
SOME OWNER BASED SCHEMES WITH DYNAMIC GROUPS
IN THE SCHEMATIC PROTECTION MODEL

Ravinderpal S. Sandhu
Michael E. Share

Department of Computer and Information Science
The Ohio State University

Columbus, OH 43210

ABSTRACT

The discretionary ability implied in the notion of
ownership is often provided in terms of groups
rather than individuals. The group approach has its
conveniences but is limiting since access decisions do
not discriminate among members of a group. The
ability for users to define group membership dynami-
cally offers flexibility and convenience. In this paper
we investigate a variety of polices for doing so in
the context of a simplified file system. We specify
the polices using the Schematic Protection Model
(SPM). Our investigation reveals that there are
many policy options and demonstrates how SPM is
used to precisely specify these options.

1. INTRODUCTION

The notion of ownership is
discretionary access control
the owner of an entity such
mine who mav or may not

a fundamental aspect of
policies. For instance,
as a text file can deter-
access the file. Typi-. .

tally, only the owner has the power to make these
decisions and ownership is closely tied with creation,
e.g., the creator of a file becomes its owner by vir-
tue of creating it.

Ownership carries with it the connotation of com-
plete discretion regarding access by other parties. A
mechanism which allows discretion at the level of in-
dividual users offers great flexibility. We often find
in practise that the unit for access is a group of
users. That is, the owner of a file can either
provide or deny access to an entire group of users.
Since access is not selective within a group the
owner’s discretion is limited by the group structure.
At the same time, the group approach is convenient
since it eliminates the need to make many individual
decisions. A mechanism which permits groups to be
dynamically defined by users offers flexibility and
convenience.

In this paper we present several owner baaed
policies where access decisions are made on a group
baais. These policies are specified using the
Schematic Protection Model or SPM [10, 11\. SPM
offers a intuitive yet precise notation for detlning

and analyzing different policies. Section 2 presents a
brief but complete description of SPM. In section 3
we develop a variety of policies based on the notion
of owners and groups. The policies differ mainly in
the dynamics of group membership. For simplicity
we consider groups to be independent entities with-
out any structure, such as a hierarchical organiza-
tion. Our investigation reveals that even ~
simple context there are genuine policy options
demonstrates the use of SPM in specifying
analyzing these options. Section 4 concludes
paper.

2. THE SCHEMATIC PROTECTION
MODEL

SPM regards a system as consisting of subiects

this
and
and
the

and.
objects. Each subject possesses a set of privileges
called its domain. Objects do not possess privileges
and are merely containers of information. For ex-
ample, users are subjects while text files are objects.
Subjects and objects are collectively called entities.

The distribution of privileges within a system
defines the protection state of the system. Only
those operations authorized by the current protection
state can be executed. Control operations modify
the protection state, e.g., user X gives user Y per-
mission to read file Z, and are authorized by corztrof
privileges. Inert operations on the other hand
preserve the protection state, e.g., user X reads or
writes file Y. Inert operations are authorized by tnert
privileges. The initial protection state is established
by the security administrator. The protection state
subsequently evolves due to the autonomous actions
of subjects as constrained by control privileges.
Hereafter, we understand state to mean protection
state.

The concept of protection type is fundamental to
SPM. The idea is that entities of the same protec-
tion type are treated uniformly by control privileges.
SPM requires strong typing in that every entity is
created to be of a specific protection type which can-
not change. In SPM the protection state of a sys-
tem consists of a static component called the scheme

61
CH2292-1/86/0000/W61 $Ol.00 @ 1986 IEEE

and a dynamic component comprised of tickets. The
scheme is defined by the security administrator in
terms of protection types and cannot change. The
distribution of tickets may change as a result of con-
trol operations. Hereafter, type is understood to
mean protection type.

Tickets are privileges of the form Y/x, where Y
identifies a unique entity and the right symbol x au-
thorizes the possessor of this ticket to perform some
operation(s) on Y. Tickets are considered unforgeable
and can be acquired only in accordance with specific
rules which comprise the scheme. Sets of tickets for
the same entity are abbreviated by allowing Y/uvw
to denote the tickets Y/u, Y/v, and Y/w.

