ANALYSIS OF ACYCLIC ATTENUATING SYSTEMS
FOR THE SSR PROTECTION MODEL

Ravinderpal Singh Sandhu
Department of Computer and Information Science
The Ohio State University
Columbus, OH 43210

ABSTRACT

The distribution of privileges in domains of subjects defines the protection state of a system. Operations which change this state are themselves authorized by privileges in the current state. This poses an analysis problem of characterizing states which are derivable from a given initial state. Analysis is particularly difficult if creation of new subjects is permitted. Also the need for tractable analysis conflicts with the need for generality in specifying policies. The Schematic Send-Receive (SSR) model resolves this conflict by classifying subjects and objects into protection types. The domain of each subject consists of a static type-determined part specified by an authorization scheme and a dynamic part consisting of tickets (capabilities). We analyze a restricted class of systems in SSR. Specifically, the scheme authorizes creation via a binary relation on types. Our major constraint is that this relation be acyclic excepting loops which authorize a subject to create subjects of its own type. Our constraints admit a large class of useful systems.

The distribution of privileges in domains of subjects defines the protection state of a system. Henceforth we understand state to mean protection state. Insert privileges authorize operations which do not modify the state, e.g., reading a file. Control privileges authorize operations which modify the state, e.g., user X authorizes user Y to read file Z. The paradigm is that an initial state is established and thereafter evolves as constrained by control privileges. The challenge is to construct an initial state such that all derivable states are consistent with the underlying policy.

At the simplest level an authorization policy defines a set of safe states where the distribution of privileges is consistent with the underlying objectives. At all times the system must be in a safe state. Safety considerations are typically concerned with classes of entities rather than individuals, e.g., the policy that only users in department D can access files internal to department D. At a more sophisticated level it is not enough that the system be in a safe state we must additionally ensure the system arrived at the safe state in a proper manner. For instance, the policy that users outside department D may access internal files of department D provided the chairperson of D approves.

A protection model provides a framework and formalism for policy specification and must be general enough to conveniently accommodate the kinds of issues outlined above. But generality by itself is not enough. To understand the formal statement of a policy and to assure it captures our intent, we need to characterize the states that a system may arrive at from a given initial state. Since subjects are usually authorized to create new subjects and objects, we are confronted with unbounded systems and it is not certain that such analysis can be decidable let alone tractable without sacrificing generality.

The central point of this paper is to demonstrate that the conflicting goals of convenient generality
and tractable analysis can be balanced. Analysis issues were first formalized in context of the well-known access-matrix model. Not surprisingly, analysis is undecidable in this general setting. Moreover, the access-matrix lacks any structure to conveniently address policy concerns. On the other hand the take-grant model and its variations while efficiently analyzable accommodate only a very specific class of simple policies. Thus this conflict between generality and analysis is very real.

In section 2 we present the Schematic Send-Receive or SSR model. In part SSR is based on Minsky's send-receive transport model. SSR adopts some simplifying assumptions and has a set-theoretic formulation in contrast to Minsky's production-rule formulation. In sections 3, 4 and 5 we develop some basic concepts and terminology for analysis. In section 6 we discuss the restrictions under which the analysis of section 7 is carried out. Section 8 concludes the paper.

2. THE SSR MODEL

Our discussion of SSR here is necessarily abstract. We refer the reader to Sandhu for additional motivational details and applications. The key concept in SSR is protection types. Intuitively, instances of the same protection type are treated uniformly by control privileges. Henceforth, we use type as synonymous with protection type. A critical assumption in SSR is strong typing, i.e., every entity is created to be of exactly one type which cannot change thereafter. SSR treats a subject's domain as consisting of two parts: a static part determined by the subject's type and a dynamic part which varies with the protection state.

Dynamic privileges are represented as tickets (capabilities) of the form Y/x where Y identifies some unique entity and the right symbol x authorizes the possessor of this ticket to perform some operation on Y. Capabilities with multiple right symbols are modeled as sets of tickets. Static type-dependent privileges are determined by the authorization scheme defined by the security administrator when a system is first set-up. Thereafter the scheme cannot be changed. We find it useful to view an authorization scheme as analogous to a database schema and the distribution of tickets as analogous to an extensional database.

TYPES AND RIGHT SYMBOLS

The next step is to define the right symbols carried by tickets. The set of right symbols R is partitioned into two disjoint subsets: R_I the set of inert rights and R_C the set of control rights. R_C is fixed and will be defined shortly. R_I is specified by the security administrator and regarded by SSR as a set of uninterpreted symbols.

