On Testing for Absence of Rights in Access Control Models

Ravi S. Sandhu and Srinivas Ganta

Center for Secure Information Systems, and
Department of Information and Software Systems Engineering
George Mason University, Fairfax, VA 22030

Abstract

The well-known access control model formalised by Harrison, Russo, and Ullman (HRU) does not allow testing for absence of access rights in its commands. Sandhu's Typed Access Matrix (TAM) model, which introduces strong typing into the HRU model, continues this tradition. Ammann and Sandhu have recently proposed an extension of TAM called augmented TAM (ATAM), which allows testing for absence of rights. The motivation for ATAM is to express policies for dynamic separation of duties based on transaction control expressions.

In this paper we study the question of whether or not testing for absence of access rights adds fundamental expressive power. We show that TAM and ATAM are formally equivalent in their expressive power. However, our construction indicates that while testing for absence of rights is theoretically unnecessary, such testing appears to be practically beneficial.

1 Introduction

The need for access controls arises in any computer system that provides for controlled sharing of information and other resources among multiple users. Access control models (also called protection models or security models) provide a formalism and framework for specifying, analyzing and implementing security policies in multi-user systems. These models are typically defined in terms of the well-known abstractions of subjects, objects and access rights; with which we assume the reader is familiar.

Access controls are useful to the extent they meet the user community's needs. They need to be flexi-

*The work of both authors is partially supported by National Science Foundation grant CCR-9202270. The authors are grateful to Nathaniel Mason for his support and encouragement in making this work possible.
cally unnecessary, such testing appears to be practically beneficial.

The rest of the paper is organized as follows. Section 2 gives a brief review of TAM and ATAM. Section 3 proves formal equivalence of the expressive power of TAM and ATAM, by showing how any given ATAM system can be simulated by a TAM system. Section 4 gives our conclusions, including an informal discussion of why our construction indicates that testing for absence of rights could be practically beneficial.

2 Background

In this section we review the definition of TAM, which was introduced by Sandhu in [7]. Our review is necessarily brief. The motivation for developing TAM, and its relation to other access control models are discussed at length in [7]. Following the review of TAM we briefly review the definition of ATAM [2].

2.1 The Typed Access Matrix (TAM) Model

The principal innovation of TAM is to introduce strong typing of subjects and objects, into the access matrix model of Harrison, Russio and Ullman [3]. This innovation is adapted from Sandhu's Schematic Protection Model [5], and its extension by Ammann and Sandhu [1].

As one would expect from its name, TAM represents the distribution of rights in the system by an access matrix. The matrix has a row and a column for each subject, and a column for each object. Subjects are also considered to be objects. The \([X, Y]\) cell contains rights which subject \(X\) possesses for object \(Y\).

Each subject or object is created to be of a specific type, which thereafter cannot be changed. It is important to understand that the types and rights are specified as part of the system definition, and are not predefined in the model. The security administrator specifies the following sets for this purpose:

- a finite set of access rights denoted by \(R\), and
- a finite set of object types (or simply types), denoted by \(T\).

For example, \(T = \{\text{user, so, file}\}\) specifies there are three types, viz., user, security-officer and file. A typical example of rights would be \(R = \{r, w, e, o\}\) respectively denoting read, write, execute and own. Once these sets are specified they remain fixed, until the security administrator changes their definition. It should be kept in mind that TAM treats the security administrator as an external entity, rather than as another subject in the system.

The **protection state** (or simply state) of a TAM system is given by the four-tuple \((OBJ, SUB, t, AM)\) interpreted as follows:

- \(OBJ\) is the set of objects.
- \(SUB\) is the set of subjects, \(SUB \subseteq OBJ\).
- \(t : OBJ \rightarrow T\) is the **type function** which gives the type of every object.
- \(AM\) is the **access matrix**, with a row for every subject and a column for every object. The contents of the \([S, O]\) cell of \(AM\) are denoted by \(AM[S, O]\). We have \(AM[S, O] \subseteq R\).

For convenience we usually drop the prefix \(AM\), and understand \([S, O]\) to denote \(AM[S, O]\).

The rights in the access matrix cells serve two purposes. First, presence of a right, such as \(r \in [X, Y]\) may authorize \(X\) to perform, say, the read operation on \(Y\). Second, presence of a right, say \(o \in [X, Y]\) may authorize \(X\) to perform some operation which changes the access matrix, e.g., by entering \(r\) in \([Z, Y]\). In other words, \(X\) as the owner of \(Y\) can change the matrix so that \(Z\) can read \(Y\).

