Expressive Power of the Single-Object Typed Access Matrix Model

Ravi S. Sandhu and Srinivas Ganta
Center for Secure Information Systems
&
Department of Information and
Software Systems Engineering
George Mason University
Fairfax, VA 22030-4444
{sandhu,gsriniva}@issee.gmu.edu

Abstract

The single-object typed access matrix (SOTAM) model was recently introduced in the literature by Sandhu and Suri. It is a special case of Sandhu's typed access matrix (TAM) model. In SOTAM individual commands are restricted to modifying exactly one column of the access matrix (whereas individual TAM commands in general can modify multiple columns). Sandhu and Suri have outlined a simple implementation of SOTAM in a distributed environment using the familiar client-server architecture. In particular the stipulation that each command modifies a single column of the access matrix, is reflected in the desirable property that each command modifies a single access control list corresponding to that column. In this paper we show that TAM and SOTAM are formally equivalent in their expressive power. This result establishes that SOTAM has precisely the same expressive power as TAM, while having a simple implementation at the same time. In a nutshell, this result tells us that manipulation of access control information can be achieved in its most general form by manipulation of a single access control list (ACL) at a time.

1 Introduction

The need for access controls arises in any computer system that provides for controlled sharing of information and other resources among multiple users. Access control models (also called protection models or security models) provide a formalism and framework for specifying, analyzing and implementing security policies in multi-user systems. These models are typically defined in terms of the well-known abstractions of subjects, objects and access rights with which we assume the reader is familiar.

Access controls are useful to the extent they meet the user community's needs. They need to be flexible so that individual users can specify access of other users to the objects they control. At the same time the discretionary power of individual users must be constrained to meet the overall objectives and policies of an organization. One method for achieving the desired flexibility is to allow security administrators to specify policies for propagation rights, which allow some discretionary freedom to users but at the same time impose some non-discretionary rules. Several such policies, and access control models for their specification, have been published in the literature (see for example [1, 5, 6, 7, 9, 11]).

Security models based on propagation of access rights must confront the safety problem. In its most basic form, the safety question for access control asks: is there a reachable state in which a particular subject possesses a particular right for a specific object? There is an essential conflict between the expressive power of an access control model and tractability of safety analysis. The access matrix model as formalized by Harrison, Ruzzo, and Ullman (HRU) [3] has very broad expressive power. Unfortunately, HRU also has extremely weak safety properties.

Recently Sandhu [8] has shown how to overcome the negative safety results of HRU by introducing strong
typing into the access matrix model. The resulting model is called the typed access matrix (TAM). TAM combines the positive safety results for the Schematic Protection Model [5] with the natural expressive power of HRU. Although further work on the safety problem—particularly for non-monotonic cases—remains to be done, it is clear from existing results that TAM offers tractable safety analysis in many cases of practical interest.

This brings us to the feasibility of implementing TAM. An implementation of TAM in its complete generality would be very cumbersome and awkward at best. Sandhu and Suri [10] were therefore motivated to define a simplified version of TAM called single-object TAM (SOTAM). They outlined a very simple implementation for SOTAM in a distributed environment using the familiar client-server architecture.

The principal contribution of this paper is to demonstrate that TAM and SOTAM are formally equivalent in terms of expressive power. This result establishes the fact that SOTAM has the most general expressive power possible, while having a simple implementation at the same time.

The rest of the paper is organized as follows. Section 2 gives a brief review of TAM and SOTAM. Section 3 proves equivalence of the expressive power of TAM and SOTAM. The proof is in two steps. First we show equivalence without creation and destruction of subjects and objects, followed by equivalence with such creation and destruction. Section 4 gives our conclusions.

2 The TAM and SOTAM Models

In this section we review the definition of TAM, which was introduced by Sandhu in [8]. Our review is necessarily brief. The motivation for developing TAM, and its relation to other access control models are discussed at length in [8]. Following the review of TAM we briefly review the definition of SOTAM [10].