Every right symbol x comes in two variations x and xc where c is the copy flag. The only difference between Y/x and Y/xc is that the former ticket cannot be copied from one domain to another whereas the latter possibly may be. If follows that presence of Y/xc in a domain subsumes the presence of Y/x but not vice versa. We use xc to denote either x or xc with the understanding that multiple occurrences of xc in the same context are either all read as x or all as xc.

We define the type of a ticket Y/xc to be rY/xc where the type function r returns the type of the entity. Conventions for representing tickets, especially regarding the copy flag, extend in an obvious way to ticket types. In particular rY/x and rY/xc are different ticket types. This is an important distinction because of the role of the copy flag. The entire set of ticket types is T x R.

The remaining components of a scheme are defined in terms of T_S, T and T x R. SSR recognizes three operations which change the protection state: copy, demand and create.

THE COPY OPERATION

The copy operation moves a copy of a ticket from the domain of one subject to the domain of another leaving the original ticket intact. We often speak of copying a ticket from one subject to another although technically a ticket is copied from one subject's domain to another's domain. In addition to the copy flag this operation is authorized by the link relation defined by control rights and by the filter function which is a component of the scheme.

SSR defines two control rights s and r, read send and receive respectively, along with their copiable variants, i.e., R_C = {s, r, sc, rc}. These control rights are interpreted by the link relation defined below where dom denotes the set of tickets possessed by a subject.

\[\text{link}(A,B) \leftrightarrow [B/s \in \text{dom}(A) \land A/r \in \text{dom}(B)] \]

Existence of link(A,B) is necessary but not sufficient for copying tickets from A to B. A link is established by a send ticket at the source and a receive ticket at the destination. The motivation for choosing these control rights, in preference to say take-grant, is discussed in Minsky and Sandhu.
The final condition required for authorizing a copy operation is defined by the filter function \(f: T_s \times T_s \rightarrow 2^{T \times R} \). The interpretation is that \(\gamma/\alpha \in \text{dom}(A) \) can be copied from \(\text{dom}(A) \) to \(\text{dom}(B) \) if and only if all of the following are true.

1. \(\gamma/\alpha \in \text{dom}(A) \)
2. \(\text{link}(A, B) \)
3. \(r\gamma/\alpha \in f(rA, \gamma) \)

In this manner the copy flag, the link relation and the filter function together authorize a copy operation. The first two conditions depend on the distribution of tickets whereas the third condition depends on the scheme. Selectivity in the copy operation is controlled by the third condition and specified entirely in terms of types. SSR imposes no assumptions regarding the role of \(A \) and \(B \) in this copy operation. It is equally acceptable that copying take place at the initiative of \(A \) or \(B \) alone or require both to cooperate.

THE DEMAND OPERATION

The demand operation allows a subject to obtain tickets simply by demanding them. A scheme authorizes this operation by the demand function \(d: T_s \rightarrow 2^{T \times R} \). The interpretation of \(a/\alpha \in d(b) \) is that every subject of type \(b \) can demand the ticket \(\alpha/\alpha \) for every entity \(A \) of type \(a \). In particular control tickets can be demanded. Demand extends some of the conveniences of access-control lists to what is basically a capability framework.

THE CREATE OPERATION

The create operation introduces new subjects and objects in the system. There are two issues here: what types of entities can be created and what happens after a create operation occurs. The first issue is specified in a scheme by the can-create relation \(cc \subseteq T_s \times T \). The interpretation is that subjects of type \(a \) are authorized to create entities of type \(b \) if and only if \(cc(a, b) \).

The second issue is specified by a create-rule for every pair in \(cc \). Let subject \(A \) of type a create entity \(B \) of type \(b \). If \(B \) is an object the \((a, b) \) create-rule tells us which tickets for \(B \) are placed in \(\text{dom}(A) \) as a result of this operation. If \(B \) is a subject the create-rule must also tell us which tickets for \(A \) are placed in \(\text{dom}(B) \). SSR requires every create-rule be local in that the only tickets introduced are for the creating and created entities in the domains of the creating and created entities. The idea is that frequently occurring incremental events such as creation should immediately have only a local incremental impact on the state. Each ticket generated by a create-rule may or may not carry the copy flag as specified in the rule.

The facility to generate copiable control tickets for a created subject is certainly useful. The policy decision as to whether the creator or the created subject or both get these tickets is properly left open by the model. Placing copiable control tickets for the creator in the created subject's domain is also a valid policy option. For example, a policy may allow an "ordinary user" \(U \) to create a very powerful subject \(M \) of type "system manager" with the intention that \(M \) be used solely for experimentation by \(U \) in isolation from the rest of the system. If \(M \) gets copiable control tickets for \(U \) then \(M \) may create a complex sub-system with which \(U \) can interact. Placing copiable control tickets for the creator in the creator's own domain is a more subtle issue. As we will see in section 6, this turns out to be useful in working around some of the problems introduced by insisting a scheme be defined entirely in terms of types. At any rate there is no obligation to use this facility.

