
Towards A UML Based Approach to Role Engineering

Pete Epstein
AT&T Laboratories

6012 Lochanora Lane
Manassas, VA 20111

mepstein@tidalwave.net

Ravi Sandhu
ISE Department,

MS 4A4,
GMU, Fairfax, VA 22030

sandhu@gmu.edu

Abstract

Role based access control (RBAC) is a promising
technology for scalable access control. For RBAC to
rise to its full potential, the roles must be properly
constructed to reflect organizational access control
policy and needs. This requires a discipline of Role
Engineering to develop various components of RBAC
such as role hierarchy, permissions (and permission-
role assignment), and constraints. The importance of
Role Engineering has been recognized but very little
work has been done to date. In this paper we explore
the possibility of using the Unified Modeling
Language (UML) to support Role Engineering. We
chose UML because it is a de facto standard and
reflects a consensus in the modeling community. To
investigate the capability of UML for Role
Engineering, we represent an existing Role framework
recently published by Thomsen, O’Brien, and Bogle.
This framework can be modeled in UML, with the
assistance of adding a new user defined UML
vocabulary.

Key Words

Role Based Access Control, RBAC, Unified Modeling
Language, UML, Role Engineering

1. Introduction

The continuing interest in RBAC is being addressed in
the number of RBAC research papers and projects
currently under way. RBAC will continue to grow if
its fundamental entities, “roles,” can be administered;
and permissions can be assigned in a systematic
manner to these roles. This approach requires a
thorough definition of a new discipline: Role
Engineering.

Coyne states [C95] that for Role Engineering to be
performed on an RBAC3 model [SCFY96], the
following components must be defined:

• Roles,
• Permissions (and permission-role

assignment),
• Constraints, and
• Hierarchies.

These components must be engineered as part of
deploying an RBAC system. One method of
representing engineering results is by using a modeling
language.

In recent years UML has emerged as a de facto
standard for object-oriented modeling of software-
intensive systems. UML is “a graphical language for
visualizing, specifying, constructing, and documenting
the artifacts” of systems [BRJ99]. There are several
companies that provide automated tools to support
UML; Rational is one of these companies who offer
the Rose product. UML products generate C++ code
for a program’s shell. The generated code can be used
to envelop the more detailed logical code that can be
written into the structure.

In this paper we explore the possibility of using the
UML to support Role Engineering. Documenting the
Role Engineering Components of an RBAC model in
UML syntax will show this possibility. The model
chosen is the Role Based Access Control Framework
for Network Enterprises (FNE), developed by
Thomsen, O’Brien, and Bogle [TOB98]. Choosing an
independently developed existing model for this
exercise gives us an element of objectivity in assessing
the modeling power of UML in this arena.

Seven abstract layers represent the FNE model. Two
different groups engineer the layers. The Application

Developers are responsible for the first four layers.
The remaining three layers are maintained by the Local
System Administrator.

 Within each of these groups, there is a need to create a
role hierarchy. Layer 4 requires a role hierarchy of the
Application Keys; and Layer 6 requires a role
hierarchy in the organization of the key chains. The
other five layers also support the implementation of the
keys; as such, they also require their own engineering.
Innate within the model is the need for Role
Engineering of the model’s basic components as roles,
permissions, constraints, and hierarchies.
Programmers can use the resultant UML graphics to
implement a solution.

This paper shows the feasibility of using UML to
support Role Engineering of an RBAC model. This is
accomplished by a sequential approach. In the first
section, Role Engineering is introduced. Then, an
overview of UML is presented. We discuss the UML
syntax that can be used in representing the FNE model
and introduce new UML stereotypes. The next section
provides a review of the FNE model. Section five
covers the representation of each of the seven abstract
layers of the RBAC framework model in UML. In
addition, we discuss Role Engineering of the model
and focus on the role hierarchy presented in layers 4
and 6. We give the UML graphics that can be used to
engineer the model. The remainder of the paper
summarizes the strengths and weaknesses of using
UML to present an RBAC model. The paper
concludes with a summary and direction for future
work.