The protection state of the system is changed by means of TAM commands. The security administrator defines a finite set of TAM commands when the system is specified. Each TAM command has one of the following formats.

\[
\begin{align*}
\text{command } \alpha(X_1 : t_1, X_2 : t_2, \ldots, X_k : t_k) \\
\text{if } r_1 \in [X_{a_1}, X_{a_2}] \land r_2 \in [X_{a_2}, X_{a_3}] \land \ldots \\
\ldots \\
\land r_m \in [X_{a_m}, X_{a_{m+1}}] \\
\text{then } op_1; op_2; \ldots; op_n
\end{align*}
\]

end

or

\[
\begin{align*}
\text{command } \alpha(X_1 : t_1, X_2 : t_2, \ldots, X_k : t_k) \\
op_1; op_2; \ldots; op_n
\end{align*}
\]

end

Here \(\alpha\) is the name of the command; \(X_1, X_2, \ldots, X_k\) are formal parameters whose types are respectively \(t_1, t_2, \ldots, t_k\); \(r_1, r_2, \ldots, r_m\) are rights; and \(s_1, s_2,\)
..., \sigma_m and \sigma_1, \sigma_2, \ldots, \sigma_m are integers between 1 and k. Each \sigma_i is one of the \textit{primitive operations} discussed below. The predicate following the if part of the command is called the \textit{condition} of \sigma_i, and the sequence of operations \sigma; \sigma_2; \ldots; \sigma_m is called the \textit{body} of \sigma. If the condition is omitted the command is said to be an \textit{unconditional command}, otherwise it is said to be a \textit{conditional command}.

A TAM command is invoked by substituting actual parameters of the appropriate types for the formal parameters. The condition part of the command is evaluated with respect to its actual parameters. The body is executed only if the condition evaluates to true.

There are six primitive operations in TAM, grouped into two classes, as follows.

- \textbf{Monotonic Primitive Operations}
 - \textit{enter} \(r \) into \([X_s, X_o]\)
 - create subject \(X_s \) of type \(t_s \)
 - create object \(X_o \) of type \(t_o \)

- \textbf{Non-Monotonic Primitive Operations}
 - \textit{delete} \(r \) from \([X_s, X_o]\)
 - destroy subject \(X_s \)
 - destroy object \(X_o \)

It is required that \(s \) and \(o \) are integers between 1 and \(k \), where \(k \) is the number of parameters in the TAM command in whose body the primitive operation occurs.

The \textit{enter} operation enters a right \(r \in R \) into an existing cell of the access matrix. The contents of the cell are treated as a set for this purpose, i.e., if the right is already present the cell is not changed. The \textit{enter} operation is \textit{monotonic}, because it only adds and does not remove from the access matrix. The \textit{delete} operation has the opposite effect of \textit{enter}. It (possibly) removes a right from a cell of the access matrix. Since each cell is treated as a set, \textit{delete} has no effect if the deleted right does not already exist in the cell. Because \textit{delete} (potentially) removes a right from the access matrix, it is a \textit{non-monotonic} operation.

The \textit{create subject} and \textit{destroy subject} operations make up a similar monotonic versus non-monotonic pair. The \textit{create subject} operation requires that the subject being created has a unique identity different not only from existing subjects, but also different from all subjects that have ever existed thus far. The \textit{destroy subject} operation requires that the subject being destroyed currently exists. Note that if the pre-condition for any \textit{create} or \textit{destroy} operation in the body is false, the entire TAM command has no effect. The \textit{create subject} operation introduces an empty row and column for the newly created subject into the access matrix. The \textit{destroy subject} operation removes the row and column for the destroyed subject from the access matrix. The \textit{create object} and \textit{destroy object} operations are much like their subject counterparts, except that they work on a column-only basis.

Two examples of TAM commands are given below.

\begin{verbatim}
command create-file(U : user, F : file)
 create object F of type file;
 enter own in [U, F]
end

command transfer-ownership(U : user, V : user, F : file)
 if own \epsilon [U, F] then
 delete own from [U, F];
 enter own in [V, F];
 end
end
\end{verbatim}

The first command authorizes users to create files, with the creator becoming the owner of the file. The second command allows ownership of a file to be transferred from one user to another.

2.2 \textbf{Summary of TAM}

To summarize, a system in specified in TAM by defining the following finite components.

1. A set of rights \(R \).
2. A set of types \(T \).
3. A set of state-changing commands, as defined above.
4. The initial state.