We emphasize the create-rule may be different for each pair in \(cc \). We omit the symbolic formalism for specifying create-rules. The important point is that the create-rules are specified in terms of types and SSR only requires locality.

SUMMARY

In summary, the SSR model requires the security administrator to specify an authorization scheme by defining the following components.

1. The entity types \(T \) partitioned into subject types \(T_s \) and object types \(T_o \).
2. The rights \(R \) partitioned into inert rights \(R_i \) and a fixed set of control rights \(R_c = \{ s, r, sc, rc \} \).
3. The filter function \(f: T_s \times T_s \rightarrow 2^{T \times R} \).
4. The demand function \(d: T_s \rightarrow 2^{T \times R} \).
5. The can-create relation \(cc \subseteq T_s \times T \).
6. A local create-rule for each pair in \(cc \).

A system is specified by defining an authorization scheme, the initial set of entities and the initial distribution of tickets. Thereafter the system state evolves by copy, demand and create operations.

REVOCA TION AND DELETION

SSR lacks facilities for revocation of tickets. This is a deliberate decision justified by adopting the restoration principle that whatever can be revoked
can be restored. If a ticket obtained by a copy or demand operation is revoked it is easily restored by repeating the operation. However, if a ticket introduced by a create operation is revoked it may not be restorable by repeating the operation since each created entity is unique. Also tickets distributed in the initial state may not be restorable. If we assume tickets distributed in the initial state or introduced by create-rules are irrevocable the restoration principle does not entail any loss of generality in context of SSR.

A similar argument applies to deletion of entities. Here the restoration principle requires that an entity which can be deleted should be replaceable by an equivalent entity. In general this rules out deletion of entities present in the initial state. Regarding deletion of entities created subsequently it is always possible to re-create an entity of the same type as was deleted. In other words the individuality of created entities is not significant whereas the individuality of entities in the initial state is significant.

Revocation and deletion policies consistent with the restoration principle can be ignored in a worst-case scenario where we assume all subjects will cooperate with one another. This leads to monotonic evolution of the system state which greatly simplifies analysis. The problem of specifying revocation and deletion policies still remains. For now we have chosen to set aside this problem and focus on policies for acquisition of tickets and creation of entities.

3. STATES AND HISTORIES

A change in state caused by a single copy, demand or create operation is called a transition. A transition is legal provided there is proper authorization for the operation causing it. A history is a sequence of legal transitions. Histories are denoted by upper case letters and states by lower case letters or special symbols. Unless otherwise mentioned a history is applied to the initial state. Any state that can be derived by a history is *derivable*.

Because the authorization for creates and demands is entirely in terms of types, we can assume without loss of generality that all create operations occur first followed by demand operations and finally followed by copy operations. We say such histories are in canonical form. Formally we have the following property.

Lemma 1: For every history H deriving state h there is a history H' in canonical form which derives state h.

Proof: Obtain H' from H by rearranging the operations in H to conform to the canonical form while preserving the relative order of each kind of operation. The legality of the transitions in H' follows from their legality in H.

In analysis we are interested in functions and relations which depend on the state, e.g., dom and link. When appropriate we qualify these with a superscript to identify the state, e.g., dom^h and link^h identify the context as state h. The initial state is identified by the superscript 0. The set of subjects and entities in state h are respectively denoted by SUB^h and ENT^h.

Both dom and link exhibit a monotonic property because of the absence of revocation and deletion, i.e., if g is derived from h then $\text{link}^h \subseteq \text{link}^g$ and for all $A \in \text{SUB}^h$, $\text{dom}^h(A) \subseteq \text{dom}^g(A)$. Because the functions and relations used in analysis depend on the presence rather than absence of tickets in domains, this monotonic property extends to all functions and relations we consider.

4. THE FLOW FUNCTION

The flow function expresses the authorization for copying tickets from one subject to another in a given state accounting for indirect as well as direct copying. For every pair of subjects its value is a set of ticket types determined by the state and scheme. Its definition is based on the following notion.

Definition 2: There is a pathh from A to B provided either $\text{link}^h(A,B)$ or there exists a sequence of subjects C_1,\ldots,C_n such that all of the following are true.

1. $\text{link}^h(A,C_1)$
2. $\text{link}^h(C_i,C_{i+1})$, $i=1\ldots n-1$
3. $\text{link}^h(C_n,B)$

In the former case we say the path consists of a single link while in the latter case we say the path traverses subjects C_1,\ldots,C_n.

