2009], including APf

http://www.Spamhaus.Org
http://www.Spamhaus.Org
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(Average Number of Packets in Per Flow (ANPPF), Average of

Bytes per flow (ABf), Average of Duration per flow (ADf), Per-

centage of Pair-flows (PPf) and Growth of Single-flows (GSf).

Those metrics or attributes are continuously collected and

monitored for detection of possible DDoS. A major concern is

that monitoring and maintaining such huge amount of data

will significantly degrade controller performance which is

already overwhelmed with other tasks. Having a dedicated

separate module or controller to perform such task can be a

more realistic solution. [Shirali-Shahreza andGanjali, 2013a,b]

proposed to sample traffic to reduce controller traffic over-

head from the monitoring process.

A simple method to detect possible DoS attacks is to keep

monitoring the volume of traffic flows. Threshold can be

specified on what can be considered large or abnormal traffic.

Once this threshold is exceeded, a DoS occurrence can be

triggered [Chu et al., 2010] and controller inserts a flow rule to

drop packets. Similarly, traffic map or patterns can be

analyzed frequently to predict if some traffic is abnormal or

large [Braga et al., 2010]. [Suh et al., 2010] proposed a content

based networking architecture. Controller triggers DoS alert if

traffic exceeds a certain threshold. Rules are then inserted in

switches by the controller to eliminate source of DoS.

[Schehlmann and Baier, 2013] proposed an OpenFlow

based approach to detect and mitigate botnets. Botnets are

networks or groups of compromised hosts that are used to

launch attacks such as DDoS, to propagate worms or send

spams. Their proposed solution, COFFEE, utilizes SDN ability

to have access to all traffic to reduce rate of false detections.

In TCP connections, acknowledgement message (TCP ACK)

is required to verify communication between senders and

receivers. However, it can also be triggered by a flooding or

DoS attack. [Shin et al., 2013a,b] proposed a simple algorithm

to handle TCP ACK packets. [Liyanage et al., 2014] proposed a

security layer or interface to coordinate the communication

between OpenFlow switches and the controller. A show case

of TCP SYN DoS attack is used to evaluate the model. Attack

includes occupying all packets and IP address possible com-

binations. Network performance is measured through the

attack to evaluate the time it takes the network to figure and

clear out the attack.

[Benton et al., 2013] evaluated OpenFlow vulnerabilities for

DoS and integrity attacks. They showed that OpenFlow pro-

tocol and its communication mechanism between controller

and switches should be thoroughly investigated. [Dover, 2013]

conducted an experiment to simulate DoS attacks on Flood-

light controller using methods such as TCP SYN or ARP cache

poisoning. A vulnerability discovered in Floodlight that dis-

connects an old switch if a new switch is registered with the

same data path ID (DPID) as of the old one. Such vulnerability

can be used by malicious switches to claim to be legitimate.

The only information attackers need is the DPID which can be

acquired from the controller REST API.

Yuzawa, 2013 presented a simple use case for using sFlow

monitoring tool for DDoS attacks' detection in OpenFlow. The

goal was to counter DDoS without disrupting normal traffic.

They used the module “static flow pusher” from Floodlight

controller and claimed that no commercial virtual switch

showed the same expected response as the open source vir-

tual switch (vSwitch).
[YuHunag et al., 2010] proposed an autonomic DDoS

detection system based on OpenFlow. The system uses the

simple volume count (i.e. flows/packets per time) to judge the

occurrence of DoS or DDoS. The problem with such simple

metric is that many false positive alarms may occur where

large volume traffic can be legitimate.

While some studies argued that OpenFlow networks have

more problems with DoS than traditional networks, Yuzawa

(2013), Dillon and Berkelaar (2014) showed that SDN can pro-

duce a better way of handling Remote Triggered Black Hole

(RTBH). This is a technique in traditional WAN networks to

countermeasure DoS attacks by instructing routers to drop all

traffic to the target. They used OpenFlow traffic flow statistics

tomonitor traffic volume and alert for a significant increase in

size attributes (e.g. byte and packet counters). They used the

mathematical standard deviation measure to evaluate

whether certain flows are significantly above average. Packet

symmetry is also used as an indicator of DoS in that the dif-

ference between incoming and outgoing flows for a particular

host is very high.

3.5.2. Countermeasure of DoS
DoS can be handled by effective and dynamic response

methods to handle occurrences of DoS. Rate or limit traffic by

the controller and monitor abnormal traffic behaviours are

also important countermeasures. We discussed in an earlier

section some countermeasures for spoofing. Similarly, there

are some proposals for active countermeasures of DoS or

flooding attacks in SDN networks specifically [Koponen et al.,

2011]. Active response means to take an offensive action to

counter an attack.

An attacker can focus DoS on the messages from data

plane or switches to the controller and try to saturate both

switch flow table and controller resources; data-to-control

saturation attacks [Wang et al., 2014]. Protection mecha-

nisms should ensure that controller and switches have the

ability to quickly recover from such flooding. The mechanism

should also be able to distinguish legitimate from fake traffic.

Passive or dormant monitoring agents are proposed to be

triggered only when they see the occurrence of fake flooding.

[Koponen et al., 2011] proposed FII (Framework for Internet

Innovation) to deal with inter domain DoS, based on the IP

addressing scheme AIP [Andersen et al., 2008]. AIP includes

information about hosts in packet header related to the host

with a global ID, rather than an IP address. This may help

eliminating attacks that hijack hosts based on their IP ad-

dresses. They claimed that their approach is focusing on

availability to ensure that each participant in a communica-

tion can reach the destination. The approach divides handling

DoS into two parts: Inter and intra-domain attacks. For local,

or intra-domain attacks, each domain should be given the

choice to select their ownway of validating local hosts. On the

other hand, FII provides a united method to handle DoS inter-

domains attacks. As a countermeasure, a shut up message

(SUM) can be issued to intruders attacking the network with

DoS attacks.

Flooding or DoS can also be solved by flow rules optimi-

zation or rule-merging in flow tables. Flow tables can be

dynamically flooded with rules to cause buffer overflows or to

saturate switch memory and cause it to be closed down or

http://dx.doi.org/10.1016/j.cose.2015.05.006
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deny service for legitimate hosts or traffic. Hence, it is

necessary for switches to have a dynamic ability to continu-

ously re-evaluate flow table rules and merge flows that can be

merged. However, such evaluation and decision process itself

is intelligent and complex. Based on the current OpenFlow

architecture, such intelligence does not exist in switches.

Further, if the controller will do this, it can add an extra

overhead on controller resources.

3.6. Elevation of privilege

Once entering the system, attacker tries to elevate their access

privilege to access system resources and applications that

require special permissions. The ability to detect privilege

elevation attacks requires a robust and intelligent auditing

process. For example, [Ramachandran et al., 2009] proposed

Pedigree, a system to trace executed applications through

tagging them with special identification. A major problem

with logging or auditing methods is scalability because they

store a large amount of data which may affect storage,

memory, and bandwidth. Since privileges are allocated in

authorization or access control modules, escalation attacks

often target those modules and try to tamper information in

those modules. Several approaches have been proposed to

give users the right level of permission [Clark et al., 2009;

Naous et al., 2009; Foster et al., 2011; Porras et al., 2012a,b;

Katta et al., 2012; Wen et al., 2013].

[Porras et al., 2012a,b] proposed a fine grained RBAC system

based on OpenFlow. The idea is to give privilege on a flow-

basis rather than on a user or host basis. One advantage of

this flow-based authentication is that a user needs to be

verified frequently on a flow by flow basis. In other words, a

user is not always guaranteed or denied. This may reduce the

problem of privilege escalation as users are frequently

screened for possible privilege escalation. Another advantage

is that controller can be isolated from all other flows. In

addition, internal flows can be distinguished from external

flows. Permissions can then have a lifecycle that starts and

ends with the flow life cycle. A source authentication module

is included to allow each flow rule insertion in switches to be

verified through a digital signature. If no signature is provided

lowest priority is given. However, this may open the oppor-

tunity for privilege escalation later on (i.e. within the switch

flow table). Using default or least privilege approach has an

advantage of not dropping flows if authentication failed.

However, it does not solve the security attacks coming from

privilege escalation. In addition, many current attacks start

their intrusion by attacking a legitimate application and

compromising it. The victim application privileges are then

used for further attacks. Perhaps a hybrid approach is neces-

sary to combine between such privilege or permission system

in addition to another module that can track applications’

“usage profile”. A legitimate application that is suddenly

changing the way it communicates with other applications or

destinations should trigger a security alert.

[Wen et al., 2013] proposed PermOF, a fine grained access

control management system that includes comprehensive

access levels for controller and network resources. Simple

limited authorization levels with only two or three authori-

zation levels (including the administrator) can be an easy
target to tamperwith or cause privilege escalation. Including a

relatively large number of access levels should result in

limiting the use of high level administration capabilities that

can have very powerful access and modification privileges.

The proposed approach provides a set of 18 possible permis-

sion levels. A default minimum privilege is given to applica-

tions. Controller API calls trigger communication with the

applications. One challenge for such approach is whether

different operating systems can generate the same process

IDs (which they don't) or else we need to tag process ID per

operating system or in a separate special tagging system.

3.7. SDN attacks vs classical attacks

In this closing section of attacks, we will focus on how attacks

are going to be different in SDN in comparisonwith attacks on

classical networks. As a new architecture, SDN can expose

both new security opportunities and challenges. Attackers

will eventually investigate SDN strengths and weaknesses

and will try to maximize exploits based on vulnerabilities. For

example, zero-day attacks refer to attacks committed based

on newly discovered vulnerabilities. A significant amount of

such attacks are expected to be exposed in the coming years

impacting SDN. Examples of some of those zero-day attacks

are discussed in some research papers (e.g. [Kloeti et al.,

2013]).

SDN can be categorized as a dynamic network where a

significant amount of traffic is exchanged between controller

and its switches. DoS attacks can be a significant threat to SDN

in comparison with classical networks that do not have a

central controller frequently exchanging data and control

with switches. DoS attacks are expected to be larger in

numbers in SDN. However, if SDN is implemented or designed

correctly, their security controls should be dynamic and

autonomous in a sense that they will eventually discover and

eliminate DoS attacks. On the other hand, spoofing may have

less chances of occurrence in SDN when compared with

classical networks. This is since all spoofing techniques

depend on tricking a network service (e.g. DNS, ARP, etc.)

based on obsolete information. Updates in SDN are dynamic

and frequent and hence changes in the network such as the

inclusion/exclusion of hosts, IP addresses, MAC addresses,

etc. should be quickly discovered and accommodated.

SDN controller and its channel of communication with its

switches (i.e. OpenFlow) will be the most vulnerable points

that are expected to be attacks’ targets. SDN depends on

splitting data from control in switches and allocate switches

control remotely and centrally in a software controller. SDN

has several positive goals for such direction. However, this

direction has also its payoffs. From a security perspective,

MiM attacks can possibly occur between controller and its

switches where a switch can be compromised or controlled by

an intruder. SDN architecture tries to approach this problem

by dedicating a special connection between the controller and

switches in a separate physical and logic subnet from the rest

of switch ports. However, that does not eliminate completely

the possibility of compromising the communication between

the controller and its switches.