2.1 The Typed Access Matrix (TAM) Model

The principal innovation of TAM is to introduce strong typing of subjects and objects, into the access matrix model of Harrison, Ruzzo and Ullman [3]. This innovation is adapted from Sandhu's Schematic Protection Model [5], and its extension by Ammann and Sandhu [1].

As one would expect from its name, TAM represents the distribution of rights in the system by an access matrix. The matrix has a row and a column for each subject and a column for each object. Subjects are also considered to be objects. The \([X, Y]\) cell contains rights which subject \(X\) possesses for object \(Y\).

Each subject or object is created to be of a specific type, which thereafter cannot be changed. It is important to understand that the types and rights are specified as part of the system definition, and are not predefined in the model. The security administrator specifies the following sets for this purpose:

- a finite set of access rights denoted by \(R\), and
- a finite set of object types (or simply types), denoted by \(T\).

For example, \(T = \{user, so, file\}\) specifies there are three types, viz., user, security-officer and file. A typical example of rights would be \(R = \{r, w, e, o\}\) respectively denoting read, write, execute and own. Once these sets are specified they remain fixed, until the security administrator changes their definition. It should be kept in mind that TAM treats the security administrator as an external entity, rather than as another subject in the system.

The protection state (or simply state) of a TAM system is given by the four-tuple \((OBJ, SUB, t, AM)\) interpreted as follows:

- \(OBJ\) is the set of objects.
- \(SUB\) is the set of subjects, \(SUB \subseteq OBJ\).
- \(t : OBJ \rightarrow T\), is the type function which gives the type of every object.
- \(AM\) is the access matrix, with a row for every subject and a column for every object. The contents of the \([S, O]\) cell of \(AM\) are denoted by \(AM[S, O]\). We have \(AM[S, O] \subseteq R\).

The rights in the access matrix cells serve two purposes. First, presence of a right, such as \(r \in AM[X, Y]\) may authorize \(X\) to perform, say, the read operation on \(Y\). Second, presence of a right, say \(o \in AM[X, Y]\) may authorize \(X\) to perform some operation which changes the access matrix, e.g., by entering \(r\) in \(AM[Z, Y]\). In other words, \(X\) as the owner of \(Y\) can change the matrix so that \(Z\) can read \(Y\).

The protection state of the system is changed by means of TAM commands. The security administrator defines a finite set of TAM commands when the system is specified. Each TAM command has one of the following formats.
command $\alpha(X_1 : t_1, X_2 : t_2, \ldots, X_k : t_k)$
if $r_1 \in [X_{s_1}, X_{o_1}] \land r_2 \in [X_{s_2}, X_{o_2}] \land \ldots \land r_m \in [X_{s_m}, X_{o_m}]$
then $op_1; op_2; \ldots; op_n$
end

or

command $\alpha(X_1 : t_1, X_2 : t_2, \ldots, X_k : t_k)$
$op_1; op_2; \ldots; op_n$
end

Here α is the name of the command; X_1, X_2, \ldots, X_k are formal parameters whose types are respectively t_1, t_2, \ldots, t_k; r_1, r_2, \ldots, r_m are rights; and s_1, s_2, \ldots, s_m and o_1, o_2, \ldots, o_m are integers between 1 and k. Each op_i is one of the primitive operations discussed below. The predicate following the if part of the command is called the condition of α, and the sequence of operations $op_1; op_2; \ldots; op_n$ is called the body of α. If the condition is omitted the command is said to be an unconditional command, otherwise it is said to be a conditional command.

A TAM command is invoked by substituting actual parameters of the appropriate types for the formal parameters. The condition part of the command is evaluated with respect to its actual parameters. The body is executed only if the condition evaluates to true.

There are six primitive operations in TAM, grouped into two classes, as follows.

(a) Monotonic Primitive Operations

- enter r into $[X_s, X_o]$
- create subject X_s of type t_s
- create object X_o of type t_o

(b) Non-Monotonic Primitive Operations

- delete r from $[X_s, X_o]$
- destroy subject X_s
- destroy object X_o

It is required that s and o are integers between 1 and k, where k is the number of parameters in the TAM command in whose body the primitive operation occurs.