Consider a path from A to B which traverses C_1,\ldots,C_n. Let $Y/xc \in \text{dom}(A)$. Y/xc can be copied from A to B using this path provided Y/xc can be copied across each link in the path. Further, Y/X can be copied from A to B using this path provided Y/xc can be copied from A to C_a and Y/x copied from C_n to B, that is the copy flag must be copied on all except the last link. This leads to the following definition.
Definition 3: Define the capacity of a path from A to B as follows: if the path consists of a single link its capacity is \(f(A, B) \) otherwise the path traverses subjects \(C_i, \ldots, C_n \) and \(y/x \) is in its capacity if and only if all of the following are true.

1. \(y/x \in f(C_i, C_{i+1}) \)
2. \(y/x \in f(C_n, B) \)
3. \(y/x \in f(C_i, C_{i+1}) \) for all \(i = 1, \ldots, n-1 \)

Note that only the types of entities involved in this definition are significant, not their specific identities. We are now ready to define the flow function.

Definition 4: For every state \(h \) define the flow function \(\text{flow}^h : \text{SUB}^h \times \text{SUB}^h \rightarrow 2^{T \times R} \) by \(\text{flow}^h(A, B) = \{ y/x \mid \text{there exists a path}^h \text{from} A \text{ to} B \text{ whose capacity includes} y/x \} \). By convention \(\text{flow}^h(A, A) = \emptyset \).

An alternate definition is that \(\text{flow}^h(A, B) \) is the union of the capacity of all paths in state \(h \) from \(A \) to \(B \). The convention concerning \(\text{flow}^h(A, A) \) is consistent with the underlying intuition and is convenient. Computation of \(\text{flow}^h \) is straightforward in principle and of polynomial complexity in the number of subjects in state \(h \).

The fundamental issue in analysis is to predict behavior of the flow function. This is especially so since create and demand operations are authorized solely by the scheme whereas copy is authorized by both the scheme and the distribution of tickets. Because flow is monotonic, for a given pair of subjects it can only increase in derived states. From this fact it can be shown there exists a derivable state with the maximum value of flow between all subjects in \(\text{SUB}^0 \). We call such a state a maximal state. In general the maximal state is not unique. Indeed the system can continue to evolve indefinitely by creation of new entities. A maximal state is a worst-case concept and will be derived only if all subjects cooperate towards this end. We now formalize this concept and prove that maximal states indeed exist.

5. MAXIMAL STATES

To focus on changes in flow with respect to subjects in \(\text{SUB}^0 \) we introduce the following notions of reducibility and equivalence.

Definition 5: A derivable state \(h \) is \(0 \)-reducible to a derivable state \(g \) written \(h \preceq_g 0 \) if and only if for all subjects \(A, B \in \text{SUB}^0 \), \(\text{flow}^h(A, B) \subseteq \text{flow}^g(A, B) \).

For a given system two derivable states \(h \) and \(g \) are equivalent written \(h \equiv_0 g \) if and only if \(h \preceq_0 g \) and \(g \preceq_0 h \).

Because of its focus on the initial set of subjects, this equivalence relation partitions the derivable states into a finite collection of equivalence classes. For future reference we state this as a lemma.

Lemma 6: For every system there are a finite number of equivalence classes of derivable states.

Proof: For every pair of subjects in \(\text{SUB}^0 \) flow can take on at most \(|2^{T \times R}| \) distinct values. Hence there are at most \(|\text{SUB}^0|^2 \times |2^{T \times R}| \) distinct equivalence classes, which is clearly finite.

We are now ready to formalize the notion of maximal state.

Definition 7: For a given system a derivable state \(m \) is a maximal state if and only if for every derivable state \(h \), \(h \preceq_0 m \).

Clearly all maximal states are equivalent. The flow function in a maximal state completely defines the potential for copying tickets between subjects present in the initial state.

The existence of maximal states is a consequence of the monotonic nature of state transitions in SSR. Consider a state \(h \) in which operation \(op \) is authorized. If \(op \) is a demand or copy operation it continues to be authorized in every state derived from \(h \), because the conditions on which the authorization depends cannot be revoked. If \(op \) is a create operation the situation is slightly different, because each create operation is unique and cannot be repeated. We can account for creates by the formulation: if \(op \) is authorized in state \(h \) then in every history applied to \(h \) either \(op \) will have occurred or will continue to be authorized. This leads to the following property.

Lemma 8: Given an arbitrary finite collection \(\mathcal{H} \) of derivable states there exists a derivable state \(m \) such that for every \(h \in \mathcal{H}, h \preceq_0 m \).

