
Proc. 4th RADC Workshop on Multilevel Database Security, Rhode Island, April 1991.

ENFORCING PRIMARY KEY REQUIREMENTS

IN MULTILEVEL RELATIONS

Sushil Jajodia and Ravi S. Sandhu

Center for Secure Information Systems
and

Department of Information and Software Systems Engineering
George Mason University, Fairfax, VA 22030-4444

1 INTRODUCTION

The notion of a primary key is considered a fundamental concept in the classical (single-level)
relational model. For example, it forms the basis for several normal forms and is used when the
database schema is designed. The primary key is used to maintain integrity of relations. It is also
used for storage and retrieval purposes.

Unfortunately, the concept of a primary key does not extend to multilevel relations in a straight-
forward way because of two factors: (a) the ?-property must be preserved which prevents any write
downs, and (b) signaling channels must be avoided. These security considerations have lead to the
notion of polyinstantiation in multilevel relations [2].

Polyinstantiation comes in several di�erent
avors [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. There are
signi�cant di�erences between these approaches and debate continues about the correct de�nition
of polyinstantiation and its operational semantics. However, in each case polyinstantiation fails to
preserve the basic requirement of a primary key that there be one and only one tuple per primary
key value in a relation. Polyinstantiation forces a relation to contain multiple tuples with the same
primary key, distinguishable by their classi�cations or by non-primary key attribute values.

Since polyinstantiation signi�cantly complicates the semantics of multilevel relations (particularly
for high users), recently some solutions have appeared which attempt to do away with polyinstan-
tiation completely [1, 13, 14]. In this paper, we take another step along this direction, and examine
ways to preserve primary key requirements in multilevel relations. Of course, any solution we give
will have to be secure and free of denial-of-service problem.

The organization of the remainder of this paper is as follows. In section 2 we brie
y review the
notion of primary key in classical (single-level) relations. In section 3 we show how polyinstantiation
arises in multilevel relations. In section 4 we explore alternatives to polyinstantiation that help us
enforce primary key requirements in multilevel relations. Finally, the conclusion is given in section
5.

2 PRIMARY KEY IN SINGLE-LEVEL RELATIONS

The standard relational model is concerned with data without security classi�cations. Data are
stored in relations that have well-de�ned mathematical properties. Each relation has two parts as
follows.

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Voyager S Spying S Mars S S

Figure 1: SODS

Starship Objective Destination TC

Enterprise U Exploration U Talos U U

Figure 2: SODU

1. A state-invariant relation scheme R(A1; A2; : : : ; An), where each Ai is an attribute over some
domain Di which is a set of values.

2. A state-dependent relation r over R , which is a set of distinct tuples of the form (a1; a2; : : : ; an)
where each element ai is a value in domain Di.

Not all possible relations are meaningful in an application; only those that satisfy certain integrity
constraints are considered valid.

The notion of primary key is central to the relation model. Before we de�ne it, however, we need
to give a de�nition for a candidate key:

We say X � fA1; A2; : : : ; Ang is a candidate key of R if any relation r for R at all times satis�es
the following two properties:

Uniqueness Property. The relation r does not contain two distinct tuples with the same values
for X.

Minimality Property. No proper subset Y of X satis�es this uniqueness property.

A primary key of a relation scheme R is a candidate key of R. It is possible that a relation
scheme has more than one candidate key, in which case one of the candidate keys must be chosen
and designated as the primary key.

3 POLYINSTANTIATION

While the notion of a primary key is simple and well understood for classical (single-level) relations, it
does not have a straightforward extension to multilevel relations. To illustrate, consider the relation
scheme SOD(Starship, Objective, Destination) where Starship is the primary key and the security
classi�cations are assigned at the granularity of individual data elements. Suppose the Secret and
Unclassi�ed views of SOD are as shown in �gures 1 and 2, respectively.

Suppose that an U-user� who sees the instance in �gure 2 wishes to insert a second tuple (Voyager,
Exploration, Talos) to SODU. If we were to enforce the primary key requirement, this insertion by
the U-user will be rejected (since it con
icts with an existing tuple in SODS). However, since
this rejection will create a signaling channel, both tuples (Voyager, Spying, Mars) and (Voyager,
Exploration, Talos) are allowed to co-exist in SODS, as in �gure 3, in violation of the uniqueness
requirement. This is one type of polyinstantiation, called entity polyinstantiation: A relation contains

�Strictly speaking we should be saying subject rather than user.

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Voyager U Exploration U Talos U U
Voyager S Spying S Mars S S

Figure 3: SODS

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Enterprise U Spying S Rigel S S

Figure 4: SODS

two or more tuples with the same primary key values, but having di�erent access class values for
the primary key.

There is another formof polyinstantiation, called element polyinstantiation. With element polyin-
stantiation, a relation contains two or more tuples with identical primary key and the associated
access class values, but having di�erent non-primary key values, as shown in the relation in �gure
4. The objectives and destinations of the starship Enterprise are di�erent for U- and S-users.