We say that the rights, types and commands define the \textit{system scheme}. Note that once the system scheme is specified by the security administrator it remains fixed thereafter for the life of the system. The system state, however, changes with time.

2.3 \textbf{The Augmented TAM (ATAM) Model}

ATAM was defined in [2] to be TAM extended with ability to test for the absence of a right in a cell of
the access matrix. In other words, a test of the form \(r_i \notin [X_{s_i}, X_{a_i}] \) may be present in the condition part of ATAM commands. Ammann and Sandhu argue (informally) that dynamic separation of duties requires this ability to test for absence of access rights. They show how transaction control expressions [6] can be specified in ATAM.

A surprising result of this paper is that TAM and ATAM are formally equivalent in expressive power. However, as we will see, from a practical viewpoint our construction suggests that it is beneficial to allow testing for absence of access rights.

3 Equivalence of TAM and ATAM

In this section we give a construction to show the equivalence of TAM and ATAM. We first show in section 3.1 that ATAM schemes without create or destroy operations can be reduced to TAM schemes. We then show, in section 3.2, how ATAM schemes with just create and destroy commands can be simulated in TAM. Finally in section 3.3 we give a procedure which converts any given ATAM scheme into an equivalent TAM scheme.

3.1 Equivalence Without Create or Destroy Operations

We now prove the equivalence of TAM and ATAM in the absence of create and destroy operations. Recall that ATAM extends TAM by allowing commands to test for absence of access rights in the condition part. Thus, TAM is a restricted version of ATAM. To establish equivalence we therefore need to show that every ATAM system can be simulated by a TAM system. This is done by giving a procedure to construct a TAM system that can simulate a given ATAM system.

The basic idea in the construction is to represent the absence of rights in the ATAM system by the presence of complementary rights in the TAM system. Suppose that the given ATAM system has set of rights \(R \). In the TAM simulation we include the rights \(R \), as well as the complementary rights \(\bar{R} = \{ \bar{a} \mid a \in R \} \). The construction will ensure that

\[z \in [S_i, O_j] \iff \bar{z} \notin [S_i, O_j] \]

The initial state of the TAM access matrix has all the rights of the initial matrix of ATAM, as well as all the complementary rights implied by the above predicate.

If the ATAM system has no creation operations, the following procedure constructs an equivalent TAM system.

1. Whenever a right \(z \) is entered in a cell of the ATAM system, it is also entered in the identical cell in the TAM system; but, moreover, the complementary right \(\bar{z} \) is deleted from that cell in the TAM system.

2. Similarly whenever a right \(z \) is deleted from a cell of the ATAM system, it is deleted from the identical cell in the TAM simulation. At the same time, the complementary right \(\bar{z} \) is entered in that cell in the TAM simulation.

3. Also if an ATAM command tests the absence of some rights, than the corresponding TAM command produced by our construction tests for the absence of rights by means of testing for presence of complementary rights. For example, the test \(z \notin [S_i, O_j] \) in an ATAM command will be simulated by the test \(\bar{z} \in [S_i, O_j] \) in the TAM system.

We have the following result.

Theorem 1 For every ATAM system \(S_1 \) the construction outlined above produces an equivalent TAM system \(S_2 \).

Proof Sketch: It can be easily seen that any reachable state in \(S_1 \) can be reached in \(S_2 \) (and vice-versa), if each ATAM command is simulated by the TAM command constructed as above (and vice versa). In particular the TAM system will maintain the invariant \(z \in [S_i, O_j] \iff \bar{z} \notin [S_i, O_j] \) for all cells in the access matrix. \(\square \)

3.2 Equivalence With Create and Destroy Operations

The occurrence of create operations in the given ATAM system considerably complicates the construction. We will focus only on creation of subjects, since every ATAM subject or object will be simulated in the TAM system as a subject (i.e., every column has a corresponding row in the access matrix). In other words the access matrix of the TAM system is square. This entails no loss of generality, since ATAM subjects are not necessarily active entities.

A primitive "create subject \(S_j \)" operation introduces a new empty row and column in the access matrix. To follow through with the complementary rights
construction, we need to introduce the \(\hat{R} \) rights in every cell involving \(S_j \). The number of primitive operations required to do this is directly proportional to the number of subjects existing, at that moment, in the system. Since this is a variable number, a single TAM command cannot achieve this result. Instead we must use a sequence of TAM commands. The number of TAM commands required is unbounded, being directly proportional to the size of the access matrix.

