
ANALYSIS OF ACYCLIC ATTENUATING SYSTEMS

FOR THE SSR PROTECTION MODEL

Ravinderpal Singh Sandhu

Department of Computer and Information Science

The Ohio State University

Columbus, OH 43210

ABSTRACT

The distribution of privileges in domains of subjects

defines the protection state of a system. Operations

which change this state are themselves authorized by

privileges in the current state. This poses an

analysis problem of characterizing states which are

derivable from a given initial state. Analysis is part-

icularly difficult if creation of new subjects is per-

mitted. Also the need for tractable analysis conflicts

with the need for generality in specifying policies.

The Schematic Send-Receive (SSR) model resolves

this confllct by classifying subjects and objects into

protection types. The domain of each subject con-

sists of a static type-determined part specified by an

authorization scheme and a dynamic part consisting

of tickets (capabilities). We analyze a restricted
class of systems in SSR. Specifically, the scheme au-

thorizes crest ion via a binary relation on types. Our

major constraint is that this relation be acyclic ex-

cepting loops which authorize a subject to create

subjects of its own type. Our constraints admit a

large class of useful systems.

1. INTRODUCTION

The access control or protection problem arises in

any computer system which permits sharing of infor-

mat ion. Such systems are viewed as consisting of

subjects and objects. Subjects model active entities

such as users and processes whereas objects model

passive entities such aa text files. Protection is en-

forced by ensuring that only those operations for

which the invoking subject possesses privileges in its

domain actually get executed. Operations may be

performed on objects, e.g., reading a text tile, and

on subjects, e.g., blocking a process. We regard

subjects and objects aa mutually exclusive and use

entity to denote either a subject or object. BY

definition objects do not possess privileges. Passive

entities which possess privileges are modeled as sub-

jects. Our viewpoint is marginally different from the

prevalent one where subjects are regarded aa a sub-

set of objects. 1’ 2’ 3

The distribution of privileges in domains of sub-

jects defines the protection state of a system. Hence-

forth we understand state to mean protection state.

Inert privileges authorize operations which do not

modify the state, e.g., reading a file. Cent rol

privileges authorize operations which modify the

state, e.g., user X authorizes user Y to read file

Z. The paradigm is that an initial state is es-

tablished and thereafter evolves as constrained by

control privileges. The challenge is to construct an

initial state such that all derivable states are consis-

tent with the underlying policy.

At the simplest level an authorization policy defines

a set of safe states where the distribution of

privileges is consistent with the underlying objectives.

At all times the system must be in a safe state.
Safety considerate ions are typically concerned with

classes of entities rather than individuals, e.g., the
policy that only users in department D can access

tiles internal to department D. At a more sophis-

ticated level it is not enough that the system be in

a safe state we must additionally ensure the system

arrived at the safe state in a proper manner. For

instance, the policy that users outside department D

may access internal files of department D provided

the chairperson of D approves.

A protection model provides a framework and for-

malism for policy specification and must be general

enough to conveniently accommodate the kinds of

issues outlined above. But generality by itself is not
enough. To understand the formal statement of a

policy and to assure it captures our intent, we need

to characterize the states that a system may arrive

at from a given initial state. Since subjects are
usually authorized to create new subjects and ob-

jects, we are confronted with unbounded systems and

it is not certain that such analysis can be decidable

let alone tractable without sacrificing generality.

The central point of this paper is to demonstrate
that the conflicting goals of convenient generality

197
CH2150-1/85/0000/0197$01 .00 @ 1985 IEEE

and tractable analysis can be balanced. Analysis

issues were first formalized in context of the well-

known access-matrix model. 1’ 2’ 3 Not surprisingly,

analysis is undecidable in this general setting.

Moreover, the access-matrix lacks any structure to

convenient ly address policy concerns. On the other

hand the take-grant model 5’ 6’ 7 and its variations 8

while efficiently analyzable accommodate only a very

specific class of simple policies. Thus this conflict

between generality and analysis is very real.

In section 2 we present the Schematic Serzd-Receiue

or SSR model. In part SSR is based on Minsky’s

send-receive transport model. 9 SSR adopts some

simplifying assumptions and has a set-theoretic for-

mulation in contrast to Minsky’s production-rule for-

mulation. In sections 3, 4 and 5 we develop some

basic concepts and terminology for analysis. In sec-

tion 6 we discuss the restrictions under which the

analysis of section 7 is carried out. Section 8 con-

cludes the paper.

2. THE SSR MODEL

Our discussion of SSR here is necessarily abstract.

10 11 for additionalWe refer the reader to Sandhu ‘

mot ivat ional details and applications. The key con-

cept in SSR is protection types. Intuitively, in-

stances of the same protection type are treated

uniformly by cent rol privileges. Henceforth, we use

type as synonymous with protection type. A critical

assumption in SSR is strong typing, i.e., every entify

is created to be of exactly one type which cannot

change thereafter. SSR treats a subject’s domain as

consisting of two parts: a static part determined by

the subject’s type and a dynamic part which varies

with the protection state.