Tickets are similar to the well-known concept of
capabilities. We use the more neutral term to avoid
implying that the only representation for tickets is
by means of capabilities built into the addressing
mechanism of a computer [6]. The run-time
representation of tickets is an implementation issue,
properly left open by the model.

2.1. Types and Right Symbols

In specifying a scheme it is first necessary to
specify finite sets of object types TO and sub~”ect
types TS. These sets must be disjoint and their
union T is the set of entity types. By convention
types are named in lower case italics and entities in
upper case normal script. For the schemes discussed
in this paper, TO consists of a single type fil cor-
responding to files, while 2’S consists of several types
such as usr, dir and grp corresponding to users,
directories and groups respectively.

The next step is to define a finite set of right
symbols R partitioned into two disjoint subsets: the
inert rights RI and the control rights RC. For the
schemes of section 3, RI consists of r and w respec-
tively authorizing the read and write operations on a

file. Control rights will be discussed shortly.

SPM assumes that each right symbol x can come
with the copy flag, denoted xc, or without, denoted
x. The difference between Y/x and Y/xc is that
only the latter allows Y/x or Y/xc to be copied

from one domain to another. The ability to copy a
ticket is also dependent on other restrictions to be
explained below. Moreover, this is the only dif-
ference between Y/x and Y/xc, so that the presence
of Y/XC in a domain implies the presence of Y/x
but not vice versa. We use X:C to denote either x
or xc, with the understanding that multiple occur-
rences of X:C within the same context are either all x
or all xc. When used with multiple right symbols
the copy flag applies to each symbol, that is Y/uvc
denotes Y/ uc and Y/vc.

The type of a ticket is determined by the type of
the entity to which it refers and the specific right
symbol, e.g., if F is a file then F/r is a ticket of
type fil/r. The set of ticket types is thereby TX R.
Convent ions for represent ing tickets, especially
regarding the copy flag, extend in an obvious way to
ticket types.

The remaining components of a scheme are defined
in terms of T, R, TX R and their subsets. SPM
recognizes three operations which change the protec-
tion state: copy, demand and create.

2.2. The Copy Operation

The copy operation moves a copy of a ticket from
the domain of one subject to the domain of another
subject. The original ticket is unchanged. The copy
operation is authorized by the copy flag, a link
predicate linki, and the associated filter function ft.
We emphasize there is a different filter function for
each link predicate.

o-o
C1--’c)
Dgure 1 The Take-Grant Link

Ej.gure 2 The Owner Link

Hgure 3 The Universal Link

62

Link Predicates

A link is a directed connection from one subject to
another which facilitates copying tickets from the
former to the latter. Links are brought into exist-
ence by cent rol privileges. A link predicate is
simply the definition of a link in terms of the con-
trol privileges required.

For example the take-grant link, adapted from the
take-grant model [4, 7, 12], is defined as follow5
where dom denotes the domain of a subject.

linktg(X,Y) # Y/g 6 dom(X) v X/t ~ dom(Y)

Here, t and g are control rights respectively called
take and grant. We visualize this link as shown in
figure 1, by depicting a subject as a circle with the
interior of the circle being the subject’s domain and
by depicting the link as a directed edge. The take-
grant link is used in the schemes of section 3.

Another link predicate we use in this paper is the
owner link defined below in terms of the control
right o for ownership.

linkO(X,Y) + Y/o c dom(X) V X/o G dom(Y)

In words, there is a owner link from X to Y if ei-
ther X is the owner of Y or Y is the owner of
X. We represent this pictorially in figure 2. In our
diagrams we use different color edges to distinguish
the owner link from the take-grant link. Note, the
take-grant link is uni-directional whereas the owner
link is hi-directional.

Finally, we will have occasion to use the uruversal
link Iinku which does not require any control rights.
The universal link always exists and is represented
pictorially in figure 3.