One of the ambitious goals of SDN is to be able to design

dynamic and programmable security controls that can fully

http://dx.doi.org/10.1016/j.cose.2015.05.006
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operate with least or no human interaction. Those security

controls can respond in real time to network changes and

security threats and respond accordingly. However, once

those controls existwemay see new types of attacks thatwere

unconventional in classical networks. For example, it may

become possible to create ghost or fake network nodes that

are intelligently crafted by expert hackers based on their

knowledge of software controllers, their APIs, middle-boxes,

etc.

There is also a serious security threat from high level or

northbound middle-boxes or applications that can be devel-

oped to communicate with the controller. Those user defined

and controlled applications can interact with the controller to

provide commands or pull information from the underlying

network. Those applications exist in typical users environ-

ments, operating systems, Internet connected hosts. Such

environment has a significant amount of threats where it is

possible to attack and compromise a middle-box application

that is interacting with the controller. The special relation and

privileges given to such application from the controller can be

a significant power exposed by attackers. In principle while

one of the major goals of SDN was to enable users to interact

with and control underlying network, however, a possible

payoff is that such privilege can be abused intentionally by

attackers or unintentionally by network users.

Table 1 below summarizes contributions in SDN-based

attacks or threats. In comparison with classical networks,

while the general types of attacks are not expected to change

significantly, however, opportunities for some types of attacks

are expected to increase.
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4. SDN security controls

Security controls aim at providing access to legitimate users,

protecting systems from attacks, and providing mitigation

and countermeasures when attacks occur. Complexity and

exact duties of each control can vary from one domain to

another. Control main tasks can generally include detection,

logging, protection and counter measures.

4.1. SDN firewalls

Firewall is one of the most popular security mechanisms.

Firewalls are responsible for monitoring network traffic to

allow or prevent their passage or intrusion based on certain

criteria specified by users or network administrators. Typi-

cally, they work in layers 2e3 (i.e., data-link and network

layers) of the OSI 7-layers model. Firewall rules can be defined

to prevent or permit traffic based on IP addresses, ports, pro-

tocols, and MAC addresses. While traditional firewalls have

been well-studied, the research on SDN firewalls is still

evolving. An SDN controller itself performs some of the tasks

that are typically accomplished by traditional firewalls. For

example, controllers in SDNmake decisions related to the fate

of flows and write relevant flow rules in switches’ flow tables.

4.1.1. SDN firewalls vs traditional firewalls
In terms of attributes used in firewall rules, the current

implementations of SDN firewalls are similar to traditional
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firewalls. On the other hand, recent versions of OpenFlow

have expanded the list of attributes that can be included in

flow rules. This will eventually impact future implementa-

tions of SDN firewalls.

Themajor impact that SDN has on firewalls is that the SDN

controller make decisions on flows fate. In traditional net-

works, thiswas themain role of the firewall. In SDN, controller

acts as a firewall (coarse grain firewall). Controllers continu-

ously evaluate or know current topology by using a link dis-

covery module. Controller generates LLDP and broadcasts

packets routinely to neighboring switches. Based on response

from those switches, controller can frequently predict current

network topology. Controller also includes a learning switch

module that learns about new devices based on their MAC

addresses. Rules can be added dynamically by the controller

to the switches’ flow tables. If a new flow is added to the

network, the learning switch checks input and output

switches of the flow and also the best route for the flow. This is

then added as a new rule to the proper switch.

In SDN, controllers store rules or Access Control Lists (ACL)

for all network switches. Such connection (i.e. between fire-

wall and switches) does not exist in traditional networks. As a

result, firewall rules in traditional networks are static and are

not connected to network traffic. Those rules are added and

evaluated manually by network administrators. It is hence

possible that some rules in traditional firewalls are obsolete or

inapplicable. On the other hand, flow table rules in SDN are

very dynamic. Obsolete rules are eventually removed from

flow tables.

As the recent versions of OpenFlow have extended flow

attributes, SDN based firewalls can be more specific and deal

with flow or packet level attributes. OpenFlow 1.0 includes 12

header fields. In addition to those fields, there are new fields

related to IP protocol, VLAN, etc. OpenFlow 1.2 and above in-

cludes 40 header fields, giving users more ability to control or

interact with network flows. Having control at the flow level

enables network administrators to perform tasks that were

not possible using traditional networks. In some cases, they

want to perform traffic redirection through middle-boxes.

This problem is quite common in the cloud environment

where the automatic configuration of a new instance of a VM

or tenant will not be completed as network administrators

have no control on middle-boxes (e.g., a firewall) to instruct

those middle-boxes to allocate resources to the new VM or

tenant [Sherry et al., 2012; Gibb et al., 2012; Gember et al., 2013;

Mysore et al., 2013].

4.1.2. SDN-based firewalls
In SDN, a firewall module can be added typically as a north-

bound (REST) API to the controller. REST API is a standard add-

on environment for interacting with most SDN controllers. It

allows user-developed applications to communicate with the

controller. Firewall rules are different from flow table rules

although they may look similar.

Several papers have discussed how to implement SDN-

based firewall modules. [Casado et al., 2006] proposed SANE,

as a protection architecture for enterprise networks through

defining a single protection layer. This is one of the early

contributions to centralized control in the network operating

systems or the SDN controller. Switches and other network
components have simple and minimally trusted forwarding

elements. In this early SDN architecture, controller includes

access control rules instead of having them in firewalls in

traditional networks. One of the explicit stated goals related to

centrality is to unite all security effort and information in one

place. This, however, may have different interpretations. The

centrality of rules’ decisions in the controller should not be

mixed with combination of functions as different security

controls are not cohesively performing the same tasks. The

idea of a central controller offers another advantage because a

firewall module interacting with the controller can have a

global view of the whole network.

[Hu et al., 2014a,b] proposed FlowGuard; an SDN based

monitoring framework for detecting possible conflicts be-

tween firewall rules and flows. Whenever network state

changes occur, FlowGuard checks path spaces to see if a fire-

wall policy is violated. In this study, several challenges and

opportunities of SDN-based firewalls are discussed, such as

the ability to dynamically evaluate policy changes, conflict

issues in flow table rules, the centrality of the controller, and

the firewall ability to perform stateful traffic inspection.

[Jia and Wang, 2013] proposed SDN based firewalls for P2P

networks. The firewall module is provided as an API to be

integrated with SDN. P2P networks' use case may benefit from

SDN because P2P networks have very dynamic users (who

frequently enroll and leave). Bandwidth or network demand

varies also frequently. The flexibility that SDN has over

traditional networks and its ability to dynamically accom-

modate users’ demands fit most of P2P use cases. As security

is always a major concern of P2P networks, SDN solutions

need to provide security mechanisms to prevent possible

intrusions.

[Suh et al., 2014] presented an SDN based firewall over POX

controller. They used attributes from OpenFlow 1.1 to allow

users to add firewall rules. They showed preliminary experi-

mental results based on generated flows. [Sethi et al., 2013]

formally modeled SDN controller behavior. They assessed the

validity of their model using a simple stateful firewall module.

An instance of a simple scenario to prevent direct connection

from the Internet to the enterprise network is used in the

evaluation. The activities or processes between the firewall,

controller and switches are formally defined. In general

formal modeling approaches are applied on low scales and

have scalability limitations.

4.1.3. SDN-based stateful firewalls
With the ability of SDN to have a global view of the network, it

is hoped that stateful analysis of the network or particular

flows will be possible. Stateless network analysis studies

packets or flows individually without considering other

packets, flows, or flow rules and without looking at some

other network, system or environmental variables. On the

other hand, stateful analysis takes combined views of the

whole rules or traffic in the network. A stateful firewall should

be able to record and keep track of traffic history. It may also

need to handle different protocols together (e.g. TCP, UDP,

ARP, ICMP, etc.). Controller can trigger stateful packet in-

spection by ordering switches to send all packets to it (i.e. all

attributes with wild card values). However, there are several

challenges in implementing such feature. For example, real
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time scenarios make it hard to observe many packets over a

period of time. Reconstructing a complete stream may not be

possible given that some content may change across the

network between forward and reverse traffics or due to for-

warding. The dynamic change of the topology makes the

verification of current/historical variables very complex.

Switches may dynamically change or rehash some header

entries when they forward packets to destinations. Those are

some examples of the challenges and the open research areas

on how to conduct stateful firewall tasks based on SDN.

A complete stateful packet inspection in the whole

network can occur only through the controller and not

switches. Packet level information in the controller is pro-

vided with a limited access [Shirali-Shahreza and Ganjali,

2013a,b]. Forwarding planes are stateless and without the

controller active monitoring of flows stateful inspection is

impossible [Song, 2013].

Stateful firewalls can be used to detect security attacks.

[Katta et al., 2012] presented Flog, in which a stateful firewall

application can be built using programming languages, in few

lines. They used stateful firewalls for detecting possible ma-

licious code from insiders. However, their approach repre-

sents only a small example of what a stateful firewall should

do. Flog saves senders and receivers’ addresses and assume

that externals are trusted if they previously received packets

from network internals.

[Zhu et al., 2014] introduced SFA, stateful forwarding

abstraction in SDN data plane. The goal is to provide packets

stateful network processing thatmay require upper layers (L4-

L7) information. A forwarding processor (FP) is proposed to

extend SDN controller functionality. Packets are forwarded to

this processor which will perform further processing on those

packets, including state related storage and inspection. FP

module can also interact with events or triggers from the

controller itself such as network or topology related changes.

[Stoenescue et al., 2013] proposed using symbolic execu-

tion for networks' stateful checking. They developed a tool

called Sym-Net tomodel basic statefulmiddle-boxes. Network

stateful checking can help in making contextual firewall de-

cisions. Those decisions do not depend only on L2-L3 infor-

mation but can have information from possibly all network

layers. While progresses in this area are very premature,

however SDN features promise the expansion and advances

in this area. Similar to most security challenges that face SDN

solution, robustness and scalability are major issues. In the

case of stateful inspections, heavymemory resources, storage

and network resources are all required and necessary to

conduct stateful inspection at mature levels or cases. State

explosion is also another challenge. If we consider the

network state as the traffic flows and rules in the network, this

means that any single change in one of those flows or network

elements will cause a state change. This can produce a

tremendous amount of possible states.

[Fayaz and Sekar, 2014] proposed FlowTest to test stateful

network cases of firewalls and policies in SDN. They focused

on data plane testing to systematically test stateful behaviors.

Policies typically include high level stateful instructions. For

example, a policy may say “Block unsolicited connections

from the Internet”. Such policy has no reference to any (L2-L3)

information. This requires firewalls to work beyond L2-L3
layers. States are specified per TCP connections (i.e., null, new,

established, or invalid). They represent traffic states, not

network states. A proxy module that operates at the session

level is also proposed to support in the process of stateful

inspection. A proxy state is expressed based on HTTP objects.

4.1.4. Hybrid firewalls
Hybrid firewalls refer to firewalls that work in an environment

with mixed SDN and traditional networks. [Pan et al., 2013]

proposed FlowAdapter to handle flows in heterogeneous

OpenFlow switches. Flow tables in OpenFlow switches should

be able to deal with legacy hardware. In addition some field

types exist in flow tables have no equivalents in legacy

switches. In fact, OpenFlow protocol itself is evolving where

earlier versions have 12 attributes and new versions have 40.

There is always a need to support backward compatibility and

at the same time ensure that valuable information is not

dropped or ignored due to such transformation. Adaptors are

necessary to provide such transformation dynamically.