3.2.1 Linked List Structure

To facilitate the TAM simulation, our construction organizes the subjects in a linked list structure, which can be traversed by following its pointers. The pointers, and the head and tail locations of the list, are easy to implement by rights in the access matrix. New subjects are inserted at the tail of the list when they are created. In order to fill up the row and column for the new subject with the complementary rights \(\hat{R} \), the list is traversed from head to tail entering \(\hat{R} \) in the cells for the new subject along the way.

Three new rights head, tail, and next are introduced in the initial state of the matrix. The right head in a cell \([S_i, S_j]\) of the matrix implies that \(S_i \) is the first subject in the linked list. Similarly, the right tail in a cell \([S_i, S_j]\) of the matrix implies that \(S_i \) is the last subject in the linked list. The right next in a cell \([S_i, S_j]\) of the matrix implies that \(S_j \) is the successor to \(S_i \), in the linked list (or equivalently that \(S_i \) is the predecessor to \(S_j \) in the list). In addition, two rights \(C \) and \(tr \) are used for book-keeping purposes in the simulation, as will be explained in section 3.2.2. It is assumed, without loss of generality, that rights next, head, tail, token, \(C \), and \(tr \) are distinct from the rights in the given ATAM system.

A create operation in an ATAM system is simulated by multiple commands in the TAM system. The key to doing this successfully is to prevent other TAM commands from interfering with the simulation of the given ATAM command. The simplest way to do this is to ensure that ATAM commands can be executed in the TAM simulation only one at a time. To do this we need to synchronize the execution of successive ATAM commands in the TAM simulation. Thus the problem of simulating ATAM in TAM requires solution of a synchronization problem. Synchronization is achieved by introducing an extra subject called \(SNC \), and an extra right token as shown in figure 1. The role of \(SNC \) is to seriallyize the execution of simulation of ATAM commands in the TAM system. The type of \(SNC \) is \(snc \), which is assumed, without loss of generality, to be distinct from any type in the given ATAM system.

To summarize, the initial state of the TAM system consists of the initial state of the given ATAM system augmented in three respects.

1. First, an empty row is introduced for every ATAM object, which does not have a row in the given ATAM access matrix. The head, tail and next rights are introduced to order the subjects in a linked list.

2. Secondly, complementary rights are introduced as per the following predicate:

\[
x \in [S_i, S_j] \iff \exists \notin [S_i, S_j]
\]

3. Thirdly, the \(SNC \) subject is introduced in the access matrix with \([SNC, SNC] = token\), and all other cells involving \(SNC \) being empty.

3.2.2 Simulation of ATAM create commands

We now consider how the ATAM command \(CCreate \) given below can be simulated by several TAM commands.

```plaintext
command CCreate(S_1 : s_1, S_2 : s_2, \ldots,
                 S_m : s_m, S_c : s_c)

if \( \alpha(S_1, S_2, \ldots, S_m) \) then
    create subject \( S_c \) of type \( s_c \)
end
```

The name \(CCreate \) is a mnemonic for conditional creation. This command tests for the condition \(\alpha(S_1, S_2, \ldots, S_m) \). If the condition is true, the command creates a new subject \(S_c \).

The TAM simulation of \(CCreate \) proceeds in three phases, respectively as illustrated in figures 2, 3 and 4. In these figures we show only the relevant portion of the access matrix, and only those rights introduced specifically for the TAM simulation. Complementary rights are shown only in the cells involving the newly created subject \(S_c \). It is understood that the original ATAM rights are distributed exactly as in the ATAM system, along with complementary rights required to maintain the predicate \(x \in [S_i, S_j] \iff \exists \notin [S_i, S_j] \). In the figures, \(n \) represents the total number of subjects in the system prior to the create operation.

The first phase consists of a single TAM command \(CCreate-I \) which tests whether (i) the condition of the ATAM command \(\alpha(S_1, S_2, \ldots, S_m) \) is true, and (ii)
whether \(\text{token} \in [SNC, SNC] \). The former test is obviously required. The predicate \(\alpha \) may involve tests for absence of access rights. Hence, in the TAM simulation we replace \(\alpha \) by \(\alpha' \), which is obtained by substituting tests for presence of complimentary rights in place of tests for absence of rights in \(\alpha \). The latter test for \(\text{token} \in [SNC, SNC] \) ensures that the TAM simulation of \text{CCreate} can commence only if no other ATAM command is currently being simulated. It also ensures that once phase I of the simulation of \text{CCreate} has started, the simulation will proceed to completion before simulation of another ATAM command can begin. The phase I TAM command is given below.