2. Role Engineering

We assume basic familiarity with RBAC concepts such
as those given in the RBAC96 model [SCFY96]. The
roles of the RBAC model must be engineered in a
structured manner so that the model will correctly
express an organization’s policy.

Role Engineering is concerned with designing an
RBAC model’s components. The components we are
concerned about in this paper are Roles, Permissions,
Constraints, and Hierarchies. Sandhu defines these
terms as [S98]:

Roles – a job function within the organization that
describes the authority and responsibility conferred on
a user assigned to the role;

Permissions – a description of the type of authorized
interactions a subject can have with an object;

Constraints - A relationship between and among roles;
and,

Hierarchies – A partial order of permission-inheritance
relationship established among roles.

These RBAC model components that require Role
Engineering can be represented graphically. We will
use the UML language to document an RBAC model,
namely the FNE model.

There is some overlap between the terminology for
FNE and UML (e.g., an object means something
different for each concept). In spite of the differences,
in Section 5 we will show how the concepts of FNE
and UML interrelate and how they can be graphically
depicted.

3. Unified Modeling Language

This section provides a general overview of UML
concentrating on the syntax that is relevant to this
paper. Figure 1 displays the different types of UML
syntax used in this paper. In addition, we introduce
new UML syntax (Vocabulary) in the form of
stereotypes. For further information on UML the
reader is referred to [BRJ99]. UML has three main
building blocks: Things, Relationships, and Diagrams.

“Things” are the main components of the model.
“Things” are connected by Relationships. Diagrams
display the Things and Relationships in different active
or passive contexts. For example, a diagram can
document a dynamic process in which a student may
register for a class or it can document a static data
structure of an organization.

There are four kinds of things: Structural, Behavior,
Grouping, and Annotational.

One of the seven structural “things” of interest is a
class. A class can contain a name, attributes, and
operations. Classes will be used with objects.

Behavior “things” are the verbs of UML. They are the
dynamic parts of the UML. Behavior “things” will not
be discussed in this paper.

A grouping “thing,” as the name states, permits the
combining of different parts under a similar category.
We will use the grouping “thing” named “package.”

The final “thing” is annotational (it can also be called a
note). Notes comment a model. Notes can be used to
comment the enterprise constraints of a key chain.

Figure 1: UML Syntax

Interconnections between components are
accomplished by relationships. There are four kinds of
relationships: Dependency, Association,
Generalization, and Realization.

Dependency is a relationship between two structural
things where the modification of one “thing” may
affect the other “thing.” An association shows an n – n
relationship between two “things.” For example, there
can be several houses on a street, or a house can be on
multiple streets (i.e., a corner house).

Another type of relationship is a generalization. A
generalization is “a specialized/generalized
relationship, in which objects of the specialized
element (the child) are substitutable for objects of the
generalized element (the parent).” This type of
inheritance is similar to object-oriented inheritance;
both are transitive. Generalization can be used
between classes and between packages.

The last relationship is a realization. It is “a semantic
relationship between classifiers, in which one classifier
specifies a contract that another classifier guarantees to
carry out.” When we discuss the RBAC model, we
will use a realization relationship between an interface
of a handle and a class of an object. The handle will
specify a contract for the object to carry out.

Unlike classes, packages are more limited; there are
only two types of relationships: generalization and
dependency. A package uses a special type of

dependency called import and access. A dependent
package can have access to an imported package if its
contents are available to be exported (i.e., the package
contents are marked with a “+”). Imported packages
are not transitive. Dependencies are used to assign
application keys to enterprise keys.

There are nine types of diagrams that can document the
system: Class, Object, Use Case, Sequence,
Collaboration, Statechart, Activity, Component, and
Deployment. We are concerned with the
documentation of Classes.