The process of transforming firewall ACLs fromone system

to another or from one domain to another can be time

consuming. Typically security administrators use the

expression “The devil is in the details” to indicate that the real

complex and time consuming part of the process is not the

technical part. Existing research discussed migrating firewall

ACLs from traditional networks to SDN [Gamayunov et al.,

2013]. Those reports claim that the process can take less

time and effort given the ability of SDN or OpenFlow network

to evaluate policy rules automatically.

[Shin et al., 2013a,b] proposed a security framework to

allow legacy security systems interact with OpenFlow

network. [Hand et al., 2013] introduced “active security” as a

programming environment to configure and evaluate fire-

walls’ configurations. They extended Floodlight by connecting

it to open source IDS Snort along with some other applica-

tions. Active detection means combination of monitoring and

prevention or detection with protection. However, this inter-

action between Snort and SDN is primitive and not coordi-

nated (i.e. no real time interaction). Snort log output is

extracted when alerts occur and is then added as an input to

the controller. In typical complex scenarios, major concerns

will be related to detection accuracy and also performance or

network overhead. There are some other trials to integrate

Snort with OpenFlow. The challenge is that SDN collects and

inserts flows in a structure that is not compatible with tradi-

tional networking that current Snort versions are adopting.

4.2. Access control

SDN is a candidate to offer flexible and dynamic access control

solution. [Casado et al., 2009] proposed Ethane SDN architec-

ture that allows managers to enforce hosts’ controls through

fine grained access control policies. Ethane represents an

early effort in SDN that inspired the OpenFlow protocol and

central management of network or global policies. Ethane

used flow based networks and a central controller. Switches

direct flows to the controller to make decisions about. Policies

are held in a central controller.

Inspired by Ethane, [Nayak et al., 2009] discussed dynamic

access control and monitoring in SDN networks. An access

http://dx.doi.org/10.1016/j.cose.2015.05.006
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control system called Resonance is connected directly with

real time monitoring which can accelerate the cycle from

getting information alerts to taking actions. Access control

system can be closer to the action points and can respond and

take actions in real time based on current traffic. Traditional

middle-boxes such as firewalls, etc. are often placed at the

edge of the network. The study showed that dealing with ac-

cess control dynamic interactions in SDN can be easier than

that in traditional networks. Access control policies are

enforced based on flow level information and real time alerts.

Monitoring subsystems are integrated with the controller to

assist in the access control process. Similar to Ethane, the

controller enforces access controls through policies that are

installed in switches.

[Wen et al., 2013] proposed PermOF, a fine-grained access

control system in SDN. The major goal is to secure the

controller and secure communication with the controller.

PermOF includes a list of 18 possible permission levels for

minimizing possible intrusion or privilege escalation. The

permission system is combined with run time isolation (be-

tween controller and applications). It offers a default least

privilege permission for OpenFlow applications. The ability to

successfully isolate applications from the controller is a key

for the applicability of such approaches.

[Yamasaki et al., 2011] proposed an SDN based VLAN so-

lution for campus networks. In addition to the VLAN IDs

problem, authors indicated an overhead problem related to

the extensive time required to implement andmaintain VLAN

database. Access Management Function (AMF) module is

added to track and authenticate users or hosts. System is

evaluatedwith 10,000 IDs. Evaluations showed that SDN based

solution can outperform traditional solution. SDN solution is

also dynamic and is expected to reduce a significant amount

of maintenance overhead.

[Kinoshita et al., 2012] proposed an approach for OpenFlow

based access control and authentication system for wireless

campus networks. They pointed out two limitations in

[Yamasaki et al., 2011] approach and proposed enhancements

on those limitations. The first limitation is related to the

inability of the earlier system to work in anonymous user

authentication mode. The second limitation is related to the

cost of users' DB maintenance. Rather than dealing with in-

dividuals, they can be clustered into groups and authentica-

tion can be made based on the users’ groups. This can reduce

the size of the DB that authentication system needs to search

through. Authentication system needs not to look for names,

but rather for groups which may also help in dealing with

anonymous users.

[Wu et al., 2013] discussed programmable virtual networks

(PVN) in the cloud based on MAC isolation. A PVN server is

proposed in OpenStack to act as an OpenFlow controller. Local

agents are delivered in the network to support PVN controller

to filter traffic based on MAC addresses.

4.3. IDS/IPS

Intrusion detection/protection systems (IDS/IPS) stop or allow

packets based on thorough investigation of packets using data

mining, pattern recognition, signature matching with existing

inventory of threats, etc. Unlike traditional IDS, SDN IDS can
utilize the tremendous amount of flow information in real

time. SDN can change the way security mechanisms are

distributed. For example, an IDS exists in one location in

traditional networks (usually in the network premises). In

SDN, IDS tasks can be distributed through the switches or

agents in the network. Controller or one of its modules can

orchestrate the process [Rothenberg et al., 2012].

4.3.1. Integration with traditional tools
Existing research has tried to integrate some popular IDSs

such as Snort with SDN [Ballard et al., 2010 and Xing et al.,

2013]. Integrating Snort with SDN faces several challenges.

SDN controller typically receives samples, not complete flows

which contradict with how Snort works. A commonway to set

things up is for the controller to receive the first packet or the

first few packets of a given flow. Once having received those,

the controller installs rules in the switches that will handle

the rest of the packets in that flow. This is done because

typically sending each packet to the controller is impractical.

Since Snort expects to see every packet in a flow, we will not

be able to put Snort inside the controller effectively without

vastly impacting the performance and the structure of

OpenFlow network. An alternative design would be to create a

service in the controller to manage a set of machines running

Snort and to install rules that redirect traffic to the machines

running Snort.

Snort has its own limitations when it comes to the type of

attacks it can detect. While being a good open source IPS/IDS

(with a rule based language combining signature, protocol and

anomaly based inspection), Snort is still reliant on regular

signature updates. It has noway to detect higher level exploits

such as web exploits (e.g. malicious Java Scripts). Snort may

not also help with attacks such as: Advanced Persistent

Threats (APTs). SDN and Snort differ also in the way they

collect, reroute and monitor traffic. In traditional networking

span ports are used to reroute traffic for monitoring or secu-

rity applications. In SDN, data can be extracted from the

controller through northbound APIs. Filters can be applied in

SDN to extract traffic based on certain criteria and command

controller to rewrite traffic based on those criteria.

[Xing et al., 2013] investigated integrating Snort with

OpenFlow networks. SnortFlow is capable of reconfiguring the

cloud system on the fly to detect and counter intrusions. This

work came as an extension or enhancement for NICE system

in [Chung et al., 2013a,b]. It uses Snort for coordinated attacks'
detection. SnortFlow includes three components: A daemon

to collect alerts data from Snort agent, an alert interpreter to

parse alerts and decide which traffic to target, and finally

rules’ generator that will inject rules in OpenFlow switches.

Changes caused by the new rules are saved to allow possible

roll-back or restoration. Countermeasures to take are classi-

fied based on cost and intrusiveness. Careful consideration

should bemade on the proper countermeasure to take so that

it will not interrupt normal operations.

FRESCO and its successor project SE-Floodlight [Shin et al.,

2013a,b] produced several security applications related to

SDN. One of those recent extensions is FlowBoss. FlowBoss is

hosted in SE-Floodlight and it imitates in OpenFlow what

Snort is doing in traditional networks. Network policies can be

specified to prevent unauthorized access. Policies can be also
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specified to rate limit traffic in certain times, or filter traffic

based on certain characteristics.

4.3.2. SDN IDS implementation
[Goodney et al., 2010] presented an implementation of SDN-

based NIDS on the NetFPGA networking platform. It can be

used to test FPGA algorithms for Deep Packet Inspection (DPI)

or high speed programmable packet processing. The module

can conduct network intrusion detection through DPI.

[Skowyra et al., 2013a,b] discussedOpenFlow basedNIDS in

embedded mobile devices and Cyber-Physical Systems (CPS).

Applications or case studies include robotic transport and

biomedical devices as they have similar threat models. In

general, mobile devices are subjected to attacks within the

device coverage range (i.e. modem, Wi-Fi or Bluetooth).

Encryption is usually suggested as the main security mecha-

nism to eliminate such attacks. However, for some small

commercial applications, strong encryption methods can be

infeasible or expensive. Location based security mechanisms

may not protect from local users or insiders. Proposed IDS or

Learning IDS (L-IDS) can be used to support encryption or

location based security mechanisms. Anomalies are defined

based on several characteristics: Packets’ sent, position, time

passed, size, etc. For each one of those characteristics, normal

range is specified. Deviation from such normal range can be

classified as an anomaly.

[Kerner, 2012] represents Indiana University experience

with building an (Intrusion Protection System) IPS based on

SDN.Major advantages of the new systemwere related to load

balancing and the ability of the network to handle and

distribute traffic based on security controls. Global policy

based network security management is another important

goal that SDN based IPS is expected to achieve.

[Chung et al., 2013a,b] presented a system on Network

Intrusion Detection/Protection System (NIDS/NIPS) in the

virtual networks using OpenFlow based programmable APIs. A

graph based analytical attack model is proposed to detect and

counter attacks on VMs. The system periodically scans VMs

and decides based on the severity of detected vulnerability to

put the VM in an inspection state or not. In the attack graph,

each node represents either a pre- or post-condition of an

exploit. The graph can provide details of connectivity between

different vulnerabilities or exploits. An Alert Correlation

Graph (ACG) is mapped to a Scenario Attack Graph (SAG) that

includes the exploit, steps to reach the exploit and its post-

condition or results. They focused on a small subset of flow

information including only five attributes: Source and desti-

nation MAC and IP addresses in addition to the protocol.

[Heorhiadi et al., 2012] discussed NIDS problems from

scalability perspective. SDN flexibility methods can offer

promising solutions to this challenge and load can be

distributed or sliced among different controllers. Tradition-

ally, IDS needs to monitor all traffic which is very time

consuming and produce a large volume of traffic for analysis.

IDS or NIDS load can be reduced by replicating the traffic to the

nodes that are off-path after making sure that they are

available and have free resources. In addition, the fact the

SDN controller can aggregate data from different switches in

one location can also be an important characteristic to intru-

sion detection or protection systems. The central NIDS
module periodically collects information about traffic and

policies. It can be also triggered by certain traffic changes or

events. The traffic itself needs to be classified or categorized

into different classes. Each class can be subjected to different

types of NIDS analysis. An intelligent engine can be used for

initial analysis of traffic to specify the type of analysis to

subject the traffic to. This can be an evolutionary process that

learns from past experience or traffic and improve accuracy in

future.

[Braga et al., 2010] is an example of using SDN for the

assessment of security vulnerabilities. This work focused on

the detection of DDoS attacks. Similarly, [Mehdi et al., 2011]

focused on anomaly detection methods based on SDN in

home networking. They evaluated the impact of SDN on

traditional anomaly detection methods and measured the

efficiency of intrusion detection methods based on low traffic

rates.

[Giotis et al., 2014] proposed combining OpenFlow with

sFlow to improve flow-based anomaly detection. Flow statis-

tics can be a good source for inspecting possible anomaly

behaviours in the network. Collecting statistical data through

the controller faces a serious scalability issue. Consequently

there are many research proposals to outsource this task to a

separate supporting module. [Giotis et al., 2014] conducted a

study with high packet rates (up to 130,000 packets per sec-

ond). Flow information collected is based on a subset of at-

tributes from the old version of OpenFlow that includes only

12 attributes. They evaluated data collection based on native

OpenFlow and also using sFlow. Native methods can be

applicable in low tomedium size traffic. This is since there are

some limitations on the size of flow entries in the switches’

flow tables. The sFlow approach decouples the flow collection

process from the forwarding logic where packet samples

provide all necessary information. This can show a significant

reduction in size.