Dynamic privileges are represented as tickets

(capabilities) of the form Y/x where Y identifies

some unique entity and the right symbol x authorizes

the possessor of this ticket to perform some opera-

tion on Y. Capabilities with multiple right symbols

are modeled as sets of tickets. Static type-dependent

privileges are determined by the authorization scheme

defined by the security administrator when a system

is first set-up. Thereafter the scheme cannot be

changed. We find it useful to view an authorization

scheme as analogous to a database schema and the

distribution of tickets as analogous to an extensional

database.

TYPES AND RIGHT SYMBOLS

The first step in defining a scheme is to specify
the disjoint sets of objeet types TO and subject types

Ts” Their union T is the entire set of entity types.

By convention types are named in lower case

boldface and entities in upper case normal script.

The next step is to define the right symbols

carried by tickets. The set of right symbols R is

partitioned into two dkjoint subsets: RI the set of

inert rights and Rc the set of control rights. RC is

fixed and will be defined shortly. RI is specified by

the security administrator and regarded by SSR as a

set of ‘uninterpreted symbols.

Every right symbol x comes in two variations x

and xc where c is the copy flag. The only difference

between Y/x and Y/xc is that the former ticket can-

not be copied from one domain to another whereas

the latter possibly may be. If follows that presence

of Y/xc in a domain subsumes the presence of Y/x

but not vice versa. We use X:C to denote either x

or xc with the understanding that multiple occur-

rences of X:C in the same context are either all read

as x or all as xc.

We define the type of a ticket Y/x:c to be TY/x:c,

where the type function T returns the type of the en-

tity. Conventions for representing tickets, especially

regarding the copy flag, extend in an obvious way to

ticket types. In particular rY/x and rY/xc are dif-

ferent ticket types. This is an important distinction

because of the role of the copy flag. The entire set

of ticket types is T x R.

The remaining components of a scheme are defined

in terms of T~, T and TxR. SSR recognizes three

operations which change the protection state: copy,

demand and create.

THE COPY OPERATION

The copy operation moves a copy of a ticket from

the domain of one subject to the domain of another

leaving the original ticket intact. We often speak of

copying a ticket from one subject to another al-

though technically a ticket is copied from one

subject’s domain to another’s domain. In addition
to the copy flag this operation is authorized by the

link relation defined by control rights and by the fil-

ter function which is a component of the scheme.

SSR defines two control rights s and r, read send

and receive respectively, along with their copiable
variants, i.e., RC = {s, r, SC, rc}. These control
rights are interpreted by the link relation defined

below where dom denotes the set of tickets possessed

by a subject.

link(A,B) + [B/s ~ dom(A) A A/r ~ dom(B)]

Existence of link(A,B) is necessary but not sufficient

for copying tickets from A to B. A link is es-

tablished by a send ticket at the source and a

receive ticket at the destination. The motivation for
choosing these control rights, in preference to say

take-grant, 5, 6 is discussed in Minsky9 and Sandhu. 10

198

The final condition required for authorizing a copy

operation is defined by the filter function

f: T~xT~ + 2TXR. The interpretation is that

Y/x:c can be copied from dom(A) to dom(B) if and

only if all of the following are true.

1. Y/xc c dom(A)

2. link(A,B)

3. Ty/X:C E f(rA,rB)

In this manner the copy flag, the link relation and

the filter function together authorize a copy opera-

tion. The first two conditions depend on the dis-

tribution of tickets whereas the third condition

depends on the scheme. Selectivity in the copy

operation is controlled by the third condition and

specified entirely in terms of types. SSR imposes no

assumptions regarding the role of A and B in this

copy operation. It is equally acceptable that copying

take place at the initiative of A or B alone or re-

quire both to cooperate.

THE DEMAND OPERATION

The demand operation allows a subject to obtain

tickets simply by demanding them. A scheme au-

thorizes this operation by the demand function

d: T~ + 2TXR. The interpretation of a/x:c E d(b)

is that every subject of type b can demand the

ticket A/x:c for every entity A of type a. In par-

ticular control tickets can be demanded. Demand

extends some of the conveniences of access-control

lists to what is basically a capability framework.

THE CREATE OPERATION

The create operation introduces new subjects and

objects in the system. There are two issues here:
what types of entities can be created and what hap-

pens after a create operation occurs. The first issue

is specified in a scheme by the can-create relation

cc ~ T~x T. The interpretation is that subjects of

type a are authorized to create entities of type b if

and only if cc(a,b).

The second issue is specified by a crest e-rule for

every pair in cc. Let subject A of type a create en-

tity B of type b. If B is an object the (a,b) create-

rule tells us which tickets for B are placed in

dom(A) as a result of this operation. If B is a sub-

ject the create-rule must also tell us which tickets

for A are placed in dom(B). SSR requires every

create-rule be local in that the only tickets intro-

duced are for the creating and created entities in the

domains of the creating and created entities. The

idea is that frequently

such as creation should

cal incremental impact

occurring incremental events

immediately have only a lo-

on the state. Each ticket

generated by a create-rule may or may not carry the

copy flag as specified in the rule.