Proof: By induction on size of \(\mathcal{H} \). The basis follows by setting \(\mathcal{H} = \emptyset \) and \(m \) to the initial state. Assume the lemma holds for all \(\mathcal{H} \) of size \(n \) and consider \(\mathcal{H} \) of size \(n+1 \). Then \(\mathcal{H} = \mathcal{G} \cup \{ h \} \) where \(|\mathcal{G}| = n \). By hypothesis there is a derivable state \(g \) which satisfies the lemma for \(\mathcal{G} \). For the induction step we show for every pair of derivable states \(g, h \) there exists a deriv-
able state m such that g ≤ₚ m and h ≤ₚ m. Let g, h be established by histories G, H respectively. Let N be any interleaving of G and H which preserves the relative order of the transitions within G and H. Construct M by eliminating the second occurrence of every duplicate create operation in N. That every transition in M is legal follows from the discussion above. Let m be the state established by M. By construction every path in state g, and every path in state h, is duplicated in state m. That completes the induction step and the lemma follows.

Proving the existence of maximal states is now straightforward.

Theorem 9: For every system there exists a maximal state.

Proof: By lemma 6 there are a finite number of equivalence classes of derivable states. Let \(\mathcal{K} \) be a collection of derivable states which contains exactly one representative from each equivalence class. The theorem follows by applying lemma 8 to \(\mathcal{K} \).

Unfortunately this proof is non-constructive and thereby does not provide a method for computing maximal states. It is easy to demonstrate that in order to derive a maximal state from the initial state we generally need to create new subjects.\(^{10}\) The problem is to determine which new subjects need to be created. Although we conjecture this problem is decidable, and even possibly tractable, in the general case we have not discovered a method and can only offer approximations.\(^{10}\) We do have exact solutions in several special cases of interest one of which we discuss in the remainder of this paper.

The most troublesome aspect in deriving a maximal state is the create operation. If creation of subjects is not allowed a maximal state is trivially derived by repeatedly executing demand and copy operations until the state stabilizes. It is easy to construct straightforward polynomial algorithms for this. From lemma 1 we know all create operations can be assumed to occur at the beginning of a history, so in particular a maximal state can be derived by such a history. The real problem is to determine the initial sequence of creates needed for this purpose. This idea underlies the analysis of section 7.

But first we must discuss the restrictions under which this analysis is carried out.

6. ACYCLIC ATTENUATING SYSTEMS

Visualize the cc relation as a directed graph with vertex set T and an edge from a to b if and only if cc(a,b). We say cc is acyclic if this graph contains no cycles excepting loops, i.e., edges which connect a vertex to itself. An object type can only have incoming edges so the acyclic restriction has no effect regarding creation of objects. For subject creation the acyclic restriction states that if subjects of type a can directly or indirectly create subjects of type b then it is not possible for subjects of type b to directly or indirectly create subjects of type a, unless a = b. This is a fairly natural and intuitive restriction and is consistent with modern approaches to system design such as layering, information hiding, data abstraction, etc. We say a scheme is acyclic if its cc relation is acyclic. Similarly a system is acyclic if its scheme is acyclic.

To motivate the one additional constraint we need for our analysis consider subject A of type a such that cc(a,a). Subject A can create a child A' of type a which in turn can create a child A" of type a and so on. The possibility of indefinitely long chains of create operations complicates analysis. The acyclic restriction eliminates certain kinds of indefinitely long chains but does not eliminate them completely because loops are allowed. We will account for loops in cc by insisting that the child A' be "no more powerful" than its creator A. Since A and A' are both of type a this is a somewhat curious requirement. The crucial difference between A and A' lies in the tickets introduced by the (a,a) create-rule when A creates A'.

Our first restriction on the (a,a) create-rule is that immediately after the create operation dom(A') ⊆ dom(A). This is consistent with the principle of attenuation\(^{12}\) in that a newly created subject does get more tickets than its creator. The control tickets that can be placed in dom(A') by a local create-rule are a subset of \(\{ A'/sc, A'/rc, A/sc, A/rc \} \). Placing A'/sc or A'/rc in dom(A') is meaningless and can be assumed not to occur. Placing A/sc or A/rc in dom(A') respectively requires A/sc or A/rc be placed in dom(A) which again is meaningless and can occur without loss of generality. So the restriction has practical impact only with respect to copiable control tickets.

Our second restriction is more subtle. It requires that if a ticket for A' is placed in dom(A) the corresponding ticket for A should also be placed in dom(A). With respect to non-copiable control tickets this again requires at most that A/sc or A/rc be placed in dom(A) and entails no loss of generality. The crucial implication is that A'/sc or A'/rc in
dom(A') implies respectively that A/sc or A/rc in dom(A). Without this restriction it is possible copiable control tickets for A' exist but not for A. Since this facilitates establishment of links to and from A', A' may be more powerful than A even though they are of the same type.

The formal definition of our restrictions is as follows.

