An Attribute Based Framework for Risk-Adaptive Access Control Models

Ravi Sandhu
Executive Director and Endowed Professor
August 2011

ravi.sandhu@utsa.edu
www.profsandhu.com
www.ics.utsa.edu

Joint work with Savith Kandala and Venkata Bhamidipati
Access to resources are automatically (or semi-automatically) granted based on:

- Purpose for the access request,
- Security risk, and
- Situational Factors

Motivating Example: Displaying a classified document...
Outline

➢ Benefits of Abstract Models

➢ Core Characteristics of RAdAC

➢ Components of RAdAC Model

➢ Mapping RAdAC to UCON

➢ Extending UCON Principles to RAdAC and Modified UCON Model
Benefits of Abstract Models

- Proposed at the Policy Layer
- Do not lay out enforcement and implementation details
- Successful practice – DAC, MAC and RBAC
- Provides a formal and structural foundation
Operational Need

Security Risk

Situational Factors

Heuristics

Adaptable Access Control Policies
Purpose (Operational Need)
The reason for the user’s access request

Can manifest as:
- A user’s membership in a role
- An authority is attesting to a user’s need to access the object

Examples: Health Care – Emergency treatment
Energy – Impending power emergency
Banking – Consent to access acct info.
Security Risk

World-Leading Research with Real-World Impact!

© Ravi Sandhu
Security Risk

- Users
- Devices
- Objects
- Operations
- Connections
- Attribute Providers and Level of Assurance

Security risk evaluation be based on risk associated with each of these components, as well as a composite risk.
Environmental or system oriented decision factors

- **Global Situational Factors**
 - Example: National terrorist threat level, Enterprise under cyber attack

- **Local Situational Factors**
 - Example: location, current local time for accessible time period (e.g., business hours), current location for accessible location checking (e.g., area code, connection origination point)
Access History

© Ravi Sandhu
World-Leading Research with Real-World Impact!
Access History

- Provides two functions
 - updates the object access history repository with the attributes in the access request and the access control decision
 - provides input for future access decisions

- Heuristics can be used to
 - Fine-tune access control policies
 - Improve future access decisions
 - Inputs the access decisions
Adaptable access control policies can be defined based on all the components.

- Overrides
 - Automatic
 - Semi-Automatic
 - Manual
UCON Model

- Rights (R)
- Subjects (S)
- Objects (O)
- Subject Attributes (SA)
- Authorization (A)
- Obligations (B)
- Conditions (C)
- Object Attributes (OA)

Continuity of Decisions

- Predecision
- Ongoing Decisions

- Before Usage
- Ongoing Usage
- After Usage

Mutability of Attributes

- Preupdates
- Ongoing Updates
- Postupdates

© Ravi Sandhu

World-Leading Research with Real-World Impact!
Key missing features
- Subject definition
- Access History
- Risk Evaluation

Extending UCON Principles to RAdAC
Modified UCON Model

Subjects (S):
- Users
- Devices
- Local Situational Factors

Purposes

Connections

Rights

Objects (O):
- Access History

Risk Evaluation

Authorizations (A)

Obligations (B)

Conditions (C)

Usage Decisions
Purely focused on the abstract models

The modified UCON model with the decomposed subject definition and the added functions of access history and risk evaluation is most suitable for modeling and implementing the RAdAC concept.

Future Work:

- Enforcement and implementation
- Defining architecture, protocols and mechanisms for the proposed RAdAC model