The above work focused on information related to (L2-L3)

layerswithout looking at the actual packets' contents. [Shirali-
Shahreza and Ganjali 2013a,b] proposed an extension to cur-

rent OpenFlow protocol to allow controller to have access to

packets’ contents. Current information exchanged between

the controller and switches is largely related to routing in-

formation. The goal is to use such information for security

applications including NIDS/NIPS or anomaly detection tools.

In some cases, samples rather than the complete traffic are

sent to the controller. Different sampling methods (e.g.

deterministic or stochastic sampling) can be requested by the

controller based on the nature of the security application or

middle-box. Full packets are only requested under certain

conditions.

4.4. SDN policies

SDN is expected to facilitate automatic configuration,

assessment, and enforcement of network policies. While

policies in traditional networks are embedded in firewalls and

their ACLs, SND allows for policies at different levels of

abstraction. Thus, we separate our discussion on SDN policies

from that on firewalls.

Policies that regulate operational activities are considered

high level guidelines that can be translated and enforced by
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low level security mechanisms such as firewalls, proxies, etc.

Traditionally, the translation from high level policies to con-

crete security mechanisms is mostly conducted manually by

network administrators. SDN brings a new opportunity for

security policies to be interpreted, updated, evaluated and

enforced by automatic tools with least human intervention.

4.4.1. SDN policy languages
Policy languages have been proposed for writing formal or

semi-formal policies. The main goal is to bridge the gap be-

tween two different levels of abstraction: Human natural

languages in which administrators start writing high level

policies and low level rules that machines can understand or

interpret.

[Hinrichs et al. (2008, 2009)] proposed Flow based Man-

agement Language (FML) to express access lists and policies

for NOX controller. FML itself is based on DATALOG; a

declarative logic language used in the connection with data-

bases. In the core of policies there are rules andAccess Control

Lists (ACLs). Policy enforcement is implemented using a de-

cision tree to reach the rightmatching rule for the current flow

or the packet based on the rules in the flow table and/or the

firewall. FML maintains states related to lists of users and

their devices or hosts. Access control decision is then made

based on the values of those flow fields or attributes. In

addition to “allow” and “deny”, there are other decisions in

FML:Waypoints, avoid, and rate limit. Waypoints or reference

points are defined to mark certain known points (e.g. hosts, a

server, a gateway). “Waypoint” and “avoid” are opposite to

each other (i.e. to order traffic to reroute or skip those network

points). Rate limit indicates a rate limitation (i.e. maximum

allowance) on the traffic.

[Ballard et al., 2010] proposed ALARMS, a flow-based

specification language to interact with OpenFlow flows. This

can be used as a tool with administrators to enforce policies

through controlling and routing traffic. The work extended

earlier FML to include attributes related to the flow content.

This enables access control and manipulation beyond L2-L3

layers. For example, a security administrator may want to

limit chat or peer to peer applications. Theymay want to limit

programs that consume a large amount of bandwidth. Previ-

ous FML fields have little abilities to allow administrators to

make policies based on actual packets’ contents.

[Foster et al., 2011] introduced the Frenetic language for

programming network switches. Frenetic is developed not

only for policies but also to generally assist in network ser-

vices; routing, access control and trafficmonitoring. It has two

levels of abstraction; high level to construct and manipulate

network traffic and low level to interact with switches. This

may solve the contradictory constraints that policies need to

handle: on one hand they need to be expressive enough to

cover administrative high level requirements, and on the

other hand they need to implement these requirements as

rules in switches in their terms (i.e. flows). One problem with

NOX controller [Gude et al., 2008] that Frenetic tried to solve is

the modularity issue of policy rules if written through

controller program. In general, it is not modular or reusable to

write policy rules inside the controller program. Rules are

expected to be very modular as they may change frequently.

Hence, it is very important to separate them from the
controller code. A Frenetic program can be developed to

represent an instance including network policies. This pro-

gram will be able to enforce policies through the controller.

[Monsanto et al., 2012] introduced the NetCore language for

expressing packets' forwarding policies in SDN. It includes

constructs to analyze packets and historical traffic patterns.

New algorithms are designed in Frenetic for compiling rich

policies and for managing controller and switches’

interactions.

[Foster et al., 2013] contribution is an improvement on

Frenetic. It showed a rich query syntax (e.g., Not equal,

GroupBy, Select, Limit, Every) that can help optimizing policy

rules and allow administrators to have more control and se-

mantic in writing policy rules. The controller can then handle

transforming those policy rules into low level details under-

stood by switches. [Katta et al., 2012] proposed (Flog), a

network programming language that can be considered as

hybrid between FML and Frenetic.

To improve expressiveness in network and security pol-

icies, [Voellmy et al., 2012] introduced Procera; a control ar-

chitecture that includes a declarative policy language based

on functional reactive programming. Procera tries to help

network designers to implement expressive policies without

the need to use programming languages. Procera includes

signals and signal functions as reactive concepts. Signals are

like transient functions where functions are attached with a

period of time. Signal functions or constructs cause trans-

formations on signals. There are other research papers related

to Procera and network programming. [Voellmy and Hudak,

2011] discussed examples of applications using network pro-

gramming including a learning switch and traffic monitoring

applications. [Kim and Feamster, 2013] extended the work of

Procera and described how it can help in network manage-

ment. Main goal was to propose a solution that can compro-

mise between the need for rich and expressive high level

policy features and at the same time the need to interact with

low level details at the switches or networking components'
level.

[Anderson et al., 2014] proposed NetKAT network pro-

gramming language based on amathematical structure called

Kleene Algebra with Tests (KAT). NetKAT can be used to ex-

press OpenFlow requirements through adding and interacting

with flows. It provides a high level algebra for complex

reasoning and query of flows.

4.4.2. SDN security and network policies
[Casado et al., 2007] described the interactions between the

controller and security policies as rules injected by the

controller in switches. Those however were imitating tradi-

tional ACLs. [Nayak et al., 2009] proposed the Resonance se-

curity mechanism for dynamic access control evaluation

based on flow level information. Resonance interacts with

high level policies to make decisions on flows. It uses a policy

specification framework based on traditional or existing ac-

cess control frameworks.

[Feamster et al., 2010] used OpenFlow to solve policy

problems in campus and enterprise networks. They tackled

two challenges; access and information flow controls. The gap

between high level expressive policies and low level access

controls exist in switches or firewalls continue to be a serious
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challenge for administrators in dealing with large networks.

For information flow control, traditional approaches are host

based. If the host is compromised, the information flow can go

out of control.

[Ferguson et al., 2012] introduced the concept of Hierar-

chical policies. Policies can be composed of or contained in

other policies. A policy tree is then constructed based on the

hierarchical relations between the different policies.

[Wang et al., 2012] presented a security management ar-

chitecture with interactive policy enforcement. Their version

of the controller is supported with a policy table that interacts

with packets while they are traversing the network. Perfor-

mance can be an issue here especially as the model is applied

on a small size network with only 50 users. They utilized

different security service elements including: IDS, protocol

identification, virus scanning, load balancing, traffic moni-

toring and content inspection. [Son et al., 2013] introduced

Flover model checking system to verify OpenFlow-based flow

policies. They focused on testing for non-bypass-ability or to

test that current flows adhere to firewall rules. They extended

earlier approaches by including new features such as “set”

and “goto”.

Policy migration from traditional networks to SDN was also

the subject of many research papers [Vanbever et al., 2013;

Vanbever et al. 2014; Zhang et al., 2014]. Policy migration is

considered another advantage for using SDN where it is ex-

pected that the process of migrating policies is less time

consuming in SDN in comparison with traditional networks.

Traditionally, the migration process which is manually imple-

mentedcantakea longtimeandmanpowerspecially toaddress

out of date or conflicting rules. Typically, the term “The devil is

in the details” is used to show that the process is not complex

from a technical but from an operational or practical perspec-

tive.PolicymigrationscanbeagoodshowcaseofSDNusecases.

[Gibb et al., 2012] proposed outsourcing some network

functionalities from the controller to external components. A

policy API is included with several enabled features that are

location independent from the controller. Those features can

be called on demandwhenever needed. Themanagement and

control of those features are outsourced from the controller to

improve performance and reduce centrality. This proposal is

close to the concept of web services offered in Service Ori-

ented Architecture (SOA). Services are known and accessed by

their public interfaces. Service providers are separated from

consumers where the same service can be used in different

contexts. From security perspectives, communication be-

tween service providers and the controller is critical. It should

be developedwith security in mind as those interfaces can act

as back doors to access the controller and its core modules.

4.4.3. Policy enforcement
Automatic enforcement of security policies is an important

task that SDN can achieve. [Bellessa et al., 2011] presented an

approach to dynamically enforce flow level policies in cloud

networks. Policies are written by administrators in high level

languages. Those policies are then interpreted by the policy

evaluation and compliance monitoring system (ODESSA)

based on the network components and actual flows. In other

words, ODESSA is responsible to transfer abstract policies into

concrete implementation based on network specifications.
[Fayazbakhsh et al., 2013] focused on the issue of consis-

tent policy enforcement and flow tracing or tracking. In their

proposed enhancement to SDN architecture, they proposed to

add contextual information to flows. In this proposal a

southbound-controller middle-box will add tags to outgoing

packets where those tags can be used for systematic policy

enforcement. Currently OpenFlow is the only standard pro-

tocol in the southbound-controller communication. Those

applications may dynamically change packets' headers. Such
headers’ modifications may have a negative impact on policy

enforcement andmaymislead the process that enforces those

policies. In some cases, the same application that is supposed

to perform policy enforcementmay change those headers and

consequently make the process difficult on itself.

[Qazi et al., 2013] proposed a middle-box layer to deal with

traffic steering for those middle-boxes. A flow correlation

mechanism is proposed to handle the issue of packets’

induced transformation mentioned in the previous research

[Fayazbakhsh et al., 2013]. There proposed solution; called

SIMPLE, tried to deal with existed OpenFlow architecture and

constraints. This solution represents a policy enforcement

layer to manage communication between middle-boxes and

the data plane. This design however, imposes a special pur-

pose controller to interact with switches and middle-boxes.

However, it is not clear how this special purpose controller

is going to communicate, with OpenFlow protocol and with

the main controller.

[Kazemian et al., 2013] discussed another challenge in

policy enforcement and evaluation; real time issues. Due to

the rapid change of network state, performing policy checking

frequently can be resource and time consuming frompractical

considerations. In addition, such network rapid change may

require policies to be frequently reevaluated. NetPlumber is

proposed as a possible solution to this challenge. NetPlumber

utilized a previous approach on static checking for the same

authors called “Header Space Analysis, HSA”. NetPlumber

frequently checks for state change based on studying rules'
change from a dependency graph modeled from those rules.

In the graph, nodes represent forwarding rules from switches'
flow tables and edges represent next hop dependency in those

rules. Probe or check nodes can be used to incrementally

check policy or invariants for possiblemodifications. Different

events trigger changing the rules’ graph and consequently

require policy reevaluation.