Definition 10: A scheme is attenuating if every (a,a) create-rule is such that when A of type a creates A' of type a the tickets introduced by the create-rule satisfy the following constraints.

1. Tickets placed in dom(A') are also placed in dom(A).

2. If A'/x:c is placed in dom(A) then A/x:C is also placed in dom(A).

A system is attenuating if its scheme is attenuating.

Note the attenuating restriction applies only to create-rules for loops in cc. The net effect is that copiable tickets for a created subject A can be generated by a (a,a) create-rule only if the creator A gets the corresponding copiable ticket for itself.

A slightly different formulation of this effect is to require that copiable tickets for A can be generated by (a,a) create-rule only if the creator A possesses the corresponding copiable ticket for itself. The latter formulation is contrary to SSR since the create-rule is influenced by the creator's domain whereas SSR create-rules are determined entirely by types. Definition 10 captures the spirit of this formulation within the SSR framework. Indeed once A has created one subject of type ra both formulations are essentially equivalent.

A scheme is acyclic attenuating if it is acyclic and attenuating. Similarly a system is acyclic attenuating if its scheme is acyclic attenuating system. We believe such systems will suffice for a wide variety of policies arising in practice. It is of interest that all schemes discussed in Sandhu are acyclic attenuating.

7. FLOW ANALYSIS FOR ACYCLIC ATTENUATING SYSTEMS

Our strategy for computing a maximal state is as follows. From the given initial state we first derive a state u entirely by create operations, with the objective that entities in state u will account for all possible entities that can exist. We achieve this by defining a mapping σ (read surrogate) from all possible entities to entities in state u such that entity A is simulated by σA. In particular σ maps every entity present in the initial state to itself. In our proof we show that for every history H which derives h from the initial state there exists a history G, without create operations, which derives h from u such that flow(G, A, B) ⊆ flow(σA, σB). Since G has no creates a maximal state can be computed from u by executing demand and copy operations until the state stabilizes. Moreover, if the construction of u introduces only a polynomial number of new subjects the entire computation can be done in polynomial time. The remainder of this section elaborates and formalizes this argument in context of acyclic attenuating systems.

Consider a subject A of type a. By definition cc is acyclic. For the moment assume cc contains no loops. We say A is unfolded if A creates one entity of each type b such that cc(a,b). For each b the entity created in this manner is called the b-surrogate of A. The idea is the b-surrogate of A will simulate all type b children of A. To account for descendants of A's children we apply the unfolding construction recursively to the surrogates of A and so on until all descendants of A are unfolded. Because cc is acyclic and without loops this construction eventually terminates. At this point we say A is fully unfolded. The initial state is fully unfolded if all subjects in SUB0 are fully unfolded.

If cc contains loops we first eliminate the loops and fully unfold the initial state. Then for every A in the resulting state such that cc(rA, rA), we let A create A' of type ra. The intention here is that the ra children of A will be simulated by A itself rather than by A'. Why then create A' at all? The reason for this goes back to the motivation underlying our attenuating restriction on create-rules for loops in cc, i.e., it is possible this create operation may generate copiable control tickets for A in dom(A).

We now formally define this construction.

Definition 11: Given any initial state 0 with an acyclic attenuating scheme derive the fully unfolded state u as follows.

1. Let cc' = cc - (a,a) cc(a,a).

2. Mark all subjects in SUB0 as folded.

3. While there exists a folded subject A do
 Mark A as unfolded
 For all b such that cc'(rA, b) do
 Let A create B of type b
 Call B the b-surrogate of A
 If B is a subject mark it as folded
4. For all subjects \(A \) in the resulting state do
If \(cc(\tau A, \tau A) \) then let \(A \) create
a subject of type \(\tau A \)

Clearly each create operation in this construction is
authorized by \(cc \), so \(u \) is a derivable state. Because of
the absence of cycles and loops in \(cc^* \) this construction
is guaranteed to terminate.

Lemma 12: The construction of definition 11
terminates.

Proof: We need to show that step 3 of the
construction terminates. Consider \(A \in SUB^0 \).
The descendants of \(A \) generated by step 3 form
a tree with \(A \) at the root and each created entity
a child of its creator. Because each subject
creates only one child of each type, each node in
the tree has a finite number of children. If we
follow a path in this tree from the root to any
of \(A \)'s descendants the types of entities encoun-
tered in this path must all be different, other-
wise \(cc^* \) contains a cycle or loop. Since all
nodes in this path excepting the last one must
be subjects, the maximum length of such a path
is \(|T_B|+1\). Hence the depth of the tree is finite.

Next we define a mapping to relate each entity
that can be created to the entity in state \(u \) which
simulates it.

Definition 13: Given any initial state with an
acyclic attenuating scheme, for every derivable
state \(h \) define the surrogate function
\(\sigma: ENT^h \rightarrow ENT^0 \) as follows.