In SPM we can define any number of link predi-
cates. The only restriction is that each predicate be
local in that link(X,Y) requires the presence of some
combination of control tickets for X and Y in the
domains of X and Y. The motivation is that a local
predicate can be evaluated by looking for control
tickets for the two subjects of concern in the
domains of these two subjects. That the authoriza-
tion should be in terms of the presence and not the
absence of tickets is a well-known principle for
protection [1, 2, 8].

Filter Functions

The filter function determines which ticket types
can be copied across a given link. The filter func-
tion is defined for each link predicate and for each
pair of subject types. It specifies the types of tick-
ets which can be copied across a Iinki between sub-
jects of given types. Therefore, f, is a function

f,: TSX TS + 2TXR. Filter functions impose man-
datory controls which are inviolable and confine the
discretionary behavior of individual subjects.

To summarize, the ticket Y/x:c can be copied from
dom(A) to dom(B) if and only if all of the following
are true for some i, where the types of A, B and Y
are a, b and y respectively.

1. Y/xc E dom(A)

2. linki(A,B)

3. y/x:c G ~,(a,b)

In this manner the copy flag, a link predicate and
corresponding filter function together authorize a
copy operation. The first two conditions depend on
the distribution of tickets whereas the third condition
depends on the scheme. Selectivity in the copy
operation is controlled by the filter function and
specified entirely in terms of types.

2.3. The Demand Operation

The demand operation allows subjects to obtain
tickets by demanding them. SPM authorizes the
demand operation through specification of a demand
function d TS + 2 ‘XR. If a/x:c G d(b), then each
subject B of type b can demand the ticket A/x:c for
every entity A of type a. In particular, control tick-
ets can be demanded. The demand operation is
used in some of the schemes of section 3 to facilitate
dynamic grouping.

The demand function is a powerful method for
specifying availability of tickets on the basis of
protection types. At the same time the policy em-
bodied in the demand function is static because of
the static definition of this function and the strong
typing in SPM.

2.4. The Create Operation

The create operation is the means by which new
subjects and objects are introduced. The create
operation has two aspects, authorization and which
tickets are introduced as a result of the operation.
Authorization is specified by the can-create relation

cc ~ TSX T. Subjects of type a are authorized to
create entities of type b if and only if cc(a, b). The
tickets introduced by a create operation are deter-
mined by the create-rule specified for each pair in
cc. All create-rules are focal, i. e., tickets can only
be introduced for the creating subject and created
entity. If subject A of type a creates entity B of
type b, the create-rule <a, b> determines which tick-
ets for A and B are placed in the domains of A and
B. Note that the created entity B can obtain tickets
only if B is a subject.

63

2.5. Summary

To summarize, a scheme in SPM is defined by
specifying the following components.

1.

2.

3.

4.

5.

6.

7.

A finite set of entity types T partitioned
into subject types TS and object types
TO.

A finite set of right symbols R partitioned
into inert rights RI and control rights
R C.

A finite collection of local link predicates.

A filter function f; TSX TS + 2 ‘x R for
each link predicate link.

1“

A demand function & TS + 2 ‘XR.

A can-create relation cc G TSX T.

A local create-rule for each pair in cc.

A system is specified by defining a scheme, the in-
itial set of entities and the initial distribution of
tickets. Thereafter the system state evolves by copy,
demand and create operations.

Since the role of the security administrator is to
specify the initial state, we consider that the initial
state defines the authorization policy. The key idea
in SPM is that major policy decisions are made in
terms of types and embodied in the scheme, whereas
more detailed considerations are reflected in the in-
itial distribution of tickets.

3. OWNER BASED SCHEMES WITH
DYNAMIC GROUPS

In this section we present a variety of owner based
schemes in SPM. The particular policy decisions we
make in this paper are not so important as the
demonstration that there are a variety of possibilities
and that SPM can accommodate this variety. We
begin by discussing the assumptions and definition
common to all schemes considered here.