The enter operation enters a right $r \in R$ into an existing cell of the access matrix. The contents of the cell are treated as a set for this purpose, i.e., if the right is already present the cell is not changed. The enter operation is said to be monotonic because it only adds and does not remove from the access matrix. The delete operation has the opposite effect of enter.

The create subject and destroy subject operations make up a similar monotonic versus non-monotonic pair. The create subject operation requires that the subject being created has a unique identity different not only from existing subjects, but also different from all subjects that have ever existed thus far. The destroy subject operation requires that the subject being destroyed currently exists. Note that if the pre-condition for any create or destroy operation in the body is false, the entire TAM command has no effect. The create subject operation introduces an empty row and column for the newly created subject into the access matrix. The destroy subject operation removes the row and column for the destroyed subject from the access matrix. The create object and destroy object operations are much like their subject counterparts, except that they work on a column-only basis.

Two examples of TAM commands are given below.

- command create-file($U : user, F : file$)
 create object F of type file
 enter own in $[U, F]$
end

- command transfer-ownership($U : user, V : user, F : file$)
 if own $\in [U, F]$ then
 delete own from $[U, F]$
 enter own in $[V, F]$
end

The first command authorizes users to create files, with the creator becoming the owner of the file. The second command allows ownership of a file to be transferred from one user to another.

To summarize, a system in specified in TAM by defining the following finite components:

1. A set of rights R.

1There is some question about whether or not creation should be treated as a monotonic operation. The fact that creation consumes a unique identifier for the created entity, which cannot be used for any other entity thereafter, gives it a non-monotonic aspect. In our work we have always treated creation as a monotonic operation. This is principally because systems without creation are not very interesting. Treating creation as non-monotonic would therefore make the class of monotonic systems uninteresting. Monotonic systems with creation are, however, an important and useful class of systems.
2. A set of types T.

3. A set of state-changing commands, as defined above.

4. The initial state.

We say that the rights, types and commands define the system scheme. Note that once the system scheme is specified by the security administrator it remains fixed thereafter for the life of the system. The system state, however, changes with time.

2.2 The Single-Object TAM (SOTAM) Model

SOTAM is a simplified version of TAM, with the restriction that all primitive operations in the body of a command are required to operate on a single object. An object is represented as a column in the access matrix. Similarly, when a subject is the "object" of an operation, that subject is viewed as a column in the access matrix. SOTAM stipulates that all operations in the body of a command are confined to a single column.

To appreciate the motivation for SOTAM consider the usual implementation of the access matrix by means of access control lists (ACL's). Each object has an ACL associated with it, representing the information in the column corresponding to that object in the access matrix. The restriction of SOTAM implies that a single command can modify the ACL of exactly one object. These modifications can therefore be done at the single site where the object resides. This greatly simplifies the protocols for implementing the commands. In particular, we do not need to be concerned about coordinating the completion of a single command at multiple sites. There is therefore no need for a distributed two-phase commit for SOTAM commands. Further details on an implementation outline of SOTAM are given in [10]. A central result of this paper is that SOTAM has the same expressive power as TAM, in spite of its much simpler implementation.

3 Equivalence of TAM and SOTAM

This section develops the central result of this paper, which is the formal equivalence of the expressive power of TAM and SOTAM. Since SOTAM is a restricted version of TAM, every SOTAM system is also a TAM system. To establish equivalence we therefore need to show that every TAM system can be simulated by a SOTAM system. The construction to do this is quite intricate.\footnote{It should be kept in mind that our constructions have to deal with the most general case, in order to demonstrate formal equivalence. In practice we can often employ simpler constructions. For example, the ORCON (originator control) example of [5] is very simply converted to a SOTAM system in [10]. The mechanical construction given in this paper would yield a more complex SOTAM system in this case.} For ease of exposition, and understanding, we develop the construction in several phases. First, in section 3.1, we identify an essential synchronization protocol which is a critical part of the overall construction. Then, in section 3.2, we show that TAM systems without create or destroy operations can be reduced to SOTAM systems. Finally we show, in section 3.3, how TAM systems with create and destroy operations can be reduced to SOTAM systems.