1. If \(A \in ENT^0 \) then \(\sigma A = A \).
2. If \(B \) creates \(A \) and \(\tau A \neq \tau B \) then \(\sigma A \) is
 the \(\tau A \)-surrogate of \(\sigma B \) (step 3 of definition
 11).
3. If \(B \) creates \(A \) and \(\tau A = \tau B \) then \(\sigma A \) is
 \(\sigma B \).

Observe that \(\sigma \) preserves types, i.e., \(\tau A = \tau A \). The
following is another crucial property.

Lemma 14: For an acyclic attenuating system
if \(A \) creates \(B \) in deriving \(h \) then tickets which
would be introduced by pretending that \(\sigma A \)
creates \(\sigma B \) are present in \(\text{dom}^h(\sigma A) \)
and \(\text{dom}^h(\sigma B) \).

Proof: If \(A \) creates \(B \) and \(\tau A \neq \tau B \) then \(\sigma A \)
indeed creates \(\sigma B \) in constructing \(u \) from the
initial state (step 3 of definition 11). Since \(\sigma \)
preserves types the lemma follows. If \(A \) creates
\(B \) and \(\tau A = \tau B \) then \(\sigma A \) is \(\sigma B \). In constructing
\(u \) then \(\sigma A \) creates \(A' \) of type \(\tau A = \tau \sigma A \) (step 4
of definition 11). By definition 10 all tickets
which would be introduced by pretending that
\(\sigma A \) creates itself are thereby present in
\(\text{dom}^h(\sigma A) \).

This lemma is crucial because it suggests that in
constructing \(u \) from the initial state we have
managed to account for all possible create operations.

We are now ready to prove the central result of
this paper.

Theorem 15: For every acyclic attenuating
system, for every history \(H \) which derives \(h \) from
the initial state there exists a history \(G \), without
create operations, which derives \(g \) from \(u \) such that

\[
(\forall A, B \in SUB^h)[\text{flow}^h(A, B) \subseteq \text{flow}^g(\sigma A, \sigma B)]
\]

Proof: By lemma 1 we may assume \(H \) is in
canonical form, i.e., all create operations occur
first followed by demand operations and then by
copy operations. \(G \) is obtained from \(H \) by
replacing the individual transitions of \(H \) as follows
while preserving the relative order.

1. Ignore all create operations in \(H \).
2. "A demands \(B/xc: c \)" in \(H \) is replaced by
 "\(\sigma A \) demands \(\sigma B/xc: c \)" in \(G \).
3. "Copy \(A/xc \) from \(B \) to \(C \) in \(H \) is
 replaced by "copy \(\sigma A/xc \) from \(\sigma B \) to \(\sigma C \)"
 in \(G \).

We first establish the following assertions.

I. Every transition in \(G \) is legal.
II. \(A/xc \in \text{dom}^h(B) \Rightarrow \sigma A/xc \in \text{dom}^g(\sigma B) \).
III. \(\text{link}^h(A, B) \Rightarrow \text{link}^g(\sigma A, \sigma B) \)

Assertion II follows trivially from II, and is cru-
cial to the second part of the proof. Assertions
I and II are proved by induction on the number
of copy operations in \(H \).

Basis Case: Let there be no copy operations
in \(H \), so \(H \) consists of creates followed by
demands while \(G \) consists entirely of demands.

Assertion I: By construction every operation "A
demands \(B/xc: c \)" in \(H \) is replaced by "\(\sigma A \)
demands \(\sigma B/xc: c \)" in \(G \). Since \(\sigma \) preserves types,
the demand operation in \(G \) is legal.

Assertion II: Without no copy operations there
are only three ways by which \(A/xc \) can appear
in \(\text{dom}^h(B) \). If \(A/xc \in \text{dom}^h(B) \) then \(\sigma A = A \)
and \(\sigma B = B \) so assertion II is trivially true. If

A/x\epsilon \in \text{dom}^\delta(B) because of a create operation in H assertion II follows from lemma 14. Finally, if A/x\epsilon \in \text{dom}^\delta(H) because of a demand operation then assertion II follows from the corresponding demand operation in G.

Induction Step: Assume assertions I and II are true for every history with k copy operations and consider a history H with k+1 copy operations. Since H is in canonical form it consists of an initial sequence H' with k copy operations followed by a single copy operation. Let h' be the state derived from H'. Let G' be the required modification of H'. By hypothesis I, G' is a history. Let g' be the state derived by G'. Let the final operation of H be "copy A/x\epsilon from B to C." By construction the final operation of G is "copy \sigma A/x\epsilon from B to \sigma C."

Assertion I: For the final operation of H to be legal the following conditions must be true.