The facility to generate copiable control tickets for

a created subject is certainly useful. The policy

decision as to whether the creator or the created

subject or both get these tickets is properly left open

by the model. Placing copiable control tickets for

the creator in the created subject’s domain is also a

valid policy option. For example, a policy may al-

low an “ordinary user” U to create a very powerful

subject M of type “system manager” with the inten-

tion that M be used solely for experimentation by U

in isolation from the rest of the system. If M gets

copiable control tickets for U then M may create a

complex sub-system with which U can interact.

Placing copiable control tickets for the creator in the

creator’s own domain is a more subtle issue. As we

will see in section 6, this turns out to be useful in

working around some of the problems introduced by

insisting a scheme be defined entirely in terms of

types. At any rate there is no obligation to use this

facility.

We emphasize the create-rule may be different for

each pair in cc. We omit the symbolic formalism

for specifying create-rules. The important point is

the create-rules are specified in terms of types and

SSR only requires locality.

SUMMARY

In summary, the SSR model requires the security

administrator to specify an authorization scheme by

defining the following components.

1.

2.

3.

4.

5.

6.

The entity types T partitioned into subject

types T~ and object types To.

The rights R partitioned into inert rights RI

and a fixed set of control rights Rc = {s, r,

SC, rc}.

The filter function f Tg x TS + 2TXR.

The demand function d: TS + 2TXR.

The can-create relation cc Q T~ x T.

A local create-rule for each pair in cc.

A system is specified by defining an authorization

scheme, the initial set of entities and the initial dis-

tribution of tickets. Thereafter the system state

evolves by copy, demand and create operations.

REVOCATION AND DELETION

SSR lacks facilities for revocation of tickets. This

is a deliberate decision justified by adopting the

restoration principle that whatever can be revoked

199

can be restored. If a ticket obtained by a copy or

demand operation is revoked it is easily restored by

repeating the operation. However, if a ticket intro-

duced by a create operation is revoked it may not

be restorable by repeating the operation since each

created entity is unique. Also tickets distributed in

the initial state may not be restorable. If we as-

sume tickets distributed in the initial state or intro-

duced by create-rules are irrevocable the restoration

principle does not entail any loss of generality in

context of SSR.

A similar argument applies to deletion of entities.

Here the restoration principle requires that an entity

which can be deleted should be replaceable by an

equivalent entity. In general this rules out deletion

of entities present in the initial state. Regarding

deletion of entities created subsequently it is always

possible to re-create an entity of the same type as

was deleted. In other words the individuality of

created entities is not significant whereas the in-

dividuality of entities in the initial state is sig-

nificant.

Revocation and deletion policies consistent with the

restoration principle can be ignored in a worst-case

scenario where we assume all subjects will cooperate

with one another. This leads to monotonic evolution

of the system state which greatly simplifies analysis.

The problem of specifying revocation and deletion

policies still remains. For now we have chosen to

set aside this problem and focus on policies

quisition of tickets and creation of entities.

3. STATES AND HISTORIES

A change in state caused by a single copy,

for ac-

demand

or create operation is called a transition. A tran-

sition is legal provided there is proper authorization

for the operation causing it. A history is a sequence

of legal transitions. Histories are denoted by upper

case letters and states by lower case letters or spe-

cial symbols. Unless otherwise mentioned a history

is applied to the initial state. Any state that can
be derived by a history is derivable.

Because the authorization for creates and demands

is entirely in terms of types, we can assume wit bout

loss of generality that all create operations occur

first followed by demand operations and finally fol-

lowed by copy operations. We say such histories are
in canonical form. Formally we have the following

property.

Lemma 1: For every history H deriving state

h there is a history H‘ in canonical form which

derives state h.

Proofi Obtain H‘ from H by rearranging the

operations in H to conform to the canonical

form while preserving the relative order of each

kind of operation. The legality of the tran-

sitions in H‘ follows from their legality in H.

In analysis we are interested in functions and rela-

tions which depend on the state, e.g., dom and link.

When appropriate we qualify these with a superscript

to identify the state, e.g., domh and linkh identify

the context as state h. The initial state is identified
by the superscript O. The set of subjects and en-

tit ies in state h are respectively denoted by SUB h

and ENTh.

Both dom and link exhibit a monotonic property

because of the absence of revocation and deletion,

i.e., if g is derived from h then linkh ~ Iinkg and

for all A E SUBh, domh(A) ~ doing(A). Because

the functions and relations used in analysis depend

on the presence rather than absence of tickets in

domains, this monotonic property extends to all

functions and relations we consider.

4. THE FLOW FUNCTION

The flow function expresses the authorization for

copying tickets from one subject to another in a

given state accounting for indirect as well as direct

copying. For every pair of subjects its value is a

set of ticket types determined by the state and

scheme. Its definition is baaed on the following no-

tion.