command \text{CCreate-I}([S_1 : s_1, S_2 : s_2, \ldots, S_m : s_m, S_c : s_c, SNC : snc])
\[\begin{align*}
\text{if } & \alpha'(S_1, S_2, \ldots, S_m) \land \text{token} \in [SNC, SNC] \\
\text{then} & \text{delete token from } [SNC, SNC] \\
& \text{create } S_c \text{ of type } s_c \\
& \text{enter } tr \text{ in } [S_c, S_c]
\end{align*}\]

The body of this command deletes \text{token} from \([SNC, SNC]\) and creates subject \(S_c \). It also enters \(tr \) in \([S_c, S_c]\) indicating that all cells corresponding to \(S_c \) have to be traversed. The states of the access matrix, before and after execution of \text{CCreate-I}, are outlined in figures 1 and 2 respectively.

In phase II of the simulation the right \(C \) is passed, in turn, from \([S_c, S_1]\) to \([S_c, S_2]\) and so on to \([S_c, S_n]\). A right \(C \) in a cell of a matrix indicates that all complimentary rights have to be introduced in that cell. Hence complimentary rights \(R \) are introduced in the cell from which the right \(C \) is removed. The phase II commands are given below. The type of subjects \(S_i \) and \(S_c \) indicated in the commands by \(T - snc \) implies that these subjects can be of any type in \(T - snc \) (i.e., any type other than snc). Strictly speaking, we should have a separate command for each type in \(T - snc \), but we allow this slight extension of our notation to simplify the presentation.

command \text{CCreate-II}([S_c : s_c, S_i : T - snc])
\[\begin{align*}
&\text{if } tr \in [S_i, S_i] \land \text{head} \in [S_i, S_i] \\
&\text{delete } tr \text{ from } [S_i, S_i] \\
&\text{enter } C \text{ in } [S_c, S_i]
\end{align*}\]

command \text{CCreate-II}([S_c : s_c, S_i : T - snc, S_r : T - snc])
\[\begin{align*}
&\text{if } next \in [S_c, S_i] \land C \in [S_c, S_i] \\
&\text{enter } R \text{ in } [S_c, S_i] \\
&\text{enter } R \text{ in } [S_c, S_r] \\
&\text{delete } C \text{ from } [S_c, S_i] \\
&\text{enter } C \text{ in } [S_c, S_r]
\end{align*}\]

The command \text{CCreate-II} tests if phase I is completed by looking for right \(tr \), which it then removes
Figure 3: TAM Simulation of the ATAM Command \texttt{CCreate}: Phase II

Figure 4: TAM Simulation of the ATAM Command \texttt{CCreate}: Phase III
and enters right C in the head column of the list of subjects. Command $CCreate-2-II$ introduces complimentary rights in all cells involving S_e except the tail subject by passing right C along the linked list of subjects. The insertion of complimentary rights in the tail column of the linked list is deferred until Phase III. The execution of Phase II commands is illustrated in figure 3.

In phase III of the simulation, the new subject S_e is inserted at the end of the linked list. At the same time, complimentary rights are introduced in the previous and the new tail cells. Also token is introduced in the cell $[SNC, SNC]$ indicating that the simulation of $CCreate$ is complete. The Phase III command is given below.

Command $CCreate-III(S_e : s_e, S_n : T - snc, SNC : snc)$

if $C \in [S_n, S_e] \land tail \in [S_m, S_n]$ then
 delete C from $[S_n, S_e]$;
 enter R in $[S_n, S_e]$;
 enter R in $[S_e, S_n]$;
 enter R in $[S_n, S_n]$;
 enter $next$ in $[S_n, S_n]$;
 delete $tail$ from $[S_n, S_n]$;
 enter $tail$ in $[S_e, S_n]$;
 enter $token$ in $[SNC, SNC]$
end

Prior to execution of the $CCreate-III$ command we have the situation shown in figure 3(c). After execution of $CCreate-III$ we have the situation of figure 4. The TAM simulation is now ready to proceed with execution of another ATAM command.

3.2.3 Simulation of ATAM destroy commands

In order to simulate creation, we have seen that the subjects need to be related in a linked list structure. Hence, whenever a subject is destroyed the linked lists should still be maintained. For instance, when subject S_3 is destroyed in context of figure 5(a), we should maintain the linked list as shown in figure 5(b).