3.1 Two Column Synchronization Protocol

It is helpful to approach the TAM to SOTAM simulation by first looking at monotonic systems. Recall that a scheme is monotonic if it does not delete any rights, and does not destroy subjects or objects. Let us understand an operation to mean a command with specific actual parameters. An important fact in monotonic systems is that once the precondition for a command is satisfied with respect to a given set of existing subjects, no evolution of the protection state can cause the precondition to become false. In other words, once an operation is authorized it will always remain authorized in the future.

Given any monotonic TAM scheme, we can therefore get an equivalent monotonic SOTAM scheme as follows. Each TAM command that modifies n columns is simulated by n SOTAM commands. Each of these SOTAM commands has the same condition as the original TAM command, but each SOTAM command modifies exactly one of the columns modified by the original TAM command. It is easy to see that every sequence of TAM operations can be simulated by the corresponding SOTAM operations. Conversely, any sequence of SOTAM operations corresponds to a sequence of TAM operations some of which may only be partially completed. However, the SOTAM sequence can be extended to complete all the partial TAM operations. Therefore the two systems are equivalent.

The construction outlined above does not extend to non-monotonic systems. In a non-monotonic system, operations which are currently authorized may have their preconditions falsified due to deletion of access rights by other non-monotonic operations. At the
same time, in SOTAM we have no choice but to simulate TAM commands which modify multiple columns with multiple commands. The key to doing this successfully is to prevent other TAM operations from interfering with the execution of a given TAM operation. The simplest way to do this is to ensure that TAM operations can be executed in the SOTAM simulation only one at a time. To do this we need to synchronize the execution of successive TAM commands in the SOTAM simulation (as described in section 3.2).

Thus, surprisingly, the problem of simulating TAM in SOTAM requires solution of a synchronization problem. Moreover, the synchronization must be achieved using SOTAM commands which can modify only one column at a time. This effectively rules out standard synchronization solutions based on semaphores, locks, or similar mechanisms. In effect we have to achieve synchronization without having stored global variables that are writable by concurrent processes.

The basic synchronization problem, which we call two column synchronization, is illustrated in figure 1. The solution to this problem turns out to be critical in constructing a SOTAM simulation of a TAM system. For the moment ignore the SNC row and column in figure 1. In figure 1(a) subject S_1 possesses the token, represented by the $token$ right in the $[S_1, S_1]$ cell. After S_1 is done using the token, it is passed on to S_2 as indicated in figure 1(b). The $next$ right in the $[S_1, S_2]$ cell serves to connect S_1 to S_2 in sequence, indicating that the token is to be passed from S_1 to S_2. Similarly, S_2 will pass the token on to S_3 in turn.\footnote{The exact manner in which the sequence of token passing is encoded in the access matrix is not material to the synchronization problem. For illustrative purposes we have adopted the scheme described here. The construction of section 3.2 uses a slightly different technique.}

The TAM command for solving the two column synchronization problem is straightforward, as follows.

```plaintext
command transfer-token-1($S_1, SNC$)
  if $token \in [S_1, S_1]$ then
    delete $token$ from $[S_1, S_1]$;
    delete 0 from $[SNC, S_1]$;
    enter 1 in $[SNC, S_1]$;
  end

command transfer-token-2($S_1, S_2, SNC$)
  if 1 $\in [SNC, S_1]$ \&\& $next \in [S_1, S_2]$ then
    delete 0 from $[SNC, S_2]$;
    enter 2 in $[SNC, S_2]$;
  end

command transfer-token-3($S_1, S_2, SNC$)
  if 1 $\in [SNC, S_1]$ \&\& 2 $\in [SNC, S_2]$ \&\& $next \in [S_1, S_2]$ then
    delete 1 from $[SNC, S_1]$;
    enter 0 in $[SNC, S_1]$;
  end

command transfer-token-4($S_1, S_2, SNC$)
  if 0 $\in [SNC, S_1]$ \&\& 2 $\in [SNC, S_2]$ \&\& $next \in [S_1, S_2]$ then
    delete 2 from $[SNC, S_2]$;
    enter 0 in $[SNC, S_2]$;
    enter $token$ in $[S_2, S_2]$;
  end
```