Definition Z: There is a pathh from A to B

provided either linkh(A,B) or there exists a se-

quence of subjects C p...,cn such that all of the
following are true.

1, linkh(A,C1)

2. linkh(Ci,Ci+l), i=l..n-l

3. linkh(Cn,B)

In the former case we say the path consists of a

single link while in the latter case we say the

path traverses subjects C ~,...,Cn.

Consider a path from A to B which traverses

Cl,...,cn. Let Y/xc 6 dom(A). Y/xc can be copied
from A to B using this path provided Y/xc can be

copied across each link in the path. Further, Y/x
can be copied from A to B using this path provided

Y/xc can be copied from A to Cm and Y/x copied

from C ~ to B, that is the copy flag must be copied

on all except the last link. This leads to the follow-

ing definition.

200

Definition 3: Define the capacity of a pathh

from A to B as follows: if the path consists of

a single link its capacity is f(rA,~B) otherwise

the path traverses subjects C ~,...,C ~ and y/x:c is

in its capacity if and only if all of the following

are true.

1. y/XC C f(rA,r-C ~)

2. Y/xc C ‘(wi>fli+~)> i=l...l-l

3. y/X:C ~ f(rCn,rB)

Note that only the types of entities involved in this

definition are significant, not their specific identities.

We are now ready to define the flow function.

Definition 4: For ever
1

state h define the

flow function flowh: SUB x SUBh -+ 2TXR by

flowh(A,B) = {y/x:cl there exists a pathh from

A to B whose capacity includes y/x:c}. By con-

vention flowh(A,A) is T xR.

An alternate definition is that flow h(A,B) is the

union of the capacity of all paths in state h from A

to B. The convention concerning flowh(A,A) is cpn-

sistent with the underlying intuition and is con-

venient. Computation of flow h is straightforward in

principle and of polynomial complexity in the num-

ber of subjects in state h.

The fundamental issue in analysis is to predict be-

havior of the flow function. This is especially so

since create and demand operations are authorized

solely by the scheme whereas copy is authorized by

both the scheme and the distribution of tickets. Be-

cause flow is monotonic, for a given pair of subjects

it can only increase in derived states. From this

fact it can be shown there exists a derivable state

with the maximum value of flow between all subjects

in SUBO. We call such a state a mazimal state. In

general the maximal state is not unique. Indeed the

system can continue to evolve indefinitely by creation

of new entities. A maximal state is a worst-case

concept and will be derived only if all subjects

cooperate towards this end. We now formalize this

concept and prove that maximal states indeed exist.

5. MAXIMAL STATES

To focus on changes in flow with respect to sub-

jects in SUBO we introduce the following notions of

reducibility and equivalence.

Definition 5: A derivable state h is
O-reducible to a derivable state g written h 50 g

if and only if for all subjects A, B 6 SUBO,

flowh(A,B) ~ flowg(A,B).

For a given system two derivable states h and g

are equivalent written h RO g if and only if

h<ogandg <oh.

Because of its focus on the initial set of subjects,

this equivalence relation partitions the derivable

states into a finite collection of equivalence classes.

For future reference we state this as a lemma.

Lemma 6: For every system there are a finite

number of equivalence classes of derivable states.

Proofi For every pair of subjects in SUBO, flow

can take on at most 12TXRI distinct values.

Hence there are at most ISUBO\ 2 times 12TXRI

distinct equivalence classes, which is clearly

finite.

We are now ready to formalize the notion of max-

imal state.

Definition 7: For a given system a derivable

state m is a maximal state if and only if for

every derivable state h, h <0 m.

Clearly all maximal states are equivalent. The flow

function in a maximal state completely defines the

potential for copying tickets between subjects present

in the initial state.

The existence of maximal states is a consequence of

the monotonic nature of state transitions in SSR.

Consider a state h in which operation op is au-

thorized. If op is a demand or copy operation it

continues to be authorized in every state derived

from h, because the conditions on which the au-

thorization depends cannot be revoked. If op is a

create operation the situation is slightly different, be-

cause each create operation is unique and cannot be

repeated. We can account for creates by the for-

mulation: if op is authorized in state h then in every

history applied to h either op will have occurred or

will continue to be authorized. This leads to the

following property.

Lemma 8: Given an arbitrary finite collection

X of derivable states there exists a derivable

state m such that for every h c X, h <0 m.

Proofi By induction on size of N. The basis

follows by setting X to qfJ and m to the initial

state. Assume the lemma holds for all N of size

n and consider X of size n+ 1. Then M =

~ u {h} where [$! is n. BY hypothesis there is

a derivable state g which satisfies the lemma for

~. For the induction step we show for every

pair of derivable states g, h there exists a deriv-

201

able state m such that g <0 m and h <0 m.