To be concrete, consider the following ATAM command whose name $CDestroy$ is a mnemonic for conditional destroy.¹

command $CDestroy (S_1 : s_1, S_2 : s_2, \ldots, S_m : s_m, S_d : s_d)$

if $\alpha(S_d, S_1, \ldots, S_m)$ then
 destroy subject S_d
end

This command can be simulated by a single TAM command, since maintenance of the linked list requires adjustment to a fixed number of cells of the access matrix. However, we do need several variations of the TAM command, depending upon whether the subject being destroyed is in the middle, or at the head or tail of the linked list. We also need a variation to simulate the extreme case where the subject being destroyed is the only subject in the linked list.

The TAM command to simulate $CDestroy$, when S_d is in the middle of the list, is as follows.

command $CDestroy-middle (S_d : s_d, S_1 : T - snc, S_r : T - snc, S_1 : s_1, S_2 : s_2, \ldots, S_m : s_m, SNC : snc)$

if $\alpha(S_d, S_1, \ldots, S_m) \land$
 $token \in [SNC, SNC] \land$
 $next \in [S_1, S_1] \land next \in [S_1, S_1]$
then
 destroy subject S_d;
 enter $next$ in $[S_1, S_1]$
end

As done in section 3.2.2, the predicate α' is obtained by substituting tests for presence of complimentary rights in place of tests for absence of rights in α. The test for the $token$ right ensures that ATAM commands are simulated one at a time. The tests for $next$ ensure that S_1 and S_r are respectively the predecessor and successor of S_d in the linked list. The body of the command maintains the linked list.

If S_d is at the head or at the tail of the linked list, we respectively have the following two commands.

command $CDestroy-head (S_d : s_d, S_r : T - snc, S_1 : s_1, S_2 : s_2, \ldots, S_m : s_m, SNC : snc)$

if $\alpha'(S_d, S_1, \ldots, S_m) \land$
 $token \in [SNC, SNC] \land$
 $head \in [S_d, S_1] \land next \in [S_d, S_1]$
then
 destroy subject S_d;
 enter $head$ in $[S_r, S_r]$
end

command $CDestroy-tail (S_d : s_d, S_1 : T - snc, S_1 : s_1, S_2 : s_2, \ldots, S_m : s_m, SNC : snc)$

if $\alpha'(S_d, S_1, \ldots, S_m) \land$
 $token \in [SNC, SNC] \land$
 $next \in [S_1, S_2] \land tail \in [S_1, S_1]$
then
 destroy subject S_d;
 enter $tail$ in $[S_1, S_1]$
end

¹We have shown S_d as occurring in the conditional predicate α. This should be interpreted as saying that S_d may optionally occur in the condition, but is not required to.
then
destroy subject S_4
enter tail in $[S_1, S_3]$
end

Finally, for the extreme case where S_4 is the only subject in the linked list we have the following TAM command.

command $CDestroy$-last ($S_4 : s_4$, $SNC : snc$)
if $\alpha'(S_4) \land token \in [SNC, SNC] \land$
head $\in [S_4, S_3] \land tail \in [S_4, S_6]$
then
destroy subject S_4
end

3.3 Simulation of ATAM schemes

So far we have seen how ATAM commands which do not have create and destroy operations, and ATAM commands which just have either create or destroy operations are converted into TAM commands. A general procedure for simulating an arbitrary ATAM command in TAM can be obtained by combining these ideas. Consider a ATAM command with multiple operations (i.e., a sequence of enter, delete, create, and destroy operations). Based on the previous discussion, we know how to simulate each primitive operation in turn. With some additional book-keeping we can keep track of a "program counter" which moves down the sequence of primitive operations in the body of the ATAM command, as each one gets simulated. The details are lengthy and tedious, and are omitted here.

We conclude this section by stating the central result of this paper.

Theorem 2 TAM and ATAM are formally equivalent in expressive power.

Proof Sketch: Follows from the above discussion. □

4 Conclusion

In this paper we have shown that the expressive power of the typed access matrix (TAM) model [7], and the augmented TAM (ATAM) model [2] are formally equivalent. Thus, testing for absence of access rights does not provide additional expressive power.

The TAM simulation of ATAM, given in this paper, clearly requires traversal of all subjects in the system whenever a create operation occurs in the given ATAM system. Moreover, no other command can be initiated while this traversal is in progress. In real systems this will not be practically feasible.

The indication therefore is that ATAM can theoretically be reduced to TAM, but practically testing for absence of access rights appears to be useful. It is an
open question whether this claim can be formalised, and proven on the basis of some formal complexity measure.

References