1. A/x\epsilon \in \text{dom}^\delta(B)
2. link^\delta(B,C)
3. rA/x\epsilon \in \text{f}(rB,rC)

By hypothesis II and the fact that \sigma preserves types the corresponding conditions required to authorize the final operation of G are true in state g'.

Assertion II: h differs from h' at most by A/x\epsilon \in \text{dom}^\delta(C). By construction the final operation of G ensures that \sigma A/x\epsilon \in \text{dom}^\delta(\sigma C). This completes the induction step and we have established both assertions.

It remains to prove that

\[(\forall A,B \in \text{SUB}^\delta)[\text{flow}^\delta(A,B) \subseteq \text{flow}^\delta(\sigma A,\sigma B)]\]

We do so by showing that for every path^\delta from A to B there is a path^\delta from \sigma A to \sigma B with the same capacity as the path^\delta. The proof is by induction on the number of links. For the basis case consider a path^\delta from A to B of length 1, that is link^\delta(A,B). By assertion III we have link^\delta(\sigma A,\sigma B). Since \sigma preserves types the basis case is true. Assume the hypothesis is true for every path^\delta of length k and consider a path^\delta from A to B of length k+1. Then there is some C with a path^\delta from A to C of length k and link^\delta(C,B). By induction hypothesis there is a path^\delta from \sigma A to \sigma C with the same capacity as the path^\delta from A to C. By assertion III we have link^\delta(\sigma C,\sigma B). Since \sigma preserves types it follows there is a path^\delta from \sigma A to \sigma B with the same capacity as the path^\delta from A to B.

The essence of theorem 15 is that all histories applied to the initial state can be simulated by histories without create operations applied to state u. Define \# to be the state which results from state u by repeatedly executing demand and copy operations until the state stabilizes. We have the following corollary.

Corollary 16: For every acyclic attenuating system, for every history H which derives state h from the initial state

\[(\forall A,B \in \text{SUB}^\delta)[\text{flow}^\delta(A,B) \subseteq \text{flow}^\delta(\sigma A,\sigma B)]\]

In particular

\[(\forall A,B \in \text{SUB}^\delta)[\text{flow}^\delta(A,B) \subseteq \text{flow}^\delta(\sigma A,\sigma B)]\]

Proof: Immediate from theorem 15, definition of \# above and definition 13 of \sigma.

In other words for all derivable states h in a acyclic attenuating system, h \leq_0 \# and thereby \# is a maximal state.

Clearly the \# state is derivable. To derive \# from u requires time polynomial in |SUB^\delta|. For each subject A \in SUB^\delta the construction of u from the initial state introduces a constant number of new subjects determined by rA. Thus the entire computation is polynomial in |SUB^\delta|. We take this as evidence that the computation is tractable. Of course, in practice one will need careful engineering of the algorithms to achieve acceptable performance. We mention that |SUB^\delta| may exceed |SUB^\delta| by a factor exponential in |T_g|.

8. CONCLUSION

This paper has focused on the problem of balancing generality and analyzability in a protection model. We defined the SSR protection model with the key idea of strong typing of entities. We demonstrated that under reasonable assumptions tractable analysis of systems specified in SSR is feasible. For a detailed application of SSR see Sandhu.11

The concept of authorization scheme is applicable to control rights other than send and receive. For example, we can define the Schematic Take-Grant model by modifying the control rights of SSR to be take and grant and suitably changing the definition of link. We can go a step further and allow the
control rights and definition of link to be specified as a component of the scheme rather than being fixed. Even further we can allow multiple definitions of link to co-exist each with its own filter function. The analysis result of this paper extends to such generalizations. We have chosen to formulate our model with a single set of specific control rights because the model is complex enough anyway and the particular control rights chosen are of interest.

The analysis developed in this paper is based on the worst-case concept of maximal state. In practise it is desirable to analyze systems under assumptions about the behavior of specific subjects. In SSR such analysis can be reduced to worst-case analysis. SSR, being a model rather than a mechanism, does not insist that behavioral restrictions built into a scheme be enforced at run-time. Any restriction imposed by the scheme can be implemented by one of the following options.

1. Enforce the restriction at run-time.
2. Assume subjects will honor the restriction.
3. Prove subjects will honor the restriction.

The second alternative allows us to incorporate behavioral assumptions as part of a scheme.

In addition to balancing analysis and generality an important criteria for a protection model is that it permit a variety of implementations. The three alternatives listed above can be used in a variety of combinations to implement a scheme. This allows for a trade-off between the degree of trust invested in subjects and the run-time or verification-time cost of enforcement. Investigation of such implementation trade-offs using a variety of underlying mechanisms is a research topic we intend to pursue.

REFERENCES