[Bari et al., 2013] presented PolicyCop as an OpenFlow

based interface or policy management framework. The

framework allows monitoring specific parameters in the

network and adjusting them based on Service Level Agree-

ment (SLA). The framework contains several functional com-

ponents including: A policy validator, checker, enforcer, traffic

monitor, topology manager, etc.
4.5. Monitoring and auditing

Monitoring and auditing are very important tools for many

security controls. A significant opportunity in SDNnetworks is

related to the amount of details that can be gathered at the

flow and even the packet level. This was difficult or resource

consuming to achieve in traditional IP networks.
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4.5.1. Traffic monitoring tools
[Nayak et al., 2009] proposed Resonance; an OpenFlow based

solution that provides continuous monitoring distributed

across the network. Network elements or switches forward

traffic to the controller. As an early contribution in OpenFlow,

this paper shows how the nature of OpenFlow architecture or

process flow can help, natively, the monitoring process.

[Ballard et al., 2010] proposed OpenSAFE (Open Security

Auditing and Flow Examination). This is a tool that leverages

SDN to improve network monitoring. Monitoring tools use

Span ports in order to create copies of network traffic for

monitoring purposes. Usually network tools allow a limited

number of Span ports. Firewall modules and IDS in traditional

networks usually use one or more of those Span ports. This is

why such monitoring tools cause significant network over-

head if fully implemented. Filters that are used to reroute

traffic can look similar to those firewall rules or flow tables.

They can be built using the same match fields or features.

However, there should be more expressive tools/mechanisms

to reconstruct packets than those available in firewall or flow

table rules. They include mathematical operations such as

less than, more than, and sorting options related to the

collection, query and statistics of traffic. With the use of

OpenFlow networks, OpenSAFE can direct spanned traffic in

arbitrary ways while such traffic can be used by several

simultaneous services or security controls such as IDS and

firewalls.
[Huang et al., 2011] proposed implementing dynamic

measurements aware routing or forwarding for traffic moni-

toring. They discussed three challenges related to traffic

monitoring: The dynamic assessment of traffic importance,

flow aggregation, and finally how to perform traffic moni-

toring with least network disruption or network overhead?

Information from OpenFlow switches are used in those tasks.

Flow importance is estimated through its size. Controller can

retrieve size of flows using flow-query/flow-expire messages.

[Shin and Gu, 2012] introduced CloudWatcher as a moni-

toring tool for cloud services. Some packets, based on security

concerns, will be detoured to a security check point for further

security inspection. The application includes three modules:

Device and policy manager, routing rule generator and flow

rule enforcer. This work addressed two issues in cloud traffic

monitoring: The need to consider both insider and outsider

threats and to consider that cloud networks are very dynamic

where hosts or network components may change frequently.

CloudWatcher is proposed as a controller northbound appli-

cation. It should provide this monitoring service to different

available security mechanisms. Security Aware Routing (SAR)

is also proposed in CloudWatcher paper. SAR is used in some

traditional networks such as Ad-hoc networks. SAR algo-

rithms try to ensure that packets should go through certain

security check points (e.g. firewalls, access control, etc.) for

packets’ checking.

[Argyropoulos et al., 2012] proposed PaFloMon passive

slice-based monitoring tool for OpenFlow networks. The

target is OFELIA European open SDN testbed. Slices in this

case represent different users or experiments that are using

the testbed. The monitoring tool sFlow is used and integrated

with OFELIA. SFlow can help in monitoring and statistics as

well as instrumentation for conducted experiments.
The level of details a monitoring tool can collect related to

flow information is very important. [Shirali-Shahreza and

Ganjali, 2013a,b] proposed FleXam; an extension to current

OpenFlow protocol. The goal is to allow controller to have

access to packet level information and packets' contents. Such
information is necessary and required by most security

mechanisms. Current information exchanged between the

controller and switches is at the flow level that does not

include packets’ contents and is related to routing informa-

tion only. Some approaches such as that of [Mehdi et al., 2011]

proposed a solution where controller will not install flow

based rules in the switches. This causes the switches to send

packet level information to the controller. However, this

approach may not be realistic given that the controller will be

overwhelmed with packets and the overall network delivery

time will be slow. As an alternative, those packets can be sent

to a special monitoring tool. A compromised solution is pro-

posed between those two alternatives. FleXam enables the

controller to access samples of packet level information in

switches. Those samples are selected based on controller

choice using some statistical algorithms (i.e. statistical

sampling).

[Raumer et al., 2014] discussed also sampling in OpenFlow

traffic. They differentiate between security monitoring and

Quality of Service (QoS) monitoring. In security monitoring,

we are looking for possible traffic patterns that may indicate

an attack. Sampling methods have no significant impact then

on security monitoring, given a detection of an attack. How-

ever, in QoS monitoring, sampling can show incorrect picture

of network health. For example a particular sample we are

investigating may show good performance while the rest of

traffic is facing an opposite situation. Same thing can be said

given other quality attributes.

[Qazi et al., 2013] pointed out that SDN firewalls and other

security controls are not going to strictly work in the L2/L3

layers as in traditional networks. They presented a policy

enforcement layer specifically for traffic steering or moni-

toring. This policy can manage traffic steering based on users'
or applications’ requirements.

[Chowdhury et al., 2014] discussed quality factors and

trade-off in traffic monitoring. The trade-off is usually be-

tween monitoring accuracy, timeliness and network over-

head. Optimizing one of the three quality attributes can be at

the account of the other two factors. Payless is proposed as a

monitoring framework. The goal is to best optimize moni-

toring given the three quality attributes mentioned earlier.

Monitoring information from Payless can be exchanged with

different security controls or applications. Payless provides a

standard RESTful API that allows tools to make and retrieve

traffic queries.

[Yu et al., 2013] focused on performance monitoring in

OpenFlow networks. They proposed a push-based approach

where the network switches initiate information related to

performance degradation or problems. Such approach can

reduce overhead where information is only sent when per-

formance degradation occurs. Calibration is required to

compute normal performance range in a particular network.

Any deviation from that range can then be reported by the

network. FlowSense tool is developed to measure flow-based

bandwidth consumption. They focused on two OpenFlow

http://dx.doi.org/10.1016/j.cose.2015.05.006
http://dx.doi.org/10.1016/j.cose.2015.05.006


c om p u t e r s & s e c u r i t y 5 3 ( 2 0 1 5 ) 7 9e1 0 8 97
messages between switches and the controller: PacketIn and

FlowRemoved. Those are relevant to measuring flow band-

width as they represent the start and the end of a flow stream,

respectively.

[Karame, 2013] focused on security issues in network

measurement tools and the impact of OpenFlow switches.

Author investigations showed that most measurement tools

are not developed with security in mind. Host or end to end

measurements trust hosts and ignore possible insiders’

threats or threats that compromise hosts. Author analyzed

several examples of network security threats. Author also

showed examples of howOpenFlow can be better improved in

terms of security in response to selected security threats.

Namely author selected two issues: Bottleneck bandwidth

estimation and network coordinate measurements. Author

proposed a scheme based on OpenFlow to secure communi-

cation or flow traffic from being attacked or compromised.

[Zaalouk et al., 2014] evaluated SDN features such as

network visibility and control centralization as possible so-

lutions for some security vulnerabilities. They proposed

OrchSec; an orchestrator that utilizes networkmonitoring and

SDN control to develop security applications. This architec-

turemaymitigate some attacks that do not need a deep look at

packets’ contents (e.g. Worms, DoS, etc.).

4.5.2. Traffic management
[Curtis et al., 2011a,b] proposed Mahout, a traffic management

system for dealing with large or elephant traffics. There are

many security threats or attacks that push large traffics. Ex-

amples of those include: Worms, DoS or flooding. Mahout is a

controller based on OpenFlow architecture where hosts, rather

than the switches, are expected to monitor possible large traf-

fics. Hosts monitor such large traffic in coordination with the

controller which manages the process of handling this large

traffic. Each host monitors possible large traffics and commu-

nicateswith thecontroller once a large traffic isdetected.Native

single OpenFlow controllers suffer from scalability issues

especially in dealing with large traffic. Using the host to handle

large traffics can relieve thenetwork fromhandling andwaiting

for traffic in progress which can be delayed for several possible

reasons or problems. To detect possible large traffics from end

hosts, their socket buffers can be used. A threshold is set as a

variable which can define the edge of a large traffic volume.

[Jain et al., 2013] discussed a WAN SDN based solution for

routing and traffic engineering in B4 Google data centres.

OpenFlow is used to manage switches and optimize band-

width usage. Google SDN solution includes OpenFlow

controller and also Network Control Applications (NCAs). NCA

directives' and switches' events are used by controller to

maintain network state.

[Wang et al., 2013] discussed the problem of traffic load

variation and how to handle it in OpenFlow networks. Traffic

is continuously studied and investigated to predict possible

traffic overload. NetFuse causes little overhead over the

network or the controller as it uses traffic data already

collected by the controller. It is important to predict whether a

large traffic is related to normal or intrusion causes. Such

problem can be classified as difficult; Nondeterministic Poly-

nomial (NP) especially as the term (large traffic) is subjective

and vary in size and threshold based on the nature of the
traffic and the reason for packets’ aggregation. Machine

learning classification algorithms can be applied in this

particular subject. NetFuse tries to find the best reasonable

flow aggregation and the possible overloading reason.

[Jose et al., 2011] proposed a solution based on OpenFlow

switches. The process is based on switches to count packets in

traffic as traffic traverses. Once the size passes a certain

threshold, a flag can be raised that this traffic is large. One

problem with this solution is that it delays the discovery of a

large traffic till it passes. This is justified by authors as a trade-

off between accuracy and low overhead. Examples of several

attacks that may use large traffics are shown and how their

proposed solution can be used to handle those types of at-

tacks. As mentioned earlier, one problem with identifying a

large traffic is in selecting the threshold itself. This is since

this threshold value is subjective and context dependent. In

other words, what can be considered large for some applica-

tions will be considered normal for others.

[Sun et al., 2014] proposed a traffic management solution

(HONE) based on joint information from OpenFlow network

and end hosts. Data is processed locally in the end hosts. A

trade-off between host and network elements is discussed.

Applications in the host have a better visibility into applica-

tions’ behaviours while have little knowledge about the

network behaviour. On the other hand, network switches

have the opposite picture. Consequently an effective moni-

toring or traffic management approach should try to integrate

information from both sides together. One challenge with

handling host-based network management however is that

hosts have several components and applications that interact

with the network and information about the network exist in

several locations. HONE agents run on hosts in addition to a

module that interacts with OpenFlow switches.

[Choi et al., 2014a,b] discussed OpenFlowmanagement and

control challenges given the centrality and scalability issues.

They proposed an SDN monitoring agent or middle-box

(SUMA). SUMA is proposed to integrate logically manage-

ment, control and monitoring services. SUMA takes the

overhead of the monitoring process from the controller. It

alerts the controller in case anomaly behaviours occur. They

demonstrated some attack scenarios and how they can be

detected using SUMA. Thismiddle-box acts in the southbound

section between the controller and switches. One problem

with such approach is that it changes significantly SDN ar-

chitecture that currently has only OpenFlow as the only

adopted protocol in this side.