There are a few more items to note with regard to
UML syntax: UML distinguishes between operations
and methods. Operations can be considered as the
name of a service being performed. A method is the
implementation (i.e., the logic behind the service) of
the operation. This is an important concept to
remember when we represent methods.

UML defines an extensive syntax; however, it is not
adequate for our purpose. Fortunately, UML permits
us to define additional vocabulary by using
stereotypes. UML uses stereotypes to define an actor,
which is of a type class. We will use an actor to
represent a user. Another stereotype is an interface.
An interface is also a type class but it does not define
an implementation of operations. Instead, the
operations in an interface are realized by other classes.

<<Enterprise Key>>

<<Key Chain>>

Relationships

Generalization
<<User>>

Class
Attributes
Operations

Package

Annotational
(note)

Realization

Dependency
<<import>>

<< Stereotypes>>

<<Application Key>>
<<handle>>

attributes

Things

We will define four additional stereotypes. They will
be italicized.

The first stereotype is a Handle. It is of type class. It
will be used as an interface for an object. The
remaining three stereotypes are type package. The
second stereotype is used for Application Keys and the
third is used for Enterprise Keys. The last stereotype is
a Key Chain. The Key Chain is a collection of
Enterprise Keys of a type package. Objects, handles,
application keys, enterprise keys, and key chains are
defined in more detail in the next section.

Commercial UML products check for some syntax
errors. However, these products do not check for
inconsistent logic. It is the responsibility of the
engineer to ensure that the UML syntax is logically
and semantically correct.

4. The RBAC Framework for
Network Enterprises (FNE)

The FNE model is used in this paper as a
representative RBAC model with a Role Engineering
orientation. FNE is based on the divide-and-conquer
principle. No one person is responsible for the security
management of the entire system.

In fact, two different groups, Application Developers
and Local System Administrators, are responsible for
administering the seven abstract layers of the FNE
Model. These two groups are responsible for Role
Engineering of their respective layers. The seven
layers of FNE are divided into two categories.

The Application Developer is responsible for
designing the first four layers:

1. Objects,
2. Object Handles,
3. Application Constraints, and
4. Application Keys.

The Local System Administrator is responsible for
managing the upper three layers:

5. Enterprise Keys,
6. Key Chains, and
7. Enterprise Constraints.

The first four layers are the basic building blocks of
the model. The main component is an object. An
object has a name and a set of public methods that can
be used to access the object. The methods can be
considered the permissions necessary to perform the
actions on the object. The attributes can be used as a
condition for constraints. For example, an attribute

may contain information about a patient’s doctor. If
the doctor is not treating a specific patient, then the
doctor will not be able to view that patient’s record.

These basic building blocks can be grouped into an
object handle set. The object handle is a collection of
named objects and the methods that can access the
objects. Using grouping, the number of disparate
methods is reduced. For example, one group can be a
handle for all “get” methods.

The next layer is the Application Constraint Layer. An
application constraint must be satisfied before access
can be granted to the methods in a handle set.

The last layer of the first group is for application keys.
Application keys can be considered as an application
specific role for health roles (see figure 2). An
application key associates a role with objects, data
records, and methods. These methods must be
created by the application programmer to ensure that at
least one role has the ability to perform any required
operation within the organization. Each key within the
hierarchy is considered a role. The keys can be placed
in a hierarchy, similar to a role hierarchy. Controlling
the hierarchy allows the application developer to
satisfy an organization’s security policy.

The application keys are either at a leaf node (e.g.,
Consulting Physician, Primary Physician, and Nurse)
or at a non-leaf node (e.g., Doctor, Health Care
Provider). Any key at the non-leaf node is considered
to be an abstract role. The importance of this is that an
abstract role can not later be mapped to an enterprise
key; consequently, a user can not be assigned an
abstract role.