3.1. The Basic Framework

The basic framework is a file system abstracted
from the facilities typically found in current multi-
user Operating Systems. In this paper we regard
files as pure information containers without any em-
bedded privileges. Thereby files are SPM objects.
We define a single object type ~il for this purpose.
We recognize the read and write operations on files
respectively authorized by the r and w rights. So
the inert rights in our schemes are {r:c,w:c}. Inclu-
sion of append, execute and delete operations will
not substantially change our schemes and, in the in-
terest of brevity, these operations are omitted.

The active entities in the system are users. Users
can create files and at their discretion share them
with other users. The system provides directories
for organizing a user’s files. A file is associated with
a directory by placing tickets for the file in the
directory’s domain. Since directories contain
privileges for files they are considered to be subjects
in SPM. Directories are passive, however, and can
not initiate any act ions. Groups are included in the
system to facilitate sharing. Members of a group
are able to access directories in the group, and
through the directories, files. Groups cent ain
privileges for both users and directories, and thereby
are subjects in SPM. Like directories, groups are
passive subjects and cannot initiate any actions even
though they contain privileges. We define three sub-
ject types usr, dir and grp correspondhg to users,
directories and groups respectively.

A user can create files, directories and groups. On
creating a file F its creator gets the F/rwc tickets.
We set up our schemes so that the creator is the
only user to ever get tickets with the copy flag for a
file. Other users may be able to access the file but
only via non-copiable tickets.

The control rights we use in our schemes are take,
grant and ownership with the link predicates linktg
and Iinko as defined in section 2.2. We define our
schemes so that the owner right cannot be copied or
demanded. Thus the owner link is a static link
which is established either in the initial state or by
creation. The take-grant link on the other hand is
dynamic.

~gure 4 The Basic Filter Functions

(a)

(b)

Hgure 5 Create-Rules for
Directories and Groups

The basic interaction between users, groups and
directories is shown in figure 4. Each subject type
is represented as a rounded rectangle with the labels
on the colored edges denoting values of j. and ftg.
Only those edges with non-empty labels are shown.
Figure 4 is interpreted as follows.

fo(uw,grp) = {usr/t, usr/g}
fo(usr,dir) = {/il/rc, /il/wc}
All other values of /0 are empty.

ftg(usr,grp) = {dir/tc}
ftg(grp,usr) = {dir/t}
/i (dir,usr) = {fii/r, /i//w}
All other values of ftg are empty.

There is no W- to usr edge in figure 4 so tickets
cannot be directly copied from one user to another.
Instead the interaction between users is via groups
and directories. All non-empty edges involve the usr
type at one end. It is understood that the cor-
responding links will be exercised by the user. That
is, irrespective of where the authorization for a link
lies it is the user who will initiate a copy operation
across the link. In general /,(a,b) should be non-
ernpty only if at least one of a or b is an active
subject type. Figure 4 is clearly consistent with this
requirement.

The owner link is the only way to place copiable
tickets for tiles in a directory’s domain. The take-
grant link allows users to obtain file tickets from a
dkectory. Tickets acquired from a directory in this
manner are without the copy flag. [t follows that a

user has copiable tickets only for those files that he
creates. The net effect is that a directory contains
tickets for files created by the directory’s owner.
For a particular file F it is up to the creator to
place F/rc or F/we or both in any directory that he
owns.

Membership in a group is effected by placing take
and grant tickets for a user in the group’s domain.
Since these tickets are distinct there are actually two
kinds of group membership. If U/g is in group G’s
domain then there is a Iinkt (G, U) and U can access
directories in the group. ~onverse)y, if U/t is in
G’s domain then there is a linktg(U,G) and U can
contribute directories to the group.

User U can be made a member of a group only by
one of the group’s owners. In order to do so, the
group’s owner must first obtain the tickets U/tgc
and then copy U/t or U/g or both to the group’s
domain. The schemes presented in this paper differ
primarily in the method by which a user obtains
tickets of type usr/tgc. For now we ignore this is-
sue.