[Rasley et al., 2014] introduced Planck, traffic management

framework for providing scalable traffic data with short or

small time scales using port mirroring mechanisms. Traffic

from switches is mirrored to a designated port. Traffic data is

an important asset for all security applications. Collecting and

analyzing such data with high accuracy, real time and least

network overhead contribute to improving security controls

and attacks’ detections. Mirroring in OpenFlow has an

advantage over traditional mirroring using Span ports. This is

since mirroring in OpenFlow can be customized. We can

specify or extract certain traffic based on customized criteria

or query. Different security tools can extract different infor-

mation based on their needs. This makes the mirroring pro-

cess very focused and optimized.

http://dx.doi.org/10.1016/j.cose.2015.05.006
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4.6. Security control for mobile SDN

The idea of separating control plane from data plane can be

extended to wireless networks. Traditionally control is mixed

between software and hardware where different mobile ven-

dors have different architectures. The process of adding new

functionalities can be very slow and complex. Wireless or

cellular SDN refers to extending SDN architecture to wireless

or cellular networks. In this section, we will focus on research

contributions in SDN mobile networks in particular. Terms

such as: SDW, SDC, SD Mobile Networks (SDMNs), or even

CellSDN are used to refer to SDN-based mobile implementa-

tions. For simplicity and consistency, we will use SDW.

SDW controller is expected to provide fine-grained policies

based on subscribers' attributes. Controller northbound APIs

or middle-boxes provide many services such as: Mobility

manager, accounts or subscribers’ manager, radio source

manager, policy and charging managers, interference man-

ager, and infra-structure routing. It may also include security

applications such as firewalls and IDSs.
One of themajor SDN goals was to come upwith a uniform

or a standard switch architecture for the different networking

vendors. In wireless, there are typically different cellular ser-

vice providers as well as different manufacturing companies.

Having a standard communication architecture can be

consequently very important and useful.

[Li et al., 2012] proposed an approach for SDN wireless

(SDW) with fine grained policy management. The SDW

approach is expected to be cheaper than traditional wireless

approaches due to the ability to use OpenFlow switches that

should be cheaper than traditional ones. As traditional wireless

switches are expensive, carriers may overuse them based on

load requirements. Interference can be also reduced in SDW

where controllers of different carriers can have a global view

of their network and consequently can better communicate

and improve issues related to interference. Different tech-

nologies and carriers may communicate effectively through

this common new open architecture. New features such as

usage based cost or pricing are possible using SDW. Virtuali-

zation in wireless and cellular networks will have new chal-

lenges to deal with related to: Billing, interference, radio

signals, etc. where such issues should be revisited given the

new architecture for both possible benefits and challenges.

[Hampel et al., 2013] argued that SDN can be an effective

architecture to solve problems in mobile networks. They

proposed vertical forwarding as an extension to current

OpenFlow to handle mobility policy or access control man-

agement or in particular fine grained forwarding. The concept

of vertical forwarding is used to distinguish their proposal

from OpenFlow forwarding schemes between switches and

their controller (i.e. horizontal controller). Vertical forwarding

is proposed to extend this forwarding to include legacy ele-

ments of network components.

[Namal et al., 2013] discussed the idea of switch mobility

and the secure change of IP addresses. They presented a

system to perform this change employing IPsec encapsulated

security payload. Current issues in OpenFlow which make it

inapplicable in its current format to wireless networks are

discussed. For example, first, changing addresses will disrupt

flow processing. It should be ensured that, such process
occurs very fast and dynamic. This may also impact secure

session management required for secure communication be-

tween switches and the controller. The fact that mobile net-

works are very dynamic and very fast moving in terms of

active users can both give opportunities and impose chal-

lenges to applying SDN on mobile networks. HIP (RFC 5201:

Host Identity Protocol) security method is adopted to be used

in OpenFlow connection to enhance existing communication

method from a security perspective. HIP identifies a host

either by a host identifier or a host identity tag. An extension

to wireless on switches called (flow control agent) is also

proposed which should update controller of the new location

information for location based services.

[Skowyra et al., 2013a,b] discussed security issues in

embedded mobile devices and Cyber-Physical Systems (CPS).

A Learning Intrusion Detection System (LIDS) is proposed

based on OpenFlow networks for detecting and mitigating

security attacks. Anomaly behaviour is defined as statistically

different flow traffic from a user defined normal traffic.

[Ding et al., 2014] discussed how SDN can benefit mobile

networks in terms of security aspects in particular. One of the

major challenges in mobile networks is that there is an

increasing bandwidth demand that current infrastructure is

not keeping up with. Mobile services are also evolving rapidly

in terms of nature and complexity. They also presented some

SDN security solutions in general and classified those solu-

tions into five categories: Enterprise, home networks, edge

access, cloud, and general. SDN can provide the virtualization

abstraction layer necessary to integrate different Internet

Service Provider (ISP) platforms or services. Complexity and

details of different wireless protocols can be shielded behind

this abstraction layer. Programmability feature should be able

to greatly improve policy management and administration

not only related to security functions but also to business

functions such as billing, accounting, service subscription, etc.

Several design challenges are described in order to implement

SDN in mobile networks including: Mobility, roaming, moni-

toring overhead, multi-access, multi-operators issues, inter-

operability, responsiveness, compatibility, adaptation,

simplicity and finally deployment and how SDN can be

compatible with current mobile technologies. Paper proposed

a security enhancement framework dedicated for SDN solu-

tions in mobile networks.

Strong security mechanisms in mobile applications may

cause significant resources and performance overhead. To

deal with such problem, [Hurel et al., 2014] proposed

outsourcing security controls in mobiles to the cloud so that

they can work as security services on demand. This may

clearly solve the issue of using mobile resources. However, in

terms of performance, it may go from one challenge to

another. This is since, those security controls need to be very

transparent and fast. Once those security mechanisms are in

the cloud, they will be accessed through the Internet or public

networks which can suffer from periodic traffic jams. In the

same problem (i.e. mobiles resources’ constraining), [Gember

et al., 2012] proposed an enterprise centric offloading frame-

work that leverages SDN.

As a new architecture, SDN in mobile networks can bring

both opportunities and challenges. [Liyanage et al., 2014]

focused on security challenges that SDW may bring. They

http://dx.doi.org/10.1016/j.cose.2015.05.006
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focused on the issue of channel or communication security.

Current SSL/TLS optional encryptionmethod in OpenFlow has

some security concerns [Meyer and Schwenk, 2013]. An

alternative communication security mechanism is proposed

based on Host Identity Protocol (HIP) that is independent from

OpenFlow protocol. A security interface or gateway (SecGW) is

proposed as a layer between the controller and OpenFlow

switches to hide the identity of the controller. Each switch is

embedded with a local security agent (LSA) that should allow

communication of the switch with SecGW. This may prevent

types of Man in the Middle (MiM) attacks as SecGW is

communicating with the switches through those embedded

security agents. IPSec tunnels encryption is used for the

communication between SecGW and LSAs or the switches.

4.7. SDN Wi-Fi networks

In this section, we discuss SDN in home networking and

campus networks. Many early SDN use cases that were used

to promote SDN were related to this category in particular.

The wireless networks are very agile. Consequently security

control andmanagement are farmore important and complex

if compared with wired networks. Wi-Fi has some unique is-

sues (e.g. billing management) to handle in comparison with

other networks. In addition, security problems in Wi-Fi and

the use of illegitimate intrusion to private networks are very

popular. Handling AAA (Authentication, Access and Ac-

counting) and differentiating them from each other is another

challenge that faces current systems that manage Wi-Fi net-

works. This is since current methods assume one user ac-

count and management systems for the three functions.

Existing research proposed solutions for this problem based

on SDN [Suresh et al., 2012; Kang et al., 2013; Pentikousis et al.,

2013; Dangovas and Kuliesius, 2014].

In SDN Wi-Fi security in particular, once SDN is extended

to cover wireless routers, access points and switches, existed

encryption algorithms such as WEP, WAP 1 and 2 should be

revisited and assessed based on this new architecture. This is

since those encryption methods assume that home access

points or routers include data and control. However, based on

SDN, controller will be separated from data and will not exist

within those devices. Encryption methods should exist be-

tween users and the controller from one side and also be-

tween the controller and the access points from another side.

One of themost serious security concerns inWi-Fi or home

networking is dealing with third party applications. Those can

pose threats to both local users and ISPs. On the other hand,

ISPs, for many reasons, can't enforce strict security policies on

their customers to control what they can download, use, etc.

Home users vary widely on the nature of applications they

install or use or on the type of environments they use those

applications in. A security model should then handle very

agile and largely ambiguous spectrum of possible threats.

[McKeown et al., 2008] discussed some of the values of

using OpenFlow networks in Universities or campus net-

works. Those are typical examples of large networks of users

and hosts. In addition, those networks are very dynamic;

many new students enroll each year and many others leave.

Typically Universities allow students to bring their own de-

vices and most users access the network through wireless
access points or smart phones. Such networks can be a good

show case for OpenFlow; programmable networks. Several

examples on how OpenFlow can be a good solution are

presented.

Feamster with several other colleagues have several papers

in SDN in general and in home networking in particular

[Feamster et al., 2004; Mundada et al., 2009; Nayak et al., 2009;

Ramachandran et al., 2009; Anwer et al., 2010; Voellmy et al.,

2010; Feamster et al., 2010, 2013a,b; Koponen 2011; Voellmy

et al., 2012]. Some of those papers [e.g. Feamster et al., 2004]

represent early proposals to change traditional networking

architecture to a programmable architecture. Those contri-

butions along with several others contributed to emerging

SDN. SDN Research Group RG was formulated and a project

called Bismark (http://projectbismark.net/) was established in

coordination with Internet Engineering Task Force (IETF).

Their main focus was the applications of SDN in home

networking. The project proposed a security architecture in

home networking for monitoring traffic and dealing with se-

curity attacks. SDN and its programmability nature can

introduce great benefits to home networking management.

Examples of management aspects that can be utilized based

on SDN architecture for home networking in particular

include: Usage cap management, parental control and band-

width management. Those can all be offered for users in real

time. Procera event based programming language is proposed

to write and evaluate policies. Policy language and layer can

be used to facilitate communicationwith the controller. Upper

layers or layers in the northbound section can use Procera and

other policy languages such as FML to communicate with the

controller.

[Mehdi et al., 2011] focused on anomaly detection methods

based on SDN in home networking. It is advocated that

deploying SDN anomaly detection solutions at home

networking is capable of detecting more and accurately ma-

licious codes in comparison with those deployed in ISP pre-

mises. The impact of SDN on traditional anomaly detection

methods is evaluated. They measured the efficiency of intru-

sion detection methods based on low traffic rates.

[Schulz-Zander et al., 2014] proposed AeroFlux; scalable

wireless SDN architecture to support large Wi-Fi enterprises

and carrier deployments. Application aware services are

implemented to optimize resource allocation based on appli-

cations’ requirements or needs. Controller tasks can be

divided between local controllers and a global one. Global

controller control tasks that are not time critical.

Yap et al. have published several papers on SDN Wi-Fi

networks [Yap et al., 2009; Yap et al. 2010, 2011]. [Yap et al.,

2011] discussed security issues in Wi-Fi and a solution based

on OpenFlow. The proposed solution can accomplish the

logical separation of three different functionalities: Authenti-

cation, access and accounting. Wi-Fi users should not be held

accountable for information content that was downloaded

from unaccounted users using their Wi-Fi networks. This is a

simple example to show that there is a need to decouple the

threepreviouslymentionedaspects and identifyusers for each

one of the three separate from each other. For example, let's
consider a public restaurant that provides access to the

Internet. Users should have their own accounts that distin-

guish them from each other. Future implementations of such

http://projectbismark.net/
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separationmay help achieving (openWi-Fi) for public services

where users who have Wi-Fi in their homes can open it for

public services. However, there are some challenges that SDN

are expected to address, such as mapping login to traffic and

traffic to authentication services, rate limiting, etc.