Let g, h be established by histories G, H respec-

tively. Let N be any interleaving of G and H

which preserves the relative order of the tran-

sitions within G and H. Construct M by

eliminating the second occurrence of every dupli-

cate create operation in N. That every transition

in M is legal follows from the discussion above.

Let m be the state established by M. By con-

struction every path in state g, and every path

in state h, is duplicated in state m. That com-

pletes the induction step and the lemma follows.

Proving the existence of maximal states is now

straightforward.

Theorem 9: For every system there exists a

maximal state.

Proof: By lemma 6 there are a finite number of

equivalence classes of derivable states. Let N be

a collection of derivable states which contains

exact Iy one representative from each equivalence

class. The theorem follows by applying lemma

8 to N.

Unfortunately this proof is non-constructive and

thereby does not provide a method for computing

maximal states. It is easy to demonstrate that in

order to derive a maximal state from the initial state

we generally need to create new subjects. 10 The

problem is to determine which new subjects need to

be created. Although we conjecture this problem is

decidable, and even possibly tractable, in the general

case we have not discovered a method and can only
offer approximations. 10 We do have exact solutions

in several special cases of interest one of which we

discuss in the remainder of this paper.

The most troublesome aspect in deriving a max-

imal state is the create operation. If creation of

subjects is not allowed a maximal state is trivially

derived by repeatedly executing demand and copy

operations until the state stabilizes. It is easy to

construct straightforward polynomial algorithms for

this. From lemma 1 we know all create operations

can be assumed to occur at the beginning of a his-

tory, so in particular a maximal state can be derived

by such a history. The real problem is to determine

the initial sequence of creates needed for this pur-

pose. This idea underlies the analysis of section 7.

But first we must discuss the restrictions under

which this analysis is carried out.

6. ACYCLIC ATTEN~ATING SYSTEMS

Visualize the cc relation as a directed graph with

vertex set T and an edge from a to b if and only if

cc(a,b). We say cc is acyclic if this graph contains

no cycles excepting loops, i.e., edges which connect a

vertex to itself. An object type can only have in-

coming edges so the acyclic restriction has no effect

regarding creation of objects. For subject creation

the acycfic restriction states that if subjects of type

a can directly or indirectly create subjects of type b

then it is not possible for subjects of type b to

directly or indirectly create subjects of type a, unless

a = b. This is a fairly natural and intuitive restric-

tion and is consistent with modern approaches to

system design such as layering, information hiding,

data abstraction, etc. We say a scheme is acyclic if

its cc relation is acyclic. Similarly a system is

acyclic if its scheme is acyclic.

To motivate the one additional constraint we need

for our analysis consider subject A of type a such

that cc(a,a). Subject A can create a child A ‘ of

type a which in turn can create a child A” of type

a and so on. The possibility of indefinitely long

chains of create operations complicates analysis. The

acyclic restriction eliminates certain kinds of in-

definitely long chains but does not eliminate them

completely because loops are allowed. We will ac-

count for loops in cc by insisting that the child A‘

be “no more powerful” than its creator A. Since A
and A 1 are both of type a this is a somewhat

curious requirement. The crucial difference between

A and A‘ lies in the tickets introduced by the (a,a)

create-rule when A creates A ‘ .

Our first restriction on the (a,a) create-rule is that

immediately after the create operation
dom(A’) < dom(A). This is consistent with the

principle of attenuation 12 in that a newly created

subject does get more tickets than its creator. The
control tickets that can be placed in dom(A ‘) by a

local create-rule are a subset of
{A ’/s:c, A’ /r:c, A/s:c, A/r:c}. Placing A‘ /s or
A‘ /r in dom(A’) is meaningless and can be as-

sumed not to occur. Placing A/s or A/r in
dom(A’) respectively requires A/s or A/r be placed

in dom(A) which again is meaningless and can occur

without loss of generality. So the restriction has

practical impact only with respect to copiable control
tickets.

Our second restriction is more subtle. It requires

that if a ticket for A‘ is placed in dom(A) the cor-

responding ticket for A should also be placed in

dom(A). With respect to non-copiable control tick-

ets this again requires at most that A/s or A/r be

placed in dom(A) and entails no loss of generality.

The crucial implication is that A‘ /sc or A‘ /rc in

202

dom(A) implies respectively that A/se or A/rc in

dom(A). Without this restriction it is possible copi-

able control tickets for A‘ exist but not for A. Since

this facilitates establishment of links to and from

A‘, A‘ may be more powerful than A even though

they are of the same type.

The formal definition of our restrictions is as fol-

lows.

Definition 10: A scheme is attenuating if

every (a,a) create-rule is such that when A of

type a creates A‘ of type a the tickets intro-

duced by the create-rule satisfy the following

constraints.

1. Tickets placed in dom(A’) are also placed

in dom(A).

2. If A‘ /x:c is placed in dom(A) then A/x:c

is also placed in dom(A).

A system is attenuating if its scheme is at-

tenuating.