of these rights can be present at a time in a $[SNC, S_i]$ cell, and they do not occur outside of the SNC row. Normally each column S_i has 0 $\in [SNC, S_i]$ indicating the quiescent state with respect to the synchronization commands. The meaning of 1 $\in [SNC, S_i]$ is that S_i is ready to pass the token. The meaning of 2 $\in [SNC, S_i]$ is that S_i is ready to receive the token. The four SOTAM commands to simulate the transfer-token TAM command are as follows.

The correctness of these commands is intuitively obvious, and a formal proof could be easily given. Also note that the $enter$ operation in the transfer-token-4 command can be modified to $enter \, token'$, rather than $token$, in $[S_2, S_2]$. In this way we can pass a modified token from one column to another by means of SOTAM commands.

We call the protocol described by these four commands as the two column synchronization protocol. As we will see this protocol is repeatedly invoked in the constructions of this paper.
3.2 Equivalence Without Create and Destroy

We now prove the equivalence of TAM and SOTAM in the absence of create and destroy operations. This is done by giving a procedure to construct a SOTAM system that can simulate any given TAM system. Every TAM subject or object is simulated in the SOTAM system as a subject (i.e., every column has a corresponding row in the access matrix). In other words the access matrix of the SOTAM system is square. This entails no loss of generality, since TAM subject are not necessarily active entities.

The SOTAM system contains a subject S_{NC} of type snc, where snc is distinct from any type in the given TAM system. The role of S_{NC} is to enable two column synchronization, as discussed in section 3.1. As we will see, S_{NC} is also used to sequentialize the execution of TAM operations, and to sequentialize the multiple SOTAM operations needed to simulate a given TAM operation.

The SOTAM system also contains the following rights, in addition to the rights defined in the given TAM system.

- \{0, 1, 2, token, token'\}
- \{pi,j | j = 1 \ldots n, for each TAM command C_i (where C_i has n parameters)\}

Except for token, these rights occur only in the S_{NC} row and column. The token right also occurs in the diagonal cells of the SOTAM access matrix. It is assumed, without loss of generality, that these rights are distinct from the rights in the given TAM system.

The initial state of the SOTAM system consists of the initial state of the TAM system augmented in two respects. First, an empty row is introduced for every TAM object, which does not have a row in the given TAM access matrix. Secondly, the S_{NC} subject is introduced in the access matrix with $[S_{NC}, S_{NC}] = \{\text{token}, 0\}$, and $[S_{NC}, S_i] = \{0\}$ for all subjects $S_i \neq S_{NC}$.

In the absence of creates and destroys, the body of a TAM command with n parameters can be rearranged to have the following structure.

```
command \(C_i(S_1 : s_1, S_2 : s_2, \ldots, S_n : s_n)\)
  if \(\alpha(S_1, S_2, \ldots, S_n)\) then
    enter in/delete from column $S_1$
    enter in/delete from column $S_2$
    ...              enter in/delete from column $S_n$
  end
```

That is, the primitive operations occur sequentially on a column-by-column basis. Of course, some of the columns may have no operations, being referenced only in the condition part; but for the general case we assume the above structure.

Let us suppose the above TAM command is invoked with actual parameters S_1, S_2, \ldots, S_n. This operation...
tion will be simulated by several SOTAM operations. The simulation proceeds in three phases, respectively illustrated in figures 2, 3 and 4. In these figures we show only the relevant portion of the access matrix, and only those rows introduced specifically for the SOTAM simulation. It is understood that the TAM rights are distributed exactly as in the TAM system.