Both entity and element polyinstantiation can occur in basically two di�erent ways:

1. A high user attempts to update data which con
icts with the existing low data. Since over-
writing the low data in place will result in a downward signaling channel, the tuple is polyin-
stantiated

2. An opposite situation occurs where a low user attempts to insert data which con
icts with
existing high data. Since rejecting the update is not a viable option because it establishes a
downward signaling channel, the updated tuple is polyinstantiated to re
ect the low update.

4 PRIMARY KEY IN MULTILEVEL RELATIONS

In this section, we explore how we can enforce primary key requirements in multilevel relations
without creating a downward signaling channel in the process.

4.1 A Simple Solution

There is a completely obvious way to preserve primary key requirements in multilevel relations.

1. Whenever a high user makes an update which violates the uniqueness requirement, we simply
refuse that update.

2. Whenever a low user makes a change with con
icts with the uniqueness requirement, the
con
icting high data is overwritten in place by the low data.

Returning to the example of the previous section, when the U-user inserts the second tuple
(Voyager, Exploration, Talos) to SODU shown in �gure 2, the con
icting second tuple in SODS in

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Voyager U Exploration U Talos U U

Figure 5: SODS = SODU

�gure 1 is substituted by the newly inserted tuple. As a result both U- and S- users see the instance
shown in �gure 5. On the other hand, suppose a S-user wants to insert the tuple (Voyager, Spying,
Mars) to SODS in �gure 5. This update is simply refused. Thus, in both cases primary key values
in SOD uniquely identify the tuples in the multilevel relations.

It is not di�cult to see that this simple solution preserves the uniqueness requirement in multilevel
relations. This solution is secure in the sense of secrecy and information
ow. It is our view that
while this solution may be acceptable in some speci�c situations, it is clearly unacceptable as a
general solution; it can lead to serious denial-of-service and integrity problems. Therefore, we now
look for other alternatives which do not su�er from these problems.

4.2 Dealing with Entity Polyinstantiation

4.2.1 Single Access Class for the Primary key

A multilevel relation is created by using a data de�nition statement, similar to the following
statement:y

CREATE TABLE SOD (Starship CHAR(15) NOT NULL [U:S],

Objective CHAR(15) {U, TS},

Destination CHAR(20) [U:TS],

Primary Key (Starship));

Here the domain of the access class of the primary key Starship has been speci�ed as a range
with a lower bound of U and an upper bound of S. As we saw in the previous section, this leads to
entity polyinstantiation. Thus, one simple way of eliminating entity polyinstantiation is to have the
domain of the access class of the primary key consist of a single element.

Thus if we create the SOD relation as follows, SOD will not have any entity polyinstantiation.

CREATE TABLE SOD (Starship CHAR(15) NOT NULL {U}

Objective CHAR(15) {U, TS},

Destination CHAR(20) [U:TS],

Primary Key (Starship));

It is possible that in some situation names of some starships must remain Top Secret, in such a
case we can use the following solution.

4.2.2 Partitioning the Domain of the Primary Key

Another way to eliminate entity polyinstantiation is to partition the domain of the primary key
among the various access classes possible for the primary key. For our example, we can introduce a

yThe notation [L:H] speci�es a range of security classes with lower bound L and upper bound H. The notation
fX,Y,Zg enumerates the allowed values for the security class as one of X, Y or Z.

new attribute, called Starship#. Whenever a new tuple is inserted, we enforce the requirement that
all the Starships numbered between 1 and 1,000 will be unclassi�ed, those numbered between 1,001
and 2,000 will be con�dential, and so on.

In SQL-like language, the SOD schema should be created as follows:

CREATE TABLE SOD

(Starship# SMALL INTEGER NOT NULL [U:TS]

Starship CHAR(15) NOT NULL [U:TS]

Objective CHAR(15) {U, TS},

Destination CHAR(20) [U:TS],

Primary Key (Starship#),

CHECK (User Access class = 'U' AND Starship# BETWEEN 1 AND 1000),

CHECK (User Access class = 'C' AND Starship# BETWEEN 1001 AND 2000),

CHECK (User Access class = 'S' AND Starship# BETWEEN 2001 AND 3000),

CHECK (User Access class = 'TS' AND Starship# BETWEEN 3001 AND 4000));

4.3 Dealing with Element Polyinstantiation

It is possible to eliminate element polyinstantiation securely without sacri�cing either integrity or
availability. We show how this is done for the SOD example. For complete details, we refer the
reader to [13]. This solution by Sandhu and Jajodia meets the following requirements.

1. There are no downward signaling channels.

2. The simple security and the ?-properties is enforced for all subjects, i.e., no trusted code can
be used.

3. There are no temporary inconsistencies.

4. There is no denial of data entry service to high users.

Consider once again the following relation SOD where Starship is the primary key. We assume
that the Starship attribute is always unclassi�ed, so there is no entity polyinstantiation.

Starship Objective Destination TC

Enterprise U Exploration U Talos U U

Consider the following scenario. Suppose a S-user attempts to modify the destination of the
Enterprise to be Rigel. We cannot polyinstantiate even temporarily, so we must reject this update.
There is no denial-of-service to the S-user since the S-user can obtain service as follows.