The FNE model resolves multiple inheritance
ambiguities that plague object-oriented hierarchies.
There is no problem in determining the origination of a
method nor a problem in determining which method
should be used. If a key inherits methods from more
than one key, then in the worse case scenario, the keys
contain the same method with different constraints.
The FNE policy is that constraints are logically
“Ored.” The user needs only to satisfy either constraint
to gain access to the method.

The next three levels, the enterprise layers, are
maintained by the local system administrator. The first
of these layers is the fifth layer of the model and it is
used for the creation of enterprise keys. Each
application key that is a non-abstract role is mapped
one-to-one to an enterprise key. Users can either be
assigned to an enterprise key at this layer or to a key
chain at the next higher layer.

Figure 2: A sample Application key hierarchy

The enterprise key permits the user to access the
methods of the object listed in the key only if the
application constraints are satisfied. A user can be
assigned enterprise keys that are part of different
application key hierarchies.

The Enterprise keys can be added to a key chain in
layer 6. A key chain can be assigned to a user. Similar
to the application developers engineering the role
hierarchies at layer 4, the local administrators have the
ability to conform to a security policy by structuring
the key chains and assigning users to those key chains.
Multiple inheritance for key chains is resolved in the
same manner as multiple inheritance for the
application key hierarchy.

The final layer, layer 7, is used to specify enterprise
constraints. Enterprise constraints are applied to key
chains to restrict the user from unauthorized access to
applications throughout the enterprise, or system.

5. Applying UML to the FNE Model

UML can be used for documenting active and passive
flows. Process flows of roles can be shown; but for
this paper, only the static data structure of an RBAC
model will be presented.

The challenge is to depict the FNE model by using
UML syntax. We meet this challenge by presenting
each of the FNE model’s layers by UML syntax.

5.1 Layer 1: Object

The first UML layer shows the basic building block of
an object. The object must have public methods that
can access the object. Attributes and private methods
are hidden. Under UML, the class contains the name
of the object (see figure 3); the operations can be in
full view of other classes (i.e., public) or just viewable
by the specific class (i.e., private). Attributes and
operations can also be listed within the class.

There is an inconsistency between the operation and
method terminology defined by UML and FNE. UML
defines a method as an implementation of an operation.
The FNE paper defines a method as a means of
accessing an object. For the purpose of this paper, the
methods will be defined within a class.

Figure 3: Object and Methods (Layer 1)

HHeeaalltthh

PPrriimmaarryy
PPhhyyssiicciiaann

Patient Record: setDiagnosis
Consultant Report: Edit{HHeeaalltthh

CCoonnssuull ttiinngg
PPhhyyssiicciiaann

Consultant Report: Edit }

HHeeaalltthh

HHeeaall tthh CCaarree
PPrroovviiddeerr

Patient Record: getDiagnosis
Patient Record: getBloodPressure
Patient Record: setBloodPressure }

HHeeaalltthh

DDooccttoorr

Patient Record: getPrimaryPhysician
Nurse Report: view } HHeeaalltthh

NNuurrssee

Nurse Report: Edit{

Class
Attributes
Operations

5.2 Layer 2: Object Handle

The next layer is the Object Handle Layer. Methods
can be grouped into a Handle. Handle has similar
characteristics to an interface. To create an object
Handle, we establish a realization relationship between
a class and a Handle (see figure 4). The methods for
the “set diag” operation in the “set” handle is defined
in the “Patient Record” class under “set diag.”

Figure 4: Object Handle (Layer 2)

5.3 Layer 3: Application Constraint

The layer following the Object Handle Layer is the
Application Constraint Layer. Constraint restriction on
an operation can be documented as a precondition. The
precondition must be satisfied prior to executing the
operations. The preconditions are entered when the
operations are defined in the class specification. There
is not a graphic depiction of the precondition; however,
when the class and its operations are printed, then the
information in figure 5 will also be displayed. Figure 5
shows a precondition for a GetPrimaryPhysican
operation of a Patient Record Class.