The first phase consists of a single SOTAM command C_{1-I} which tests whether (i) the condition of the TAM command $\alpha(S_1, S_2, \ldots, S_n) : s_{n,S} : SNC : snc)$ is true, and (ii) whether $\text{token} \in [SNC, SNC]$. The former test is obviously required. The latter ensures that the SOTAM simulation of $C_i(S_1, S_2, \ldots, S_n)$ can begin only if no other TAM operation is currently being simulated. It also ensures that once phase I of the simulation of $C_i(S_1, S_2, \ldots, S_n)$ has started, the simulation will proceed to completion before simulation of another TAM command can begin. In other words TAM operations are simulated serially, with no interleaving. The phase I SOTAM command is as follows.

Command $C_{1-I}([S_1 : s_1, S_2 : s_2, \ldots, S_n : s_{n,S} : SNC : snc])$

if $\alpha(S_1, S_2, \ldots, S_n) \land \text{token} \in [SNC, SNC]$

then

- enter $p_{1,1}$ in $[S_1, SNC]$;
- enter $p_{1,2}$ in $[S_2, SNC]$;
-
- enter $p_{1,n}$ in $[S_n, SNC]$;
- delete token from $[SNC, SNC]$;
- delete 0 from $[SNC, SNC]$;
- enter 1 in $[SNC, SNC]$;

end

The body of this command enters $p_{i,j}$ in $[S_j, SNC]$ for $j = 1 \ldots n$, signifying that S_j is the j-th parameter of the TAM command being simulated. It also removes the token right from $[SNC, SNC]$, and replaces 0 in $[SNC, SNC]$ by 1 signifying that the token can be moved from SNC column. The states of the access matrix, before and after execution of C_{1-I}, are outlined in figures 2(a) and 2(b) respectively.

In phase II of the simulation the token right is passed, in turn, from $[SNC, SNC]$ to $[S_1, S_1]$ to $[S_2, S_2]$, and so on to $[S_n, S_n]$. Each passage requires a total of four SOTAM commands based on the two-column synchronization protocol of section 3.1.5 The bolds for the formal parameters of the command C_i as well as for the actual parameters of a particular invocation of C_i. The context will make it clear whether the symbol S_i refers to a formal or actual parameter.

One difference in detail is that the connection between consecutive columns is achieved by means of the $p_{i,j}$ rights in the SNC column, rather than by the next right in the $[S_j, S_{j+1}]$ cell.

details of the protocol are shown here only for the transfer of the token from column S_j to S_{j+1}. The SOTAM commands for transferring the token from SNC to S_1, and from S_n to SNC are not explicitly shown, since they are so similar.

Let $\pi(S_1, S_2, \ldots, S_n, \text{SNC})$ represent the following predicate.

$$[p_{1,1} \in [S_1, SNC] \land p_{1,2} \in [S_2, SNC] \land \ldots \land p_{1,n} \in [S_n, SNC]]$$

The changes in column S_j in the original TAM command are carried out by a SOTAM command whose condition tests for $\pi(S_1, S_2, \ldots, S_n, \text{SNC})$, and the presence of the token in $[S_j, S_j]$. The SOTAM command which carries out the changes in column S_j also removes token from $[S_j, S_j]$, and replaces 0 in $[\text{SNC}, S_j]$ by 1 signifying that the token can be moved to the next column. The SOTAM command for simulating changes by the TAM command in column j is shown below.

Command $C_{1-II-j-1}([S_1 : s_1, S_2 : s_2, \ldots, S_n : s_{n,S} : SNC : snc])$

if $\pi(S_1, S_2, \ldots, S_n, SNC) \land \text{token} \in [S_j, S_j]$

then

- enter in/delete from column S_j;
- delete token from $[S_j, S_j]$;
- delete 0 from $[\text{SNC}, S_j]$;
- enter 1 in $[\text{SNC}, S_j]$;

end

The two-column synchronization protocol, begun above, is then completed to move token to $[S_{j+1}, S_{j+1}]$, using the following commands.