Note the attenuating restriction applies only to

create-rules for loops in cc. The net effect is that

copiable tickets for a created subject A‘ can be

generated by a (a,a) create-rule only if the creator A

gets the corresponding copiable ticket for itself.

A slightly different formulation of this effect is to

require that copiable tickets for A ‘ be generated by

a (a,a) create-rule only if the creator A possesses the

corresponding copiable ticket for itself. The latter

formulation is contrary to SSR since the create-rule

is influenced by the creator’s domain whereas SSR

create-rules are determined entirely by types. Defini-
tion 10 captures the spirit of this formulation within

the SSR framework. Indeed once A has created one
subject of type TA both formulations are essentially

equivalent.

A scheme is acyclic attenuating if it is acyclic and

attenuating. Similarly a system is acyclic attenuat-

ing if its scheme is acyclic attenuating system. We

believe such systems will suffice for a wide variety of

policies arising in practise. It is of interest that all
schemes discussed in Sandhu 11 are acyclic at t enuat-

ing.

7. FLOW ANALYSIS FOR ACYCLIC

ATTENUATING SYSTEMS

Our strategy for computing a maximal state is as

follows. From the given initial state we first derive

a state u entirely by create operations, with the ob-

jective that entities in state u will account for all

possible entities that can exist. We achieve this by

defining a mapping o (read surrogate) from all pos-

sible entities to entities in state u such that entity A

is simulated by uA. In particular o maps every en-

tity present in the initial state to itself. In our

proof we show that for every history H which

derives h from the initial state there exists a history

G, without w operations, which derives g from u

such that flow h(A,B) c flow g(crA,aB). Since G has

no creates a maximal state can be computed from u

by executing demand and copy operations until the

state stabilizes. Moreover, if the construction of u

introduces only a polynomial number of new subjects

the entire computation can be done in polynomial

time. The remainder of this section elaborates and

formalizes this argument in context of acyclic at-

tenuating systems.

Consider a subject A of type a. By definition cc

is acyclic. For the moment assume cc contains no

loops. We say A is unfolded if A creates one entity

of each type b such that cc(a,b). For each b the

entity created in this manner is called the b-

wrrogate of A. The idea is the b-surrogate of A will

simulate all type b children of A. To account for

descendants of A’s children we apply the unfolding

construction recursively to the surrogates of A and

so on until all descendants of A are unfolded. Be-

cause cc is acyclic and without loops this construc-

tion eventually terminates. At this point we say A

is fully unfolded. The initial state is fully unfolded if

all subjects in SUBO are fully unfolded.

[f cc contains loops we first eliminate the loops

and fully unfold the initial state. Then for every A

in the resulting state such that cc(~A,rA), we let A

create A‘ of type ~A. The intention here is that

the TA children of A will be simulated by A itself

rather than by A‘. Why then create A‘ at all?

The reason for this goes back to the motivation un-

derlying our attenuating restriction on create-rules

for loops in cc, i.e., it is possible this create opera-

tion may generate copiable control tickets for A in

dom(A).

We now formally define this construction.

Definition 11: Given any initial state O with

an acyclic attenuating scheme derive the fulfy

unfolded state u as follows.

1. Let cc’ = cc - {(a,a)l cc(a,a)}.

2. Mark all subjects in SUBO as folded.

3. While there exists a folded subject A do

Mark A as unfolded

For all b such that cc ‘ (rA,b) do

Let A create B of type b

Call B the b-surrogate of A

If B is a subject mark it as folded

203

4. For all subjects A in the resulting state do

If cc (rA,rA) then let A create

a subject of type rA

Clearly each create operation in this construction is

authorized by cc, so u is a derivable state. Because

of the absence of cycles and loops in cc ‘ this con-

st ruct ion is guaranteed to terminate.

Lemma 12: The construction of definition 11

terminates.

Proofi We need to show that step 3 of the

construction terminates. Consider A E SUBO.

The descendants of A generated by step 3 form

a tree with A at the root and each created en-

tity a child of its creator. Because each subject

creates only one child of each type, each node in

the tree has a finite number of children. If we

follow a path in this tree from the root to any

of A’s descendants the types of entities encoun-

tered in this path must all be different, other-

wise cc’ contains a cycle or loop. Since all

nodes in this path excepting the last one must

be subjects, the maximum length of such a path

is lT~[+l. Hence the depth of the tree is finite.

Next we define a

that can be created

simulates it.

Definition 13:

mapping to relate each entity

to the entity in state u which

Given any initial state with an

acyclic attenuating scheme, for every derivable
state h define the surrogate function

u ENTh ~ EIfT” as follows.

1. If A 6 ENTO then UA is A.

2. If B creates A and rA + rB then UA is

the rA-surrogate of crB (step 3 of definition

11).

3. If B creates A and rA = rB then UA is

uB.

Observe that a preserves types, i.e., TUA = rA. The

following is another crucial property.

Lemma 14: For an acyclic attenuating system

if A creates B in deriving h then tickets which

would be introduced by pretending that UA
creates rrB are present in dom”(uA) and

dom”(crB).