Operation name:

GetPrimaryPhysician

Public member of: Patient Record
Preconditions:
The person is a patient of the primary physician.

Figure 5: Object and Methods (Layer 3)

5.4 Layer 4: Application Key

Application keys are presented in layer 4. Layer 4 is
the first of the two layers that uses a role hierarchy.
The Handles are grouped within the Application Key
(see figure 6). The hierarchical diagram, similar to
figure 2, uses a generalization relationship to represent
role inheritance. The arrows for the generalization
relationship are oriented in the opposite direction than
in figure 2. The Application Key can inherit operations
from a lower layer Application Key.

Abstract packages can not be represented as easily as
abstract classes. Instead, a note can be used to indicate
that the local administrator can not assign the non-leaf
node to an enterprise key.

Figure 6: Application Keys (Layer 4)

5.5 Layer 5: Enterprise Key

The next layer is where the enterprise keys are defined.
Each Application Key, other than an abstract key, is
mapped one-to-one to an Enterprise Key (see figure 7).
The Enterprise Keys can be assigned to a user.

.

<<Application Key>>

<<set handle>>

• set diag
• set BP

<<get handle>>

• get diag
• get BP

Patient Record

• get diag
• set diag
• get BP
• set BP

<<set handle>>

• set diag
• set BP

Figure 7: Enterprise Key (Layer 5)

5.6 Layer 6: Key Chain

The keys can be combined onto a key chain. The Key
Chain contains a collection of one or more Enterprise
Keys. The Key Chain can be assigned to users (see
Figure 8). The enterprise keys are labeled E1, E2, and
E3. If the application constraints are satisfied, then the
user has the ability to use all of the Enterprise Keys.

5.7 Layer 7: Enterprise Constraint

Layer 7 is the Enterprise Constraint Layer. A note can
be attached to each key chain. The enterprise

constraint conditions will be describe within the note
(see figure 9).

5.8 UML Approach

We now have a representation of the RBAC
Framework for the Network Enterprises Model using
UML.

Role Engineering of the FNE model is summarized in
Table 1.

Figure 8: Key Chain (Layer 6)

+ Set Handle
+ Get Handle

<<import>>

<<Application Key>> <<Enterprise Key>>

<<User>>

<<Key Chain>>

<<E3 Key>>

<<User>>

<<E2 Key>>

<<E1 Key>>

Figure 9: Enterprise Constraints (Layer 7)

An “X” marks each component of the FNE model that
can be Role Engineered. We have added User
Assignment (UA) to show where users are assigned to
roles.

Roles Permission Constraint Hierarchy UA

1 X
2 X
3 X
4 X X
5 X X
6 X X
7 X

Table 1 : Role Engineering of the Seven Layers

We have shown that the FNE Model can be
documented using UML. Furthermore, by
representing the FNE model, we are supporting Role
Engineering by documenting the components of the
FNE model. In essence, the UML produced graphics
are providing a UML based approach to Role
Engineering.

6. Improving the UML ability to
model RBAC

In most cases, UML is able to represent an RBAC
model cleanly; however, with some modification to the
syntax and the FNE model, the representation can be
more precise. This section identifies weaknesses in
using UML to document the FNE model.

The first distinction is terminology. The FNE model
defines an Object as “an abstract description of some

kind of data in the system,” and UML defines an
Object as “a concrete manifestation of an abstraction.”
There is also an inconsistency between the operation
and method definitions between UML and the FNE
paper.

An additional area of distinction is that the UML
model has a concept of abstract classes but not of
abstract packages. Another small difference is that the
arrows for UML’s generalization relationship points in
a different direction than the arrows in the FNE
model’s application key hierarchy.

Although there is a check on the UML syntax, there is
no logic or semantic check. We have to trust the
designer to accurately depict the model.

Further benefits can be obtained if the UML C++

generator creates more detailed code rather than use
just the shell of a program. This can also save
programming time.