Command $C_{1-II-j-2}([S_1 : s_1, S_2 : s_2, \ldots, S_n : s_{n,S} : \text{SNC} : snc])$

if $1 \in [\text{SNC}, S_j] \land \pi(S_1, S_2, \ldots, S_n, SNC)$

then

- delete 0 from $[\text{SNC}, S_{j+1}]$;
- enter 2 in $[\text{SNC}, S_{j+1}]$;

end

Command $C_{1-II-j-3}([S_1 : s_1, S_2 : s_2, \ldots, S_n : s_{n,S} : \text{SNC} : snc])$

if $1 \in [\text{SNC}, S_j] \land 2 \in [\text{SNC}, S_{j+1}] \land \pi(S_1, S_2, \ldots, S_n, SNC)$

then

- delete 1 from $[\text{SNC}, S_j]$;
- enter 0 in $[\text{SNC}, S_j]$;

end

Command $C_{1-II-j-4}([S_1 : s_1, S_2 : s_2, \ldots, S_n : s_{n,S} : \text{SNC} : snc])$
Figure 2: SOTAM Simulation of the n-Parameter TAM Command C₁: Phase I

if \(0 \in [SNC, S_{j}] \land 2 \in [SNC, S_{j+1}] \land
\pi (S_1, S_2, \ldots, S_n, SNC)
\)
then
\begin{align*}
\text{delete } 2 & \text{ from } [SNC, S_{j+1}]; \\
\text{enter } 0 & \text{ in } [SNC, S_{j+1}]; \\
\text{enter } \text{token} & \text{ in } [S_{j+1}, S_{j+1}];
\end{align*}
end

In this manner, the simulation of the TAM command proceeds on a column-by-column basis, as depicted in figure 3.

Finally, when the token is passed from \([S_n, S_n]\) back to \([SNC, SNC]\), the two-column synchronization passes it back as the \(\text{token'}\) right, instead of \(\text{token}\), as shown in figure 4(a). At this point the \(SNC\) column is cleaned out to the state of figure 4(b) using the following SOTAM command.

command \(C_{1-III}(S_1 : s_1, S_2 : s_2, \ldots, S_n : s_n, SNC : \text{nc})\)
if \(\pi (S_1, S_2, \ldots, S_n, SNC) \land \text{token'} \in [SNC, SNC]\)
then
\begin{align*}
\text{delete } p_{1,1} & \text{ from } [S_1, SNC]; \\
\text{delete } p_{1,2} & \text{ from } [S_2, SNC]; \\
\ldots \\
\text{delete } p_{1,n} & \text{ from } [S_n, SNC]; \\
\text{delete } \text{token'} & \text{ from } [SNC, SNC]; \\
\text{enter } \text{token} & \text{ in } [SNC, SNC];
\end{align*}
end

The SOTAM system is now ready to simulate another TAM command.

Note that a \(n\)-parameter TAM command requires \(4(n+1)+1\) (or \(4n+5\)) SOTAM commands in this construction. The SOTAM simulation operates on \(n+1\) columns consisting of the \(n\) columns in the TAM command, and the \(SNC\) column. The modification of each column is bundled with the first step of the two-column synchronization protocol, giving us \(4(n+1)\) commands. One command is required to clean out the \(SNC\) column at the end. Various optimizations are possible. Significantly, the SOTAM simulation is linear in the size of the TAM command being simulation.

A proof sketch for the correctness of the construction is given below.

Theorem 1 For every TAM system \(S_1\) the construction outlined above produces an equivalent SOTAM system \(S_2\).

Proof Sketch: It is easy to see that any reachable state in \(S_1\) can be reached in \(S_2\) by simulating each TAM command by SOTAM commands as discussed above. Conversely any reachable state in \(S_2\) with \(\text{token} \in [SNC, SNC]\) will correspond to a reachable state in \(S_1\). A reachable state in \(S_2\) with \(\text{token} \notin [SNC, SNC]\) will correspond to a state in \(S_1\) where one TAM command has been partially completed. These claims follow from the property that once the SOTAM command \(C_{1-I}\) removes the \(\text{token}\) right from \([SNC, SNC]\), the entire TAM command \(C_{1}\)
Figure 3: SOTAM Simulation of the n-Parameter TAM Command C_i: Phase II
must be simulated before the *token* right is returned to $[SNC, SNC]$. Moreover, no SOTAM commands other than those that simulate C_i with the specific parameters used in C_{i-1} can execute until the *token* right is returned to $[SNC, SNC]$. A formal inductive proof can be easily given, but is omitted for lack of space.