When a directory D is created the tickets D/o and
D/tc are placed in the creator’s domain by the
< usr,dir> create-rule as shown in figure 5(a). D is
made accessible to members of a group by placing
D/tc in the group’s domain. Members of the group
can then copy the ticket D/t thereby obtaining ac-
cess to files in D. The create operation is the only
way for a user to obtain tickets of type dir/tc, so
only the owner of a directory can place it in a
group.

When a group G is created by user U the ticket
G/o is placed in U’s domain so the creator becomes
the owner of the group. At the same time, the tick-
ets U/tg are placed in G‘s domain so that U is
automatically made a member of G. This < usr,grp>
create-rule is shown in figure 5(b).

We use the demand function very sparingly in our
schemes. For now we set it to be empty. All this
results in the following scheme.

1.

2.

3.

4.

5.

6.

7.

An

To = {/21}
TS = { usr, dir, grp}

IU = {r:c, w:c}
RC = {t:c, g:c, O:C}

Two link predicates linktg and link. as in
figures 1 and 2.

The filter functions jtg and ~0 as shown in
figure 4.

d(usr) = d(dir) = d(grp) = qb

cc = { < usr,fil>, < usr,dir>, < usr,grp> }

The < usr,fd> create-rule is that the
creator of file F gets the F/rwc tickets.
The < usr,dir> and < usr,grp> create-rules
are as shown in figure 5.

example of a protection state for this scheme is
shown in figure 6. Users U~ and U2 are both mem-
bers of group G. UI has created files Fl, F2, F3 and
directories Dl, D2. U2 has created files F4, F5 and
directories D3, D4. Both users have placed some of
the tickets for their files in their directories. The
state of figure 7 can now be derived in the following
manner. U2 copies DJtc to G’s domain from where
UI obtains D3/t thus establishing linktg(D3,U ~).
This enables UI to copy F4/r and F5/rw from D3’s
domain. Unless U2 takes some further action UI
cannot obtain the ticket F4/w. Similarly, unless UI
places one of his directories in G’s domain, U2 can-
not obtain any tickets for U l’s files.

65

U1

aG

U1Itg

Uzltg

U2

Figure 6

—

u]

L
D;ItcF,/rwc

F2/rwc
F3/rwc
F4/r D2/o
F</rw D#tc

G

A
D3/o
D3/tc

(F4/rwc
\

u
F./rwc

Figure 7

66

As mentioned earlier the above scheme is incom-
plete in that there is no method for a user to obtain
tickets of type ww/tgc. Thus the dynamics of group
membership is severely limited by the initial dis-
tribution of usr/tgc tickets in users’ domains. We
now present a variety of schemes which allow users
to dynamically obtain usr/tgc tickets in a number of
different ways. For simplicity we will not distin-
guish methods for obtaining wsr/tc tickets from those
for obtaining ww/gc tickets.

We assume throughout that a directory does not
contain privileges for other directories, and a group
does not contain privileges for other groups. This
framework cannot accommodate hierarchies of direc-
tories and hierarchies of groups. Specification of
such hierarchies in SPM is fairly straightforward, but
is beyond the scope of this paper.

3.2. Dynamic Group Membership Based on
the Copy Operation

One approach is to allow users to obtain usr/tgc
tickets from the exist ing groups. The motivation is
that a user can establish groups whose members are
derived from groups he currently has access to.
Thus there is a degree of mandatory control on the
discretionary ability of group owners to introduce
new members. There are a variety of ways this can
be achieved in SPM resulting in different policies.
Some of these are shown in figure 8.

In figure 8(a) a user can obtain usr/tgc tickets
from groups that he owns. Thus a user can
propagate membership across only his owned groups.
When the system is initialized, copiable control
rights for certain users are placed into certain groups
at the security administrator’s discretion. The owner
of a group containing such rights can copy them
from that group to any other group he owns. This
scheme allows created groups to be used for sharing,
however the initial distribution of copiable user con-
trol rights strictly limits such sharing.

The policy of figure 8(b) is more liberal in that
any group member, not just the group owner, can
obtain usr/tgc tickets from a group. Again, these
tickets are distributed when the system is initialized
and this limits the dynamics of group membership.