The FNE model permits users to be assigned at layers
5 and 6. To reduce complexity, users should be
assigned at layer 6. If only one key is used, then the
user can be assigned to a key chain that contains that
one key.

Documenting constraints is awkward. A formal
language has not been defined to state UML
preconditions. Once accomplished, we can revisit the
creation of vocabulary extensions to implement
constraints.

Finally, we did not document the process flow of the
two role hierarchies in layers 4 and 6. By documenting
the process, we have the ability to identify all the

<<E1 Key>>

<<Key Chain>>

<<E3 Key>>

<<E2 Key>>

Enterprise
Constraints

<<User>>

permissions that may be necessary for the role to
perform the required task. The process flow can
mirror the organization’s workflow.

7. Conclusion – Future Research

In this paper, we presented a UML approach to Role
Engineering. Initially, we defined what we meant by
Role Engineering. Next, we identified the key syntax
of UML that can be used in documenting an RBAC
model. The model chosen is the Role Based Access
Control Framework for Network Enterprises by
Thomsen, O’Brien, and Bogle.

We proceeded to document each layer of the model by
UML syntax. By doing so, we also realized the
components documented are the same ones that can be
created and structured by Role Engineering. The final
product of Role Engineering can be the UML
generated graphical documentation. We were able to
use a UML based approach to assist in the Role
Engineering of an RBAC model.

There are several areas that require future research.
We have only documented one RBAC model. Another
exercise would be to document another model by the
UML. Furthermore, this paper does not delve into the
process side of Role Engineering. In addition, it does
not provide a Role Engineering framework or a
methodology to implement that framework. It also
does not show a methodical approach for defining
constraints for UML or for an RBAC model. Finally,
the FNE model does not include all RBAC concepts as
separation of duties or least privileges. These concepts
need to be introduced and modeled.

With the continued expansion of the Internet, there will
be an even greater need for access control. For strong
acceptance to continue, RBAC must be integrated into
the framework of the Internet. Two of the areas in
which this can be accomplished are:

1. Using Role Engineering to generate the personnel
or computer organization that can be easily
implemented by Internet access control tools.

2. Incorporating RBAC within the soon-to-be
released Directory Enabled Network (DEN)
standard. The DEN’s specification will be part of
the Desktop Management Task Force’s (DMTF)
Common Information Model for enterprise
management.

The UML approach to Role Engineering will be able to
assist in documenting both of these endeavors.

References

[TOB98] Dan Thomsen, Dick O’Brien, Jessica
Bogle. Role Based Access Control
Framework for Network Enterprises, In
Proceedings of 14th Annual Computer
Security Application Conference, pages
50-58, Phoenix, AZ, December 7-11,
1998.

[C95] Edward Coyne. Role Engineering, In
Proceedings of First ACM Workshop on
Role-Based Access Control, pages I-15 –
I-16, Gaithersburg, MD, November 30-
December 1, 1995.

[SCFY96] Ravi Sandhu, Edward Coyne, Hal
Feinstein, CharlesYouman, Role-Based
Access Control Models, In IEEE
Computer, Volume 29, Number 2,
February 1996, pages 38-47.

[BRJ99] Grady Booch, James Rumbaugh, Ivar
Jacobson, The Unified Modeling Language
User Guide. Addison Wesley Longman,
Massachusetts, 1999

[S98] Ravi Sandhu, Role-Based Access Control,
In Advances in Computers, Vol. 46,
Academic Press , 1998.

[R96] Rational Rose/C++, Rational Rose
Software Corporation, Summit Software,
Santa Clara, CA, www.rational.com,
Copyright 1996

[B95] John Barkley. Implementing Role-Based
Access Control Using Object Technology,
In Proceedings of First ACM Workshop
on Role-Based Access Control, pages II-
93 – II-98, Gaithersburg, MD, November
30-December 1, 1995.

[L91] Robert LaFore, Object-Oriented
Programming in Turbo C++, Waite Group
Press, 1991

