
Security, Privacy, and Digital Forensics in the Cloud, First Edition. Edited by Lei Chen, Hassan Takabi,
and Nhien-An Le-Khac.
© 2019 Higher Education Press. All rights reserved. Published 2019 by John Wiley & Sons Singapore Pte. Ltd.

81

4

4.1  Introduction

Cloud computing is revolutionizing the way businesses obtain IT resources. Cloud com-
puting refers to Internet‐based computing that provides on‐demand access to a shared
pool of configurable computing resources (Hassan 2011), such as networks, servers,
storages, applications, services, etc. Instead of having an application installed on a local
PC, applications are hosted in the Cloud. Cloud computing allows users and organiza-
tions to conveniently and rapidly get computing resources with minimal management
effort, helping organizations avoid focusing on upfront infrastructure costs. Rapid
maturity of both commercial and open source cloud platforms greatly contributes to
the wider acceptance and application of cloud computing in industry.

Infrastructure‐as‐a‐Service (IaaS) is a cloud service model (Mell and Grance 2011) in
which a cloud service provider (CSP) offers compute, storage, and networking resources
as a service to its tenants. Tenant refers to an organization that is a customer of a CSP.
Traditionally, IaaS providers maintain strict separation between tenants, for obvious
reasons. Thus their virtual resources are strongly isolated. For instance, in OpenStack
(http://openstack.org), a tenant user does not have the capability to access resources
outside its domain. Domain refers to the administrative boundary of that tenant.
Similarly, in AWS (http://aws.amazon.com) and Microsoft Azure (https://azure.
microsoft.com), tenant refers to an account—an administrative boundary. Users from
one account (tenant) by default have no rights to access resources outside that account.

In this chapter, we will introduce the basic cloud access‐control models for the domi-
nant IaaS cloud platforms, including the open source cloud platform OpenStack, and
two commercial cloud platforms: AWS and Microsoft Azure. We provide a formal char-
acterization of the access‐control models of these three cloud platforms. For each of the
platforms, we also specify novel ways to construct intertenant secure information and
resource sharing. The chapter outline is as follows. In Section 4.2, we present some
background knowledge: more details of cloud services and the idea of information and
resource sharing. In Sections 4.3, 4.4, and 4.5, we introduce the cloud access‐control
models for OpenStack, AWS, and Azure, respectively. For each of those platforms, we

Access Control in Cloud IaaS
Yun Zhang, Ram Krishnan, Farhan Patwa, and Ravi Sandhu

University of Texas at San Antonio, San Antonio, TX, USA

Security, Privacy, and Digital Forensics in the Cloud82

first give a formal access‐control model specification, and then we extend the access‐
control model to include the capability of handling information and resources sharing
across tenants. We also give a formal specification of the respective administrative
models of information and resources sharing. Section 4.6 concludes the chapter.

4.2  Background

Cloud computing has three service models: Infrastructure‐as‐a‐Service (IaaS), Platform‐
as‐a‐Service (PaaS), and Software‐as‐a‐Service (SaaS). PaaS offer a development envi-
ronment to application developers. SaaS offers application and software to end users.
We focus on IaaS for two reasons: (i) IaaS is one of the most‐adopted cloud service
models today (as compared to PaaS and SaaS), and (ii) IaaS is the foundation of the
Cloud, with characteristics such as elasticity, self‐service, etc. By gaining insights into
issues related to sharing at this lower level of abstraction, we can also develop better
models for higher levels of abstraction of cloud computing, such as PaaS and SaaS.

Note that in the context of IaaS, the unit of sharing consists of virtual resources such
as objects in a storage volume, virtual machines (VMs), etc. For models, we mainly
focus on administrative aspects. Administrative models are concerned with managing
which users and what resources are to be shared, setting up and tearing down platforms
for sharing, etc. Examples include a tenant administrator creating a shared secure iso-
lated domain, adding users and resources to and removing them from that domain,
inviting other tenants to join the domain, etc.

While cloud technology provides significant convenience to business systems, it also
gives great potential to facilitate cyber‐collaborations among organizations. In a cloud
community, organizations can share cybersecurity information with other members
through a cybersecurity committee to make informed decisions about the community’s
security governance. In most cases, organizations maintain their group of security spe-
cialists, who manage security policies, conduct security audits, and investigate security‐
related events. A community also maintains a group of external security experts
who help organizations with security issues. When a cybersecurity incident occurs,
the cybersecurity committee members start an incident‐response group with a cross‐
organization security team including organizations’ internal security specialists and
external security experts, as illustrated in Figure 4.1. Security information about this
incident is shared within the incident response group.

Models for information sharing in IaaS are lacking. The concept we used to build our
models for sharing comes from Group‐Centric Secure Information Sharing (g‐SIS)
(Krishnan et al. 2009), which presents a method to control access among a group of
users and objects that is well suited to the collaborative community scenario. In particu-
lar, g‐SIS enables sharing using copies of the original information, versus traditional
sharing that gives access to original information and resources (Cohen et al. 2002;
Pearlman et al. 2002; Shands et al. 2000). Sharing by copy gives additional security pro-
tection, since access to the copies can be provided in a tightly controlled environment.