Figure 8(c) is a modification of figure 8(a) which
allows a group owner to place usr/tgc tickets in the
group’s domain. Now the usr/tgc tickets in a
group’s domain are no longer limited to those
present in the initial state, so the modified policy is
more liberal. This change has an impact only if
there are some groups in the initial state with mul-
tiple owners. Figure 8(d) is a similar modification
of figure 8(b). In this case the resulting policy is
extremely liberal and there are essentially no man-
datory controls on group membership, if the users
cooperate.

usrltgc

usr/tgc

Figure 8 Variations
Based on the Copy ODeratiOn

It is apparent that 8(a) is the least liberal policy

and 8(d) the most liberal. The other two policies
are somewhere in between. Our purpose here is not
so much to analyze these options in detail. Rather
we wish to point out that many options exist with
subtle differences in the resulting policy and that
SPM makes these distinctions precise and analyzable.
From a practical viewpoint the policies of figure 8
are surprisingly subtle and their exact implications
somewhat diftlcult to understand. It is our intent in
SPM to avoid such subtleties. Nevertheless it is a
great asset of SPM that such policies can be for-
mally analyzed [11].

3.3. Dynamic Group Membership Based on
the Demand Operation

A much cleaner and straightforward approach is to
allow users to obtain usr/tgc tickets by means of the
demand operation. We specify this in SPM by set-
ting d(usr) to {usr/tgc}. This is useful if we wish
to allow users complete discretion regarding member-
ship in the groups they own. We show this in
figure 9 where the funnel attached to the usr type
represents the demand function. So long as man-
datory controls are not required this policy is highly
desirable. It has the appealing prope;ty that a
can establish a group consisting of an arbitrary
set of users.

67

user
sub-

usrltgc

?5Wh?

T
usrltgc

usrltgc

Hgure 9 Dynamic Group Membership Hgure 10 Dynamic Group llembershi~
Based on Demand Based on the Administrator-s Discretion

It is possible to specify mandatory controls in the
demand operation. Consider a requirement that a
user should only be able to form groups consisting of
users in the same department as himself. Instead of
a single subject type usr, we can define a subject
type usr, for each department i and set 4~srJ to be
{usri/tgc}.This is an attractive and simple method
for specifying the stated constraint.

Using the demand operation in this way has its
limitations because of the strong typing of SPM en-
tities and the static definition of the demand func-
tion. So long as the policy decisions can be cast in
concrete and are not likely to be frequently changed
we can build policy into the demand operation.
now demonstrate that SPM is also capable
specifying such mandatory controls dynamically.

3.4. Dynamic Group Membership with
Administrator’s Discretion

We
of

In the policy of figure 9 the user has complete
discretion regarding membership in his own groups.
We will show how this discretion can be mediated
by system administrators. For this purpose we in-
troduce a new subject type adm and make use of
the universal link of figure 3 which always exists.
We authorize administrators to demand copiable
take-grant tickets for users by defining d(adm) to be
{usr/tgc}. Users can obtain these tickets from ad-
ministrators across the universal link. This results
in figure 10. In effect the discretionary ability of
users to demand usr/tgc tickets has been replaced by
a copy operation from administrators. This ensures
that only those usr/tgc tickets which a administrator
considers appropriate will be available to a particular
user.

The obvious problem with this policy is that a ad-
ministrator has to intervene whenever a user wants
to make another user a member of one of the groups
that he owns. Moreover the administrator exercises
his discretionary power at the very low level of in-
dividual tickets. This places a considerable burden
on administ rators. We solve this problem by intro-
ducing a new subject type sgrp for system groups.
System groups are used to supply users with usr/tgc
tickets. The administrator “stocks” system groups
with these tickets and connects them to users using
take-grant links. This can be done dynamically by
the administrator. All this results in figure 11.
Now administrators need not be involved in every
user request for tMr/tgc tickets. To complete the
scheme we allow administrators to create system
groups as well as users. In both cases the create-
rule is empty since no tickets need to be generated.