Proof: If A creates B and rA # rB then UA

indeed creates aB in constructing u from the in-

itial state (step 3 of definition 11). Since f-T

preserves types the lemma follows. If A creates

B and TA = TB then GA is uB. In constructing

u then OA creates A‘ of type rA = I-GA (step 4

of definition 11). By definition 10 all tickets

which would be introduced by pretending that

UA creates itself are thereby present in

dom”(uA).

This lemma is crucial because it suggests that in

constructing u from the initial state we have

managed to account for all possible create operations.

We are now ready to prove the central result of

this paper.

Theorem 15: For every acyclic attenuating

system, for every history H which derives h from

the initial state there exists a history G, without

create operations, which derives g from u such

that

(VA,B c SUBh)[fIowh(A,B) g flowqOA,OB)]

ProoE By lemma 1 we may assume H is in

canonical form, i.e., all create operations occur

first followed by demand operations and then by

copy operations. G is obtained from H by

replacing the individual transitions of H as fol-

lows while preserving the relative order.

1. Ignore all create operations in H.

2. “A demands B/x:c” in H is replaced by
“UA demands vB/x:c” in G.

3. “Copy A/x:c from B to C” in H is

replaced by “copy crA/x:c from UB to UC”

in G.

We first establish the following assertions.

I. Every transition in G is legal.

II. A/x:c c domh(B) + uA/x:c G domg(oB).

III. linkh(A,B) + linkg(aA,uB)

Assertion III follows trivially from II, and is cru-

cial to the second part of the proof. Assert ions

I and II are proved by induction on the number

of copy operations in H.

Basis Case: Let there be no copy operations

in H, so H consists of creates followed by

demands while G consists entirely of demands.

Assertion I: By construction every operation “A
demands B/x:c” in H is replaced by “oA

demands uB/x:c “ in G. Since o preserves types,

the demand operation in G is legal.

Assertion II: Without no copy operations there

are only three ways by which A/x:c can appear

in domh(B). If A/x:c E domO(B) then UA = A

and UB = B so assertion II is trivially true. If

204

A/x:c 6 domh(B) because of a create operation

in H assertion II follows from lemma 14.

Finally, if A/x:c ~ domh(B) because of a

demand operation then assertion II follows from

the corresponding demand operation in G.

Induction Step: Assume assertions I and II

are true for every history with k copy operations

and consider a history H with k+ 1 copy opera-

tions. Since H is in canonical form it consists

of an initial sequence H‘ with k copy operations

followed by a single copy operation. Let h‘ be

the state derived by H‘ . Let G‘ be the re-

quired modification of H‘. By hypothesis I, G‘

is a history. Let g‘ be the state derived by

G’. Let the final operation of H be “copy

A/x:c from B to C.” By construction the final

operation of G is “copy oA/x:c from UB to

UC. “

Assertion I: For the final operation of H to be

legal the following conditions must be true.

1. A/xc E domh’(B)

2. linkh’ (B,C)

3. Tfi/x:c 6 f(rB,rC)

By hypothesis II and the fact that o preserves

types the corresponding conditions required to

authorize the final operation of G are true in

state g‘ .

Assertion II: h differs from h‘ at most by

A/x:c c domh(C). By construction the final

operation of G ensures that uA/x:c ~ domg(aC).

This completes the induction step and we have

established both assert ions.

It remains to prove that

(vA,B E SUBh)[fIowh(A,B) c f10wg(0fi,d3)]

We do so by showing that for every pathh from

A to B there is a pathg from UA to OB with

the same capacity as the pathh. The proof is

by induction on the number of links. For the

baais case consider a pathh from A to B of

length 1, that is link h(A,B). By assertion III we

have link g(oA,oB). Since o preserves types the

basis case is true. Assume the hypothesis is

true for every pathh of length k and consider a

pathh from A to B of length k+l. Then there

is some C with a pathh from A to C of length

k and link h(C,B). By induction hypothesis there
is a pathg from UA to OC with the same

capacity m the pathh from A to C. By aasertion

III we have linkg(oC,uB). Since o preserves
types it follows there is a path g from UA to UB

with the same capacity as the pathh from A to

B.

The essence of theorem 15 is that all histories ap-

plied to the initial state can be simulated by his-

tories without create operations applied to state u.

Define # to be the state which results from state u

bv repeatedly executing demand and copy operations. .
until the state stabilizes. We

corollary.

Corollary 16: For every

system, for every history H

h from the initial state

(VA,B E SUBh)[flowh(A,B)

In particular

have ~he following

acyclic attenuating

which derives state

(VA,B c SUBO)poWh(A,B) g flow#(A,B)]

Proofi Immediate from theorem 15, definition of

above and definition 13 of a.

In other words for all derivable states h in a acyclic

attenuating system, h <~ # and thereby # is a

maximal state.