We present access‐control models in a way that fits our best understanding. We
abstract a necessary set of components to describe an access‐control model. Based on
the cloud platform access‐control model, we build models for secure information and
resource sharing. Then we formalize the administrative model. When we discuss the

Access Control in Cloud IaaS 83

models, we assume one organization has only one tenant in the cloud community. In
the discussion of models for sharing, we simply ignore the group entity from cloud
access‐control models, since it is essentially a convenience to group users and can easily
be incorporated in a more complete description. Instead, we use the term group to
mean a group of organizations.

4.3  Access Control in OpenStack Cloud IaaS

In this section, we will introduce an access‐control model for the OpenStack cloud IaaS
platform and demonstrate its flexibility by extending it to include information and
resource sharing. The content of this section has been published in (Zhang et al. 2015a).
From the cloud provider’s perspective, each tenant is an independent customer of the
Cloud. From an organization’s perspective, in general a single organization may have a
single or multiple tenants in a single cloud. For simplicity, we assume here that each
organization from the cloud community has exactly one tenant.

4.3.1  OpenStack Access‐Control Model

A core OpenStack access control (OSAC) model was presented in (Tang and Sandhu
2014), based on the OpenStack Identity API v3 and Havana release. This model com-
prises nine entities: users, groups, projects, domains, roles, services, object types,
operations, and tokens. Hierarchical multitenancy (HMT) (http://openstack.org) is a
new feature added to OpenStack since the Juno release. We enhance the OSAC model
with HMT, resulting in the OSAC‐HMT model shown in Figure 4.2. In this and other
figures in this chapter, the arrows denote binary relations, with the single arrowhead
indicating one side and double arrowheads many sides.

Users represent people who are authenticated to access OpenStack cloud resources,
while groups are sets of users. HMT does not change user/group management, which is
handled at the domain level:

●● Domains and projects—Projects are resource containers through which users access
cloud services such as VMs, storage, networks, identity, and so on. Each project

Incident response group

Organization
security

specialists

External
experts

Cybersecurity
committee

Conditional
Membership

Shared
Information

Figure 4.1  Community cyber‐incident response governance.

Security, Privacy, and Digital Forensics in the Cloud84

defines a boundary of cloud resources. Domains are administrative boundaries of
collections of projects, users, and groups. Each domain contains multiple projects,
users, and groups. Conversely, each project, user, and group is “owned” by a single
domain. However, they can be assigned to multiple projects, which can be distributed
in different domains. That is, the ownership of users and projects can be defined by
assigning them to a domain. Note that users in a domain are powerless unless they are
assigned to a project with a particular role. Typically, domains are created by a CSP
for its tenants. A domain admin is an administrative user of that domain (tenant).

●● Project hierarchy—The project hierarchy enables the resources to be divided into
smaller management units, giving tenants more power to control their cloud
resources. A domain can have multiple projects in it, each of which is a root project
for a hierarchical project tree. A child project has only one parent project. Basically,
child projects are a further division of resources of a parent project.

●● Roles—Roles are global in that each role is applicable to every project. Roles are used
to specify access levels of users to services in specific projects in a given domain.
Roles and their associated permissions are defined by the CSP. Note that users are
assigned to projects with a specific set of roles. For instance, by assigning a role of
Member to a user, the user receives all operational rights over the resources in a pro-
ject; by assigning a role of Admin to a user, the user receives admin rights over a
project. The accesses defined by roles are enforced by a policy engine in the cloud
based on policy files where the roles are defined.

Project hierarchy: Role inheritance:

Group
ownership

(GO)

User
Ownership

(UO)
User

Group
(UG)

Users
(U)

User_token

Token_project

Token_roles

Tokens
(T)

Groups
(G)

Group
Assignment

(GA)

User
Assignment

(UA)

Permission
Assignment

(PA)

Ot_service

Services
(S)

Object
Types
(OT)

Operations
(OP)

Roles
(R)

Projects
(P) PRMS

Project
Ownership

(PO)

Project-Role Pair
(PRP)

Domains
(D)

Figure 4.2  OpenStack Access Control (OSAC) model with HMT.

Access Control in Cloud IaaS 85

●● Role inheritance—Without a project hierarchy, a user is explicitly assigned to a pro-
ject with a role. With a project hierarchy, a user needs to be able to be assigned to a
child project, which is enabled by inherited role assignment. By assigning an inher-
ited role to a user in a parent project, the user will automatically have the role in child
projects.

●● Object types and operations—An object type and operation pair defines actions that
can be performed by end users on cloud services and resources. The concept of object
types allows different operations to be specified for different services. For example, in
the Nova compute service, an object type is VM, and operations on VM include start,
stop, etc.

