Extended ReBAC Administrative Models with Cascading Revocation and Provenance Support

Yuan Cheng1,2, Khalid Bijon2, and Ravi Sandhu1
Institute for Cyber Security, UTSA1
MosaixSoft, Inc.2

21st ACM Symposium on Access Control Models and Technologies
June 6-8, 2016, Shanghai, China
“… a new paradigm of access control needs to be developed that is based on interpersonal relationships …”
-- [Gates 2007]

Relationship-based Access Control (ReBAC) determines access in terms of the relationships among users and resources

Inspired by the rapid emergence of online social networks

Exemplary work includes:
- [Carminati 2009a, 2009b]
- [Fong 2009]
- [Fong 2011a, 2011b, Bruns 2012]
- [Cheng 2012a, 2012b, 2014]
- [Crampton 2014, Stoller 2015, Rizvi 2015, Crampton 2016]
Administrative ReBAC

- Demand for an appropriate administrative model
 - Dynamic and decentralized nature of OSNs
 - Multiple owners and administrators
 - Proper control on adding and removing of entities, relationships, and policies

- Use ReBAC itself to manage ReBAC
 - Economy of mechanism
 - Prior success of using Role-based Access Control (RBAC) to manage RBAC

World-Leading Research with Real-World Impact!

- **RPPM** relationships, paths, and principal-matching
- Combines UNIX access control model, ReBAC, and RBAC
- Path Condition
 - Bind requests to principals
- Principal Matching
 - Replace a path between entities with a single edge labelled by a principal
S. Stoller, An Administrative Model for Relationship-Based Access Control, DBSec 2015.

RPPM²: RPPM Modified

Administrative Model
- Add and Delete Edges/Entities/Authorization Rules
 - The administration of authorization rules is considered the most challenging
- Economy of mechanism
S. Rizvi, P. Fong, J. Crampton and J. Sellwood, *Relationship-Based Access Control for OpenMRS, SACMAT 2015*.

- Enforce ReBAC in a production-scale system
- Administrative Model
 - Add and remove access control relationships
 - Enabling precondition and applicability precondition
Extend Administrative ReBAC

Use Case: Configure MT-RBAC
 - RBAC extension with multi-tenancy authorization

Three motivating problems:
 - Enforce Global Integrity Policy Checks
 - Address Cascading Revocation
 - Resolve Multiple-ownership Issue

World-Leading Research with Real-World Impact!
Outline

- Introduction and Motivation
- AReBAC Models 1, 2 and 3
- Experiments
- Conclusion
Supports two operations: Add or Remove Edges (a.k.a. Relationships)

Consistency Policies:
- The system graph $G = (V; E)$ is always well-formed after allowing admin operation.

Global Integrity Constraints:
- Constraints based on certain conditions for participants.
Operations

\[\text{Add}(e_{\text{admin}}, e_1, e_2, r) \triangleleft \]
\[e_{\text{admin}} \in V \land e_1 \in V \land e_2 \in V \land \]
\[r \in R \land (\tau(e_1), \tau(e_2), r) \in E_{PR} \]
\[E' = E \cup \{<e_1,e_2, r>\} \]

\[\text{RM}(e_{\text{admin}}, e_1, e_2, r) \triangleleft \]
\[e_{\text{admin}} \in V \land (e_1, e_2, r) \in E \]
\[E' = E - \{<e_1,e_2, r>\} \]

Policy

\[p = \text{OP}(e_{\text{admin}}, e_1, e_2, r) \leftarrow \text{enableC}(e_{\text{admin}}, e_1, e_2) \land \text{preC}(e_1, e_2) \]

Examples

<table>
<thead>
<tr>
<th>Operation</th>
<th>Enabling Pre-Condition</th>
<th>Applicability Pre-Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{Add}(\text{tenant}_1, \text{tenant}_1, \text{tenant}_2, \text{TT})</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>\text{RM}(\text{tenant}_1, \text{user}_1, \text{role}_1, \text{UA})</td>
<td>\text{user} \cdot UO \cdot \text{tenant} \land \text{role} \cdot RO \cdot \text{tenant}</td>
<td>True</td>
</tr>
<tr>
<td>\text{Add}(\text{tenant}_2, \text{tenant}_2, \text{user}_2, \text{UO})</td>
<td>True</td>
<td>{\rightarrow, \text{user}_2, \text{UO}} \notin E</td>
</tr>
</tbody>
</table>

World-Leading Research with Real-World Impact!
The operation will trigger a series of recursive removal of edges on the graph in addition to the direct consequence of the operation.

(A) Removal of UO edge

(B) Removal of TT edge
Policy:

\[p = RM(e_{admin}, e_1, e_2, r) \leftarrow enableC(e_{admin}, e_1, e_2) \land \]
\[preC(e_1, e_2) : C_{revoke}(e_1, e_2, r). \]

- \textit{Crevoke}(e_1, e_2, r) returns a set of edges that needs to be removed (possibly empty) when the policy \(p \) is used to authorize the edge removal operation.
- Identification of dependent edges is non-trivial
 - Maintaining dependency relations could be costly

- Dependent-edge Discovery Algorithm
 - Depth-first search (O(V+E))
 - Dependency mapping function (O(1))
 - Maps the dependency edge \((e_1, e_2, label)\) to an ordered set of relationship labels Path, and a set of dependent relationship labels \(R_d\)
 - Overall complexity is O(V+E)
- The **provenance of a piece of data** is the process that led to that piece of data.

- Causality dependencies record the flow of transactions in the system.

- The Open Provenance Model (OPM) captures such causality dependencies and expresses them in the provenance graph.

- We can use provenance to address the multi-ownership issue.
World-Leading Research with Real-World Impact!

Edges with Multiple Ownership

*: provenance data updated
Use provenance information to capture and express causality dependencies for assisting authorization.

- Independent from ReBAC formalization
- Extensible to enable Provenance-based Access Control (PBAC)
- Potentially facilitate *multi-level* cascading revocation
- Provenance vs typed parameters
 - More complicated and costly
 - More expressive power and richer information
OPM Graph for Adding UA Edge

World-Leading Research with Real-World Impact!
World-Leading Research with Real-World Impact!
- Experiment 1: Varied size of Path, fixed size of rSet
Experiments (cont.)

- Experiment 2: Fixed size of *Path*, varied size of *rSet*
Conclusion

- Proposed a family of three administrative ReBAC models based on RPPM² policy language
- Identified and addressed three problems
 - Integrity constraints
 - Cascading revocation
 - Multi-ownership of edges
- Provided a dependent-edge discovery algorithm
- Used the proposed models to capture MT-RBAC

- Next:
 - Investigate new problems about ReBAC administration
 - Policy administration
 - Synthesize ReBAC and PBAC, etc.

World-Leading Research with Real-World Impact!
Questions? Comments?

World-Leading Research with Real-World Impact!