Clearly the # state is derivable. To derive #

from u requires time polynomial in \SUB”l. For

each subject A E SUBO the construction of u from

the initial state introduces a constant number of new

subjects determined by TA. Thus the entire com-

putat ion is polynomial in ISUBOl. We take this as

evidence that the computation is tractable. Of

course, in practise one will need careful engineering

of the algorithms to achieve acceptable performance.

We mention that lSUB”\ may exceed lSUBO\ by a

factor exponent ial in IT~l. In the worst case the

straightforward algorithms for computing flow# will

then be exponential in \T= 1. This will happen only

if cc is

ponent ial

and may

highly non-spars;. At any

factor involves lT~\ rather

be tolerable.

rate this ex-

than lSUBOl

8. CONCLUSION

This paper has focused on the problem of balanc-

ing generality and analyzability in a protection

model. We defined the SSR protection model with

the key idea of strong typing of entities. We

demonstrated that under reasonable assumptions

tractable analysis of systems specified in SSR is

feaaible. For a detailed application of SSR see

Sandhu.11

The concept of authorization scheme is applicable

to control rights other than send and receive. For

example,

model by

take and

of link.

we can define the Schematic Take-Grant

modifying the control rights of SSR to be

grant and suitably changing the definition

We can go a step further and allow the

205

control rights and definition of link to be specified as

a component of the scheme rather than being fixed.

Even further we can allow multiple definitions of

link to co-exist each with its own filter function.

The analysis result of this paper extends to such

generalizations. We have chosen to formulate our

model with a single set of specific control rights be-

cause the model is complex enough anyway and the

particular control rights chosen are of interest.

The analysis developed in this paper is based on

the worst-case concept of maximal state. In practise

it is desirable to analyze systems under assumptions

about the behavior of specific subjects. In SSR such

analysis can be reduced to worst-case analysis. SSR,

being a model rather than a mechanism, does not

insist that behavioral restrictions built into a scheme

be enforced at run-time. Any restriction imposed by

the scheme can be implemented by one of the fol-

lowing opt ions.

1.

2.

3.

The

Enforce the restriction at run-time.

Assume subjects will honor the restriction.

Prove subjects will honor the restriction.

second alternative allows us to incorporate

havioral assumptions as part of a scheme.

In addition to balancing analysis and generality

be-

an

important criteria for a protection model is that it

permit a variety of implementations. The three al-

ternatives listed above can be used in a variety of

combinations to implement a scheme. This allows

for a trade-off between the degree of trust invested

in subjects and the run-time or verification-time cost

of enforcement. Investigation of such implementation

trade-offs using a variety of underlying mechanisms

is a research topic we intend to pursue.

1.

2.

3.

4.

REFERENCES

Denning, D.E. and Denning, P. J., “Data
Security”, ACM Comp. Surv., Vol. 11, No. 3,

Sept. 1979, pp. 227-249.

Graham, G.S. and Denning, P. J., “protection

- Principles and Practice”, Proc. SJCC,

AFIPS, 1972, pp. 417-429.

Linden, T. A., “Operating System Structures to
Support Security and Reliable Software”, ACM

Comp. Surv., Vol. 8, No. 4, Dec. 1976, pp.
409-445.

Harrison, M. H., Russo, W.L. and Unman,

J. D., “Protection in Operating Systems”,
CA CM, Vol. 19, No. 8, Aug. 1976, pp.

461-471.

5.

6.

7.

8.

9.

10.

11.

12.

Lipton, R.J. and Snyder, L., “A Linear Time

Algorithm for Deciding Subject SecuritY”,
JACM, Vol. 24, No. 3, Dec. 1977, pp. 455-464.

Jones, A. K., Lipton, R.J. and Snyder, L., “A

Linear Time Algorithm for Deciding Security”,

Proc. 17th Symp. on the Foundations of Comp.

Ski., IEEE, 1976.

Snyder, L., “Formal Models of Capability-
Based Protect ion Systems”, IEEE Trans.

Comp., Vol. C-30, No. 3, March 1981, pp.

172-181.

Lockman, A. and Minsky, N., “Unidirectional

Transport of Rights and Take-Grant Control”,

IEEE Trans. Soft w. Engg., Vol. SE-8, No. 6,

November 1982, pp. 597-604.

Minsky, N., “Selective and Locally Controlled

Transport of Privileges”, ACM Trans. Prog.

Lang. and S@., Vol. 6, No. 4, October 1984,

pp. 573-602.

Sandhu, R. S., Design and Analysis of Protec-

tion Schemes Based on the Send-Receive
Transport Mechanism, PhD Thesis, Rutgers
University Technical Report DCS-TR-130,
1983.

Sandhu, R. S., “The SSR Model for Specifica-

tion of Authorization Policies: A Case Study

in Project Control”, Proc. 8th IEEE

COMPSA C, November 1984, pp. 482-491.

Saltzer, J.H. and Schroeder, M. D., “The

Protection of Information in Computer

Systems”, Proc. of IEEE, Vol. 63, No. 9,

Sept. 1975, pp. 1278-1308.

206