3.3 Expressive Power With Create and Destroy

We now consider TAM with create and destroy operations. There are several ways in which the construction of section 3.2 can be extended to allow for creation and destruction. We describe one of them here. We have already assumed that the SOTAM system will have a square access matrix, in which every object (column) is also a subject (row). So our focus will be on subject creation.

The primitive TAM operation “create subject S_i” introduces an empty row and column in the access matrix for the newly created subject S_i. A SOTAM command which has this primitive operation in its body is quite restricted in what it can do, since all *enter* and *delete* operations will be confined to the new column S_i. We will therefore simulate creation in SOTAM in two steps.

- First we will allow unconditional creation of subjects to occur. However, the created subject will be dormant, indicated by the *dormant* right in the diagonal cell $[S_i, S_i]$. The unconditional creation also introduces the 0 right in the $[SNC, S_i]$ cell. We view the unconditional creation as occurring on demand as needed.
- Dormant subjects will be brought to life by replacing *dormant* in the diagonal cell by *alive*.

A dormant subject cannot be a parameter in any TAM command. This will be ensured by modifying the TAM system so that each TAM command tests for the *alive* right in the diagonal cells for every parameter in the command.

Consider a TAM command which requires m pre-existing subjects or objects, S_1, \ldots, S_m, and creates $n - m$ subjects or objects, S_{m+1}, \ldots, S_n. We will modify the given TAM command as follows. Let $\alpha(S_1, \ldots, S_m)$ be the given condition in this command. This condition will be supplemented by the tests *alive* $\in [S_i, S_i]$, for $i = 1 \ldots m$. It will be further supplemented by the tests *dormant* $\in [S_i, S_i]$, for $i = m + 1 \ldots n$. All create operations in the body of the original TAM command will be discarded. Instead the dormant subjects will be made alive by the operations

- enter *alive* in $[S_j, S_j]$;
- delete *dormant* from $[S_j, S_j]$

for $j = m + 1 \ldots n$.

The *destroy* operation can be similarly removed from the body of the given TAM commands, and relegated to a background “garbage collection” activity.
To do this every “destroy S_j” primitive operation is replaced in the TAM command by the following operations:

\begin{verbatim}
 enter dead in [S_j, S_j];
 delete alive from [S_j, S_j];
\end{verbatim}

The meaning of $\text{dead} \in [S_j, S_j]$ is that S_j has effectively been destroyed, since it cannot function as a parameter in any TAM command. The background garbage collection can be done by introducing the following command for every type s.

\begin{verbatim}
 command expunge($S : s$)
 if $\text{dead} \in [S, S]$ then
 destroy subject S;
 end
\end{verbatim}

In this manner the original TAM command has been reduced to one which only has enter and delete operations in its body. The construction of the SOTAM simulation can now proceed as in section 3.2.

4 Conclusion

In this paper we have shown that the expressive power of the typed access matrix (TAM) model [8], and the single-object TAM (SOTAM) model are formally equivalent. This is an important result because SOTAM is known to have a simple and efficient implementation in a distributed environment, using the familiar client-server architecture [10]. In a nutshell, this result tells us that manipulation of access control information can be achieved in its most general form by manipulation of a single access control list (ACL) at a time.

The principal conclusion of this paper is that SOTAM has the same expressive power as TAM, while having a simple implementation at the same time. Looking towards future work, our goal is to find other simpler cases of TAM which retain equivalence of expressive power to TAM. The motivation in finding such simpler cases is that even though these simpler cases are equivalent to TAM they could still be easily implemented (than TAM) in a distributed environment. The construction given in this paper is general, and it gives an equivalent SOTAM scheme for every given TAM scheme. In many practical cases there are much simpler constructions, for example see the ORCON construction in [10]. (This situation is analogous to constructions which show that the goto statement can be eliminated in programming languages. Those constructions would never be used to actually write a program. But they do establish equivalence of expressive power.)

References