The Clome project described a migration process from

home networking to the cloud [Nabi and Alvi, 2014]. Several

advantages as well as challenges are presented in this

migration. OpenFlow solution can make the transformation

process faster and easier. Management tasks such as: Ac-

counting, auditing, billing, etc. can be implemented in very

flexible and customized based on SDN programmability.

4.8. Privacy protection

Protecting privacy is important because many security attacks

(e.g. information disclosure, tampering, and non-repudiation)

target users' private information. The impact of SDN on privacy

is two-fold: On one hand, SDN, through its programmability and

flexibility features, can give ISPs the ability to customize privacy

andcontrol services todifferentusersbasedon their preferences

[Stallings, 2013]. For example, users can provide their ISP with

their preferences onwhatwebsites or service to permit, block, or

log. On the otherhand, suchwealthy information canbeused by

ISPs for marketing purposes. The evolution of network tech-

nologies such as SDN is expected to isolate the dependency of

policies on low level layers' information [Paterson, 2014]. This

will eventuallygive ISPs theability to track theircustomersbased

on high level applications, usage profile, traffic, data etc. While

such information can provide rich wealthy information from

commercial perspectives, on the other hand, it may cause sig-

nificant privacy concerns. Cloud, ecommerce and health infor-

mation systems are important network environments in which

customers'orusers’ information issensitive fromprivacyaswell

as cost perspectives [Thuemmler et al., 2013].

Network Address Translation (NAT) and Carrier Grade NAT

(CGN) are techniques used to provide mass network services.

They can hide internal hosts' identities from externals. NAT is

used to allow many users to be able to use the same real or

registered IP address over the Internet. It resolves IP addresses'
conflicts through replacing unregistered IP addresses with

registered IP ones. It is used in: Servers, routers, firewalls, etc.

where the device maintains a state table to translate unreg-

istered to registered IP addresses. Packets are then translated

from the unregistered address to the registered one or the

opposite before moving inward or outward. Logging and

tracing private addresses should be handled separately as

typically those will not be available based on NAT. Similarly,

CGN acts like a proxy to allow several users share one public IP

address. It is offered as one of the solutions for IP address

exhaustion. Typically it is implemented in mobile dedicated

hardware. OpenFlow can offer a better solution to CGN with a

flexible, robust and cost-effective approach [Donley, 2013].

Traffic can be also better monitored and managed from the

different subscribers. [Olteanu and Raiciu, 2012] focused on a

case study for using OpenFlow to isolate and distinguish

traffic from different hosts in CGN for stateful network pro-

cessing purposes.

[Mendonca et al., 2012] introduced AnonyFlow; an Open-

Flow based “in-network” anonymization service. AnonyFlow
is claimed to cause less network overhead in comparisonwith

other approaches. AnonyFlow is claimed to be able also to

perform intra-domain anonymity. Users’ privacy protection

through the Internet can be a significant safe guard from

many security attacks targeting users and their private in-

formation. Primary target for this approach is end-point log-

ging (e.g. from third parties). IP addresses are translated to

anonymity IDs that other (i.e. destination) parties can only

see. AnonyFlow is responsible for the translation between

those IDs and hosts or IP addresses.

[Kopsel andWoesner 2011; Kotronis et al., 2013; Su~n�e et al.,

2014] discussed privacy issues in SDN testbeds. They proposed

a privacy and availability layer in those testbeds to act as a

proxy for managing the connections with remote users. Net-

works of different users can be separated using slicing tech-

niques (e.g. FlowVisor).

[Khan et al., 2013] focused on P2P traffics detection and

privacy protection based on OpenFlow switches. P2P traffic is

usually characterized by two things. First, large files are

exchanged in those networks and consequently a large

bandwidth is required. Second, users vary frequently which

makes privacy and anonymity critical issues.

4.9. Security controls of BYOD

Bring Your Own Device (BYOD) is widely popular in companies,

schools, or public places. BYOD is about users who have their

own: Laptops, tablets, or smart phones. They want to use those

devices for bothbusinessandhomeorpersonal purposes.There

is no clear distinction inside those devices of what is personal

and what is for business activities. Accounts in emails, social

networks, etc. are usually used for both purposes. Currently,

enterprises struggle to find the best way to handle dealing with

BYOD situation. Preventing such devices is not any more

feasible given that all users have one or more of those devices

with them all the time and given that preventing and moni-

toring users not to carry those small devices is hard to imple-

ment or enforce. Preventing users or asking them to dedicate

different devices for work and personal usage is also hard to

implement or guarantee. Finally, accepting and embracing the

usage of thosedeviceswithout any security control is very risky.

The major security threat in BYOD is related to the data in the

device and the risk that it can be hacked by intruders. A some-

what similar case is how to handle guests’ access accounts to

enterprisenetworks incompanies, universities, hotels, airports,

etc. Security and accountability are two major concerns for

allowingusers toaccess thenetworkand its services. Preventing

them to use the network is not a proper alternative. The com-

monality in both situations is the need for security controls that

are very agile and temporal. Current security controls are static

and do not have the ability to continuously screen and change

policies based on real time scenarios.

An SDN based solution to BYOD by HP is implemented in

Ballarat Grammar school in Australia [HP, 2013]. HP SDN

Sentinel security solution is shown to provide a realistic ac-

cess control solution for such dynamic situations. Security

threats from users and devices were detected and countered

in real time.

[Hand et al., 2013] proposed using SDN to handle security

problems when dealing with BYOD. While proposed solution

http://dx.doi.org/10.1016/j.cose.2015.05.006
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may not be able to access and install security agents in users’

mobile devices, however SDN based active security ap-

proaches can continuously monitor those mobile devices and

disconnect them in case of any security concern.

SDN has some features that can make it a candidate to

solve dealingwith BYOD; however, SDNmayhave a scalability

problem given the very frequent network and control update

information required when using a large number of mobile

devices [Awobuluyi, 2014]. [Shoji et al., 2014] introduced the

concept: Bring You Own Network (BYON). The goal is to opti-

mize mobile networks’ resource utilization. A solution based

on programmable network is presented. To avoid compro-

mising security, network should align each user or device to a

particular network slice. This requires fine-grained and dy-

namic access control to manage and keep tracking of those

users and devices.

[Suresh et al., 2012; Schulz-Zander et al., 2014] argued that

the existing solutions for programmable Wi-Fi networks

depend only on client-side modification which may not

handle situations such as BYOD. They proposed Odin to pro-

vide features that enterprise and service providers need to

implement from their server side.

4.10. Security control of open SDN labs

SDN open labs or testbeds are open network labs where users

internally or remotely are given access to perform their lab

experiments using the network resources. Those open

research labs were early motivators for SDN. This is because

traditional switches and routers are rigid and vendor closed.

Those traditional networking components do not give exper-

imenters the ability and flexibility to try their own algorithms

and test them on production networks. Currently, SDNmakes

it possible to have such open networking labs (e.g. GENI,

OFELIA, PlanetLab, VINI, and G-Lab). However, security con-

trols andmechanisms are still evolving in those labs and there

are many open issues and serious concerns. A similar case to

open labs is related to conducting locally networking experi-

ments. Researchers in the networking or related areas may

want to conduct experiments using their own machines.

Conducting some experiments while connecting to the pro-

duction network can cause a risk to the network. On the other

hand, isolating them completely in a static manner may not

allow them to use the network and its resources that they

need for their routine tasks. A solution to security and access

control in open labs should be easy to implement. The solu-

tion should be also easy to disable (e.g. when the experiment

is completed, etc.). Further, monitoring and tracking for those

devices should be simple to initiate or update and largely

conducted automatically with little or no human intervention.

[Kleban et al., 2013] demonstrated that security controls in

open labs are unique and has no current “off-the-shelf” so-

lution. In those labs, there is a concern of confidentiality

problem not only from externals but also from internals.

Network virtualization methods that allow different users in

those systems to share the same physical or network re-

sources while having different logical environments may fail

in certain scenarios. The goal of security testing in those en-

vironments is then to evaluate how much such vulnerable

scenarios are real or how often they can happen.
Open labs may not be necessary open for public. They can

be a company or vendor open lab which can be used for cloud

data centres [DeCusatis et al., 2013]. In this specific paper

[DeCusatis et al., 2013], an SDN based lab is proposed for re-

provisioning and reuse in cloud datacentres.

Open labs can be illegally accessed using spoofed identi-

ties. Users may try to change their identity to get legitimate

access to those labs. Some papers evaluated security vulner-

abilities in those Open or public labs [Siaterlis and Masera,

2009; Li and Hong, 2011; Li et al., 2011]. Spoofing is inevitable

as those networks require a pre-authorization process in

which many users may not qualify. Typically, two way cer-

tificates are constructed to ensure that only authorized users

can access Open labs through encrypted channels. A user who

has access to one node can, theoretically access and intrude

experiments in other nodes. This may harm the integrity of

the results of the experiments. If a node in the Open labs is

infected with malicious code, this may also spread to hosts of

users who are conducting experiments. A user who has an

access to such network may run a sniffing tool to get network

information about connected users. Sniffing the information

of both IP andMAC addresses is an important asset to conduct

ARP cache poisoning attacks.

[Li et al., 2011] discussed quality requirements in Open

labs. In terms of security and accountability, several security

control mechanisms and vulnerabilities are discussed.

Several challenges that make security control mechanisms on

those Open labs very difficult are described. One of the serious

challenges in those Open labs is that ownership of resources,

users and groups is distributed in a complex unaccountable

manner. Further, experiments are conducted through the

Internet with a large amount of information or data

exchanged. A threatmodel is proposed of three layers: Control

framework and administration, slices and experiments and

finally the Internet or outsiders. Typically, different experi-

ments are conducted on different slices. While slices can

share the same physical architecture, each slice should be

allocated its own virtual: Memory, switches, topology, etc.

Several types of security attacks such as: DoS, spoofing, cache

poisoning and flooding are investigated and how such attacks

can be mitigated. Fears also exist where legitimate users may

intentionally or unintentionally spread attacks through the

lab. For example, when their own machines are possibly vic-

tims of botnets or worms and without their knowledge they

could be contributing to an attack. Breaking the isolation be-

tween the different slices or experiments may cause security

problems or may risk the integrity of the experiments.

[Moraes et al., 2014] proposed FITS; a secured and flexible

architecture for Open labs based on OpenFlow networks. FITS

(Future Internet Open labs with Security) provides low cost

smart cards for authenticating users. TLS encryption is also

used over the communication channel. The other security

features adopted in the Open labs include: Strong slices’

isolation of the four main resources (i.e. network, topology,

bandwidth and memory or forwarding tables) and also VPN-

based interconnections. FITS uses open source Xen for

network virtualization. To ensure virtualization and isolation

between the different experiments a VLAN tag is inserted in

each packet.
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4.11. SDN Vs classical security controls

In Section 4 we described different types of security controls

and how those controls are going to evolve based on SDN.

