Security Challenges in
Software Defined Networks (SDN)

Lecture 18
Outline

- Market and SDN
- Conventional Networks v.s SND
- OpenFlow-enabled SDN devices
- SDN Security Applications
- SDN Security Challenges
- Community Debate regarding Security in SDN
Market and SDN

- In 2016, the market research firm IDC predicted that the market for SDN network applications would reach **US$3.5 billion** by **2020**.

- Leading IT companies such as Nokia, Cisco, Dell, HP, Juniper, IBM, and VMware have developed their own SDN strategies.

- In 2015, AT&T reduced provisioning cycle by 95% with SDN.

 "We have taken a process from low automation and weeks to complete to high automation and minutes to complete. We’re turning the industry on its head in an unprecedented way.” John Donovan

 AT&T’s analyst conference in August 2015, John Donovan
Conventional Networks vs. SND

Control Plane
- Smart

Data Plane
- Dumb, fast

Decoupling

Conventional Networks
- Limited visibility
- Vendor-specific
- Misconfiguration
- Poor responses
- Policy conflicts
- Security breaches
- Decentralized.
- Complex
- Static architecture
- Innovation is difficult
- Costly
- Yes costly

Software Defined Networks

OpenFlow is: Enabler of SDN

- Protocol between the control plan and data plane
- Describes how controller and a network forwarding device should communicate

Flow Table

- **Match Fields**
 - Switching
 - Routing
 - Firewall

- **Actions**
 - Forward packet to port(s)
 - Encapsulate and forward to controller
 - Drop packet
 - Send to normal processing pipeline

- **Packet+ byte Counters**

Switching

```
  * 00:2E * * * * * * * port3 300
```

Routing

```
  * * * * * 4.5.6.7 * * * port5 250
```

Firewall

```
  * * * * * * * * 10 drop 500
```
SDN security applications

examples
• **Load Balancer**: send each HTTP request over lightly loaded path to lightly loaded server.
• **Firewall**: inform Central Controller about malware’s packets, controller pushes new rules to drop packets.

Routing, Load Balancer, Access Control, monitoring, firewall, DDoS Mitigation, IDS/IPS

Application plane

Abstract Network View

Network Virtualization

Up-to-date Global Network View

Control Plane

Server

Incoming packets

A → B drop

World-Leading Research with Real-World Impact!
SDN Security Challenges
Application Plane

Security Challenges

- Lack of Authentication and Authorization
- Lack of Access Control and Accountability
- Fraudulent flow rule insertion

SDN aware & SDN unaware apps
Nested applications

Apps classes
- Service apps
- sensitive apps
 - Path characteristics
 - Access ports
 - Monitor traffic
 - Reject/Accept flows
Application Plane
Targeted Threat/Proposed Solution

- Threats within/from apps
 - Framework for security apps development
 (FRESCO Scripting language)

- Security policy violation
 - Security policy verification framework
 - Flover: on controller
 new/old rules conflict
 - ndb: root cause
 - OFRewind: trace anomalies

- flow rules contradiction
 - Assertion-based language
 - catch bugs before deployed
 - forwarding loops
 - black holes

- Access control breach
 - Permission system (PermOF):
 least privilege on apps

World-Leading Research with Real-World Impact!
PermOF

The design is based on a Set of permissions & Isolation mechanisms

– Ensures controller superiority over applications
– Isolates control flow and data flow
– Controller should be able to mediate all the apps’ activity

<table>
<thead>
<tr>
<th>Category</th>
<th>Permissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read</td>
<td>read_topology read_all_flow read_statistics read_pkt_in_payload</td>
</tr>
<tr>
<td>Notification</td>
<td>pkt_in_event flow_removed_event error_event topology_event</td>
</tr>
<tr>
<td>Write</td>
<td>flow_mod_route flow_mod_drop flow_mod_modify_hdr modify_all_flows set_device_config set_flow_priority</td>
</tr>
<tr>
<td>System</td>
<td>network_access file_system_access process_runtime_access</td>
</tr>
</tbody>
</table>

![PermOF Isolation Framework](image)