As a enhancement we may as well allow system
groups to be used for sharing directories in addition
to being a source for usr/tgc tickets. This is shown
in figure 12. The system groups now provide added
convenience for users who can use them for sharing
so long as the policy built therein, by the security
administrator, suffices for their needs. At the same
time users can create their own groups, to provide

more restricted sharing or to combine users from dif-
ferent system groups in to a single group.

68

usr/tgc

usrltgc

usrltgc

figure 11 Dynamic Group Membership
Based on System Group=

4. CONCLUSION

It has been shown
model owner based

that SPM can conveniently
discretionary policies. The

specifications are intuitive. Simple policies result in
simple specifications and small changes to the
policies result in small changes to the specifications.
Although SPM has strong typing, the examples have
shown that it is possible to model dynamic grouping
with SPM in a straightforward way. We emphasize
that the notion of ownership is not an inevitable
component of every SPM scheme. Indeed there are
many situations where ownership is inappropriate
and SPM can model such policies [9].

Inspite of the simplicity of the policies specified
here, few Operating Systems can support all of them.
We believe it is important for system designers to
provide facilities to conveniently support the variety
of policies which arise even in simple contexts. At
the same time the policy specifications must be
analyzable so we may verify that the formalism cap-
tures our requirements.

SPM has been carefully developed to balance these
conflicting goals of convenient generality and tract-
able analysis. SPM provides a much richer structure
than the traditional access-mat rix model, first
proposed by Lampson [5]. Moreover analysis of the
access-matrix is undecidable in general and there do
not appear to be meaningful constraints leading to
tractable analysis while retaining generality [3]. In
contrast analysis of SPM is tractable given that the
only cycles in the can-create relation are of length
one [11] (which allow a subject to create subjects of
its own type). The owner-based schemes discussed
here trivially satisfy this constraint.

usrltgc

b

usr/tgc
m!! sgrp

djrltc

djrlt
usrltgc I

Hgure 12 Enhancement of System Groups
for Sharing Directories

5. REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Denning, D. E.
Cryptography and Data Security.
Addison-Wesley, 1982.

Graham, G. S. and Denning, P. J.
Protection - Principles and Practice.
In Proc. SJCC, pages 417-429. AFIPS, 1972.

Harrison, M. H., Russo, W. L. and Unman,
J. D.
Protection in Operating Systems.
CACM 19(8):461-471,Aug., 1976.

Jones, A. K., Lipton, R. J. and Snyder, L.
A

In

Linear Time Algorithm for Deciding
Security.
Proc. 17th Sqmp. on the Foundations of
Cornp. Sci. ‘IEEE, 1976.

Lampson, B. W.
Protection.
Proc. 5th Princeton Symp. of Info. Sea. and

Syst. :437-443, March, 1971.

Levy, H. M.
Capability-Based Computer Systems.
Digital Press, 1984.

Lipton, R. J. and Snyder, L.
A Linear Time Algorithm for Deciding Subject

Security.
JACM 24(3):455-464, Dec., 1977.

69

[8] Saltzer, J. H. and Schroeder, M. D.

[9]

[10]

[11]

[12]

The Protection of Information in Computer
Systems.

Proc. of IEEE 63(9):1278-1308, Sept., 1975.

Sandhu, R. S.
The SSR Model for Specification of Authoriza-

tion Policies: A Case Study in Project
Control.

In Proc. 8th Int. Comp. Sojtw. and AppL
Conf, pages 482-491. IEEE, November,
1984.

Sandhu, R. S.
Analysis of Acyclic Attenuating Systems for

the SSR Protection Model.
In Proc. 1985 Symp. on Security and Privacy,

pages 197-206. IEEE, April, 1985.

Sandhu, R. S.
The Schematic Protection Model: Its Definition

and Analysis for Acyclic Attenuating
Schemes.

Submitted for publication.

Snyder, L.
Formal Models of Capability-Based Protection

Systems.
IEEE Trans. Cornp. C-30(3):172-181, March,

1981.

70