Some security controls (e.g. firewalls, IDS/IPS, access controls)

are known in classical networks. However the functionality of

those controls will change based on SDN specially as those

controls will be able to dynamically interact with the under-

lying networks in real time and hence can make proactive or

responsive decisions in response to network changes, needs,

attacks, etc. For example, one of themost significant problems

in classical firewalls is related to how to configure/reconfigure

and maintain firewall rules or access control lists. Typically a

large company firewall can include a very large number of

firewall rules. Different rules can have different target access

entry/exits (e.g. in/out: ports, IP addresses, MAC addresses). In

classical networks rules are written manually by network

administrators and can be only evaluated, or updated manu-

ally also by network administrators or users. No tools can

effectively exist to screen out frequently rules for possible

conflicts or obsoleteness. Rule conflicts are typically solved by

short-cut solutions such as: first match or priority based rules

overriding. All those examples of problems in classical fire-

walls are expected to be solved in SDN firewalls. Ultimately an

SDN firewall should be fully programmable and autonomous

in a sense that it can adjust its rules to accommodate network

changes, new threats or attacks, etc. While research is already

going in this direction, it is acknowledged that reaching the

goal of such fully programmable firewalls requires solving

several hard problems or challenges. From a security

perspective and sense control decisions are going to be taken

by unattended firewalls, risks should be assessed that such

decisions are not going to cause a serious network change,

failure, etc. Safe and static rules should also exist to take

controls if a monitoring system decides that firewall decisions

are not realistic.

The amount of information collected from the network is

tremendous. SDN opens the possibility of exposing and using

such information. Research in artificial intelligent, data min-

ing, etc. should take place to evaluate best methods to use in

making decisions, in real time, related to several hard prob-

lems. For example those hard problems include whether a

certain traffic is a threat or not, whether a certain topology

change is necessary or not, what security counter measure to

take and how to select one control measure over the others

based on impact, cost leverage, etc. While all such types of

problems are hard in terms of the amount of information and

variables to collect, time is very critical where it is important

tomake real time decisions or else decisions can be invaluable

if they are late.
In the second category of SDN controls, we described

several examples of security controls that were not popular or

used in traditional networks and where we believe that they

will be used to a significant extent in SDN (e.g. security for:

BYOD, BYON, testbeds, home networking). Those types of

security controls or architectures become viable with the

evolving SDN architecture. They become also viable with the

evolution of the networks, Internet, etc. By having the

network and its traffic controllable by software applications,

security controls can be more flexible and agile. Their rivals
(i.e. attacks and threats) are also expected to evolve to better

challenge the new architecture and the new security controls.

For example, recent years showed a significant rise in smart

phones or Wi-Fi attacks. Such rise is expected to continuously

grow especially as SDN is expected to spread to wireless,

mobile, etc.

Table 2 summarizes research focus in security controls in

SDN environment and how they are going to evolve in com-

parison with security controls in classical networks.
5. Conclusion

We have presented an overview of the existing research in

SDN security, focusing on security threats, and security con-

trols. It is important to note that the landscape of SDN security

changeswith the advances in SDN research and development.

For instance, a new protocol or API introduced to SDN may

incur particular security threats and thus require specific

countermeasures.

To conclude this paper, we discuss several SDN security

issues and research topics. While they suggest directions of

further research, they are by no means an exhaustive list.

Insider threats: Insiders often have more privileges

particularly when they have access to the controller modules

or resources in SDN. Several insider intrusions in SDN are

studied in [Juba et al., 2013; Popa et al., 2010; Shin and Gu, 2012;

Duncan et al., 2012; He et al., 2014]. In virtualized SDN envi-

ronments, security attacks can propagate intentionally or

unintentionally from within the same physical network. A

compromised VM can escalate problems to other VMs espe-

cially as they run on the same physical elements. Security

measures should be continuously evaluated to ensure that

logically isolated tenants sharing the same physical network

are completely isolated from each other. Compromising the

controller resources is another type of insider threats. Appli-

cations interacting with the controller through controller APIs

can be used as back doors. Given that the controller has

tremendous privileges, such attacks can cause serious

network damages.

Virtual attacks: In principle, a new virtual network can be

establishedwithout following a certain network topology or IP

addressing space. Such black or dark network can exist without

being physically noticed. Special vulnerability assessment

tools should be developed to evaluate how likely such sce-

narios can be real for a particular network. In SDN, migration

of hosts should be implemented automatically in addition to

accompanied tasks such as triggering the proper ports or

network topology elements. While this is considered a sig-

nificant advantage, if implemented improperly, it may imply

serious security risks.

Security-embedded routing: SDN makes it possible to

embed security in traffic flows that helps transport traffic in a

secure manner. It goes beyond the concept of security aware

routing used to direct internal or external traffic for security

checking or auditing [Shin and Gu, 2012]. In security-

embedded routing, a routing protocol can act as a carrier

that helps not only in guiding the traffic but also in protecting

it. Similar to telecommunication carriers, for example, a

routing protocol can be multiplexed or modulated with the

http://dx.doi.org/10.1016/j.cose.2015.05.006
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Table 2 e SDN security controls research progress.

Security control Research evolution trends

Firewalls Dynamical allocations of firewalls [Sherry et al., 2012; Gibb et al., 2012; Gember et al., 2013;

Mysore et al., 2013], SDN-Based Firewalls [Hu et al., 2014a,b], [Jia and Wang, 2013], [Suh

et al., 2014] [Suh et al., 2014], Stateful firewalls access [Shirali-Shahreza and Ganjali,

2013a,b], [Katta et al., 2012], [Zhu et al., 2014], [Stoenescue et al., 2013], [Fayaz and Sekar,

2014], Hybrid SDN-classical firewall issues [Pan et al., 2013], [Gamayunov et al., 2013],

[Shin et al., 2013a,b], [Hand et al., 2013]

Access Control SDN-dynamic access control [Casado et al., 2009], [Nayak et al., 2009], Fine grained access

control [Wen et al., 2013], SDN VN [Kinoshita et al., 2012], [Yamasaki et al., 2011], [Wu et al.,

2013]

IDS/IPS Integration with classical tools [Chung et al., 2013a,b], [Xing et al., 2013], [Shin et al.,

2013a,b], SDN IDS/IPS implementation [Goodney et al., 2010], [Kerner, 2012], [Heorhiadi

et al., 2012], [Skowyra et al., 2013a,b], [Giotis et al., 2014], Applications [Braga et al., 2010],

[Mehdi et al., 2011], [Shirali-Shahreza and Ganjali, 2013a,b]

Policy Management SDN policy languages [Hinrichs et al. (2008, 2009)], [Ballard et al., 2010], [Foster et al., 2011],

[Gude et al., 2008], [Voellmy and Hudak, 2011], [Monsanto et al., 2012], [Voellmy et al., 2012],

[Katta et al., 2012], [Foster et al., 2013], [Anderson et al., 2014], Migration from classical

network [Vanbever et al., 2013; Vanbever et al., 2014; Zhang et al., 2014], policy enforcement

[Bellessa et al., 2011], [Fayazbakhsh et al., 2013], [Qazi et al., 2013], [Kazemian et al., 2013],

[Bari et al., 2013]

Monitoring and Auditing Traffic monitoring tools [Nayak et al., 2009], [Ballard et al., 2010], [Huang et al., 2011], [Jose

et al., 2011], [Shin and Gu, 2012], [Argyropoulos et al., 2012], [Yu et al., 2013], [Karame, 2013],

[Shirali-Shahreza and Ganjali, 2013a,b], [Raumer et al., 2014], Traffic management [Curtis

et al., 2011a,b], [Jain et al., 2013], [Wang et al., 2013], [Sun et al., 2014], [Choi et al., 2014a,b],

[Rasley et al., 2014]

Mobile Security Control [Li et al., 2012], [Gember et al., 2012], [Hampel et al., 2013], [Namal et al., 2013], [Skowyra

et al., 2013a,b], [Ding et al., 2014], [Hurel et al., 2014], [Liyanage et al., 2014],

Wi-Fi Networks [Feamster et al., 2004; [McKeown et al., 2008], Mundada et al., 2009; Nayak et al., 2009;

Ramachandran et al., 2009; Anwer et al., 2010; Voellmy et al., 2010; Feamster et al., 2010,

2013a,b; Koponen, 2011; Voellmy et al., 2012], [Suresh et al., 2012; Kang et al., 2013;

Pentikousis et al., 2013; Dangovas and Kuliesius, 2014]

Privacy Protection [Mendonca et al., 2012], [Stallings, 2013], [Thuemmler et al., 2013], [Donley, 2013], [Su~n�e

et al., 2014]

Security Controls of BYOD [HP, 2013], [Hand et al., 2013], [Awobuluyi, 2014], [Shoji et al., 2014]

Security Control of Open Labs [Kopsel and Woesner, 2011], [Li et al., 2011], [Kleban et al., 2013], [DeCusatis et al., 2013],

[Kotronis et al., 2013], [Su~n�e et al., 2014], [Moraes et al., 2014]
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traffic in a way that makes it not readable in transit. When it

reaches the destination, a demodulation process can

demodulate or decrypt the traffic at the destination premises.

Policy life cycle: SDN offers a potential for automatic

implementation of policy life cycle activities. The major

problem with policy management is related to the gap be-

tween low level mechanisms and high level user re-

quirements. Policies need to be richer in context than low

level firewall rules in traditional networks. They need to be

more expressive and comprehensive to cover a wide range of

possible packets. They should be managed by the controller

and supporting modules, and accessible and extendable by

administrators. Policies should be evaluated automatically

with high levels of performance, reliability and scalability.

While the existing research has discussed some of these is-

sues, full support of policy life cycle remains to be seen.

On-demand security services: One of the potentials of SDN

is enabling Internet or cloud service providers to provide

customized on-demand security services. Customers may

decide the details of security services that they want from

those service providers. An inventory of security services can

be provided where customers can select from. Not only cus-

tomers can select to opt-in or out those security services, they

can also decide their parameters. For example, an ISP may

provide awebsite blocker or parent control service. Customers
can select to enable it at a certain time, for a certain period or

for a particular host or user. They may also decide the nature

of the websites they want to allow or block. Those can be

available on their accounts and they can frequently view and/

or change.

Application access control: Network security controls

permit/deny traffic based on network level information (i.e. IP,

MAC addresses, port number or protocol). A limitation is that

many applications can't be prevented from using the network

without denying them based on their host. Most security at-

tacks compromise certain applications and it is impractical to

deny the host completely. SDN global policies can have the

ability to perform access control based on two levels of in-

formation: User/host and switch/network. A central access

control module can be developed as part of the controller to

keep tracking of the information from those levels and

consequently permit/deny traffic. Such fine-grained access

control system can update access control information

dynamically.

Internet security check points: One evolution that SDN

may bring to the Internet is the transference from IP to flow

based traffic management. This can enable the implementa-

tion of Internet check points. Many use cases have the need to

check security threats in flows through the communication

channels, not only at source and destination premises. Such

http://dx.doi.org/10.1016/j.cose.2015.05.006
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central check points can be a first defense layer on national or

enterprise gateways. Countries, states, and companies at large

may decide to have a central security gateway to screen

certain traffic coming to or going from their premises. An in-

ventory of on-demand security services can be offered by

those security check points. Sample security services are

border control, pinholing (e.g. timed open ports), translation

services (e.g., IPv4-IPv6 exchanging), QoS marking and verifi-

cation, and traffic metering.
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