Step 1. The S-user �rst logs in as a U-subject and marks the destination of the Enterprise as
restricted giving us the following relation.

Starship Objective Destination TC

Enterprise U Exploration U restricted U U

The meaning of restricted is that this �eld can no longer be updated by a U-user. U-users can
therefore infer that the true value of Enterprise's destination is classi�ed at some level not dominated
by U.

Step 2. The S-user then logs in as a S-subject and enters the destination of the Enterprise as
Rigel giving us the following relations at the U and S levels, respectively.

Starship Objective Destination TC

Enterprise U Exploration U restricted U U

Starship Objective Destination TC

Enterprise U Exploration U Rigel S S

One can argue that step 2 introduces an signaling channel. Fortunately, this is not a particularly
harmful channel. Here a trusted S-user is in the loop who presumably will ensure that the channel is
not exercised wantonly, but rather that this inference is permitted only when the real world situation
is actually so. Such a channel with trusted humans in the loop can be exercised only by Trojan
Horses that are capable of manipulating the real world. This entails the manipulation of real trusted
people making real decisions and not merely the manipulation of bits in a database.

We refer the reader to [13] for additional examples and complete details.

5 CONCLUSION

In this paper we have shown that there are ways to enforce primary key requirements in multi-
level relations. The methods we have listed eliminate problems that arise from polyinstantiation
completely. These methods may be eminently suitable in many applications.

Yet we wish to remind the reader that there are situations where polyinstantiation is desirable.
There is a real need for cover stories in the multilevel world, and polyinstantiation provides a simple
way of satisfying this need. Moreover, we envision applications (particularly in an intelligence
environment) where information is coming from di�erent sources, bearing di�erent classi�cation.
The information may sometimes be contradictory; however, it must be stored in the database. An
analyst can make sense out of the confusing mess. It is desirable to have polyinstantiation for such
situations.

References

[1] Rae K. Burns, \Referential Secrecy." Proc. IEEE Symposium on Security and Privacy, Oakland,
California, May 1990, pages 133-142.

[2] Dorothy E. Denning, Teresa F. Lunt, Roger R. Schell, Mark Heckman, and WilliamR. Shockley,
\A multilevel relational data model." Proc. IEEE Symposium on Security and Privacy, April
1987, pages 220-234.

[3] J. T. Haigh, R. C. O'Brien, and D. J. Thomsen, \The LDV Secure Relational DBMS Model."
Database Security IV: Status and Prospects, S. Jajodia and C. E. Landwehr (editors), North-
Holland, 1991, pages 265-279.

[4] Sushil Jajodia and Ravi S. Sandhu, \Polyinstantiation integrity in multilevel relations." Proc.

IEEE Symposium on Security and Privacy, Oakland, California, May 1990, pages 104-115.

[5] Sushil Jajodia and Ravi S. Sandhu, \A formal framework for single level decomposition of mul-
tilevel relations." Proc. IEEE Workshop on Computer Security Foundations, Franconia, New
Hampshire, June 1990, pages 152-158.

[6] Sushil Jajodia and Ravi S. Sandhu, \Polyinstantiation integrity in multilevel relations revisited."
Database Security IV: Status and Prospects, S. Jajodia and C. E. Landwehr (editors), North-
Holland, 1991, pages 297-307.

[7] Sushil Jajodia, Ravi S. Sandhu, and Edgar Sibley, \Update semantics of multilevel relations."
Proc. 6th Annual Computer Security Applications Conf., December 1990, pages 103-112.

[8] Sushil Jajodia and Ravi S. Sandhu, \A novel decomposition of multilevel relations into single-
level relations." Proc. IEEE Symposium on Security and Privacy, Oakland, California, May 1991,
pages 300-313.

[9] Sushil Jajodia and Ravi S. Sandhu, \Toward a multilevel secure relational data model," Proc.

ACM SIGMOD Int'l. Conf. on Management of Data, Denver, Colorado, May 29-31, 1991, pp.
50-59.

[10] Teresa F. Lunt, Dorothy E. Denning, Roger R. Schell, Mark Heckman, and WilliamR. Shockley,
\The SeaView security model." IEEE Transactions on Software Engineering, Vol. 16, No. 6, June
1990, pages 593-607.

[11] Teresa F. Lunt and Donovan Hsieh, \Update semantics for a multilevel relational database."
Database Security IV: Status and Prospects, S. Jajodia and C. E. Landwehr, (editors), North-
Holland, 1991, pages 281-296.

[12] Ravi S. Sandhu, Sushil Jajodia, and Teresa Lunt, \A new polyinstantiation integrity constraint
for multilevel relations." Proc. IEEE Workshop on Computer Security Foundations, Franconia,
New Hampshire, June 1990, pages 159-165.

[13] Ravi S. Sandhu and Sushil Jajodia, \Honest databases that can keep secrets," Proc. 14th NIST-

NCSC National Computer Security Conference, Washington, D.C., October 1991, To appear.

[14] S. R. Wiseman, \On the Problem of Security in Data Bases." In Database Security III: Status

and Prospects, (Spooner, D.L. and Landwehr, C.E., editors), North-Holland, 1990 pages 143-150.