Figure 1: PermOF Isolation Framework

Control Plane Security Challenges

- Threats due to Scalability
 - Huge # flow rules
 - Saturation
 - SDN response times
 - IP packets with random headers

- DoS Attacks
 - SDN response times
 - IP packets with random headers

- Challenges in Distributed Control Plane
Control Plane
Targeted Threat/Proposed Solution

Controller scalability

1. Wildcards mechanism
 - Load balancing: direct an aggregate of client requests to replicas
2. Increase the processing power (McNettle controller) parallelism
3. Hybrid reactively/Proactive controller

DDoS Attack

Detection Framework
SDN DDoSDetection

Challenges in distributed control plane
intra-domain & inter-domain (DISO)

<table>
<thead>
<tr>
<th>Switch</th>
<th>MAC src</th>
<th>MAC dst</th>
<th>Eth type</th>
<th>VLAN ID</th>
<th>IP src</th>
<th>IP dst</th>
<th>TCP src</th>
<th>TCP dst</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>port9</td>
</tr>
</tbody>
</table>

Throughput Scaling

- NOX-MT scales to 5m f/s at 10 CPU cores
- Beacon → 13m f/s at 20 CPU cores
- McNettle → 20m f/s at 46 CPU cores

World-Leading Research with Real-World Impact!
Reactively vs. Proactive Controller

Marcial P. Fernandez, Evaluating OpenFlow Controller Paradigms, 2013
1. **Flow collector module**: gathers flow entries within intervals.

3. **Classifier**: Analyzes → Alarm?

- **intra-domain**: manages its own network domain
 - compute the paths of flows
 - dynamically react to network issues (broken line, high latency, bandwidth cap exceeded)
 - redirecting and/or stopping traffic

- **inter-domain**:
 - discovers neighboring controllers and manages communication among controllers
 - exchange aggregated network-wide information with others
Data Plane Security Challenges

Flow rules installation
- Genuine vs. malicious rules
- Limited table entries
- Limited switch buffer

Switch-Controller link
- #switches per controller
- path Length
Data Plane
Targeted Threat/Proposed Solution

- flow rule contradiction
- man-in-the-middle attacks

Real-time contradiction check

FortNox
High level points
-- Debate
Centralization in SDN

The Good:
• Fast responsiveness
• Easy to removing policy inconsistencies
 – centralized routing algorithms
 – Firewalls
 – network-monitoring

The Bad:
• Single point of failure may be exploited by an internal or external attacker

Regarding DDoS
Bad: centralization added a new type of denial-of-service (DoS) vector.
Good: Effective management of existing DoS attack types
 – Using Global view
 – Traffic analysis

New security challenges but benefits appear to be predominant!!!
Good:
• In SND defenders can create customized security solutions
• e.g. Anomaly detection systems
 – Global view
 – Open hardware interfaces
 – Centralized control

Bad:
• Benefit the attackers (zero day attacks)
 – The centralized architecture
 – Lack of defender expertise
 – Still immature technology
Centralized vs. Distributed Approach

Good:

- Reduced complexity by splitting into planes.
 - Easier testable
 - E.g., routing algorithms simpler than the distributed approach in conventional networks.

Bad:

- Stressed by two aspects that strongly call for the use of a distributed approach.
 - The need for scalability
 - Operational requirements (fault tolerance)
Is SDN More Complex, or Is It Simpler

Implementing the control plane completely in software

Good:

- Programmability

Bad:

- Opposes simplicity: raises issues about algorithmic complexity.
 - Why: additional requirements that weren’t imposed on classical networks but are now thinkable in SDN.
 - Simplicity is a key design principle in building secure systems.

SDN has the potential to be simple—but making it simple is quite complex.
Open problems & research directions

- How to implement **authentication and authorization** to certify SDN applications.
- How to implement **access control and accountability** in SND.
- How to implement customized **security procedures** based on the type or categories of applications.
- How can we find **automated** derivation of Secure SDN **Configurations**.
- How can we secure the **controller-switches communication**?
- How can we perform efficient **intrusion detection** and **anomaly detection** in SDNs?
- How can we **operate SDN** in presence of **untrusted HW** components?
- How can we **protect the controller** itself?

Without security, SDN will not succeed!
Thank you