●● Token—Tokens define the scope of resources that users are authenticated to access.
Users authenticate themselves to the Keystone service and obtain a token that they
then use to access different services. The token contains various information, includ-
ing the user’s domain and user’s roles for specified projects. A token must be scoped
to a target project on which the action is performed. Inherited roles allow tokens to
be granted for child projects, giving access to the child projects.

We formalize the OSAC‐HMT model next. Part of it is the same as the OSAC model
(Tang and Sandhu 2014).

Definition 4.1  OSAC‐HMT Model Components

●● U, G, P, D, R, S, OT, and OP are finite sets of existing users, groups, projects, domains,
roles, services, object types, and operations, respectively, in an OpenStack cloud sys-
tem. We require two roles, so {admin, member} ⊆ R.

●● User Ownership (UO) is a function UO: U → D, mapping a user to its owning domain.
Equivalently viewed as a many‐to‐one relation UO ⊆ U × D.

●● Group Ownership (GO) is a function GO: U → D, mapping a group to its owning
domain. Equivalently viewed as a many‐to‐one relation GO ⊆ G × D.

●● Object Type Owner (OTO) is a function OTO: OT → S, mapping an OT to its owning
service. Equivalently viewed as a many‐to‐one relation OTO ⊆ OT × S.

●● UG ⊆ U × G is a many‐to‐many relation assigning users to groups, where the user and
group must be owned by the same domain.

●● PRP = P × R is the set of project‐role pairs.
●● PERMS = OT × O is the set of permissions.
●● PA ⊆ PERMS × R is a many‐to‐many permission‐to‐role assignment relation.
●● UA ⊆ U × PRP is a many‐to‐many user‐to‐project role assignment relation.
●● GA ⊆ G × PRP is a many‐to‐many group‐to‐project role assignment relation.
●● Project Hierarchy (PH) is a function PH: P → P, mapping a project to its parent pro-

ject. Equivalently viewed as a many‐to‐one relation PH ⊆ P × P. This is required to be
a forest of rooted trees.

●● Role Inheritance (RI) allows users’ roles to be inherited from domain to project and
from parent project to child project, as discussed earlier.

●● user_tokens is a function U → 2T, mapping a user to a set of tokens; correspondingly,
token user is a function token user T → U, mapping a token to its owning user.

●● token_project is a function token project: T → P, mapping a token to its target
project.

Security, Privacy, and Digital Forensics in the Cloud86

●● token_roles is a function token roles: T → 2R, mapping a token to its set of roles.
Formally, token_roles(t) = {r ∈ R|(token_user(t),(token_project(t),r)) ∈ UA} ∪ (⋃g ∈ user_

groups(token_user(t)) {r ∈ R|(g, (token_project(t), r)) ∈ GA}).
●● avail_token_perms is a function avail token perms: T → 2PERMS, mapping the permis-

sions available to a user through a token. Formally, avail_token_perms(t) = ⋃r ∈ token_

roles(t){perm ∈ PERMS|(perms,r) ∈ PA}.

4.3.2  Secure Information and Resource‐Sharing Model in OpenStack

In this section, we present a model for sharing in OpenStack; we call it the Hierarchical
Multitenancy OpenStack Access Control Model with Secure Isolated Domain exten-
sion (OSAC‐HMT‐SID model). In our discussion, we assume that a user belongs to one
organization in the community, which is consistent with the user home‐domain con-
cept in OpenStack. The concept of a home domain requires that a user can belong to
only one domain in OpenStack. OpenStack allows a user to be assigned to projects
across domains and access those projects separately using the appropriate tokens.

The OSAC‐HMT‐SID model extends the OSAC‐HMT model to include secure iso-
lated domain (SID) (Zhang et al. 2014) functionality. We build the OSAC‐HMT‐SID
model on top of the OSAC‐HMT model. We will present the OSAC‐HMT‐SID model
in a way that covers only the additional components compared to the OSAC‐HMT
model. Figure 4.3 shows the OSAC‐HMT‐SID model. We use circles to represents
entities that can be created multiple times in OpenStack, whereas rectangles represent
entities that can be created only once. The additional entity components included in the
model are SID, Expert User (EU), Core Project (CP), Secure Isolated Project (SIP), and
Open Project (OP):

●● Secure Isolated Domain (SID)—A SID (Zhang et al. 2014) is a special domain that
holds the security information for cross‐organization security collaboration in the
community cloud. It provides an administrative boundary for cybersecurity informa-
tion and resource collecting, resource passing, analyzing and exporting results, as
well as providing a secure isolated environment for cybersecurity collaborations
among organizations.

●● Security Project (SP)—SPs are hierarchical projects particularly used to collect,
store, and analyze cybersecurity information for one organization. A SP provides the
same capability of utilizing cloud resources as a normal project. Organizations keep
their security information and resources in the SPs, with their security staff/users
assigned to the corresponding level of project in the SP hierarchy. This separates an
organization’s regular projects from its SPs.

●● Core Project (CP)—A CP is a shared project that holds the community cybersecurity
committee (Sandhu et al. 2011). Each organization in the community has at least one
user in the security committee, with one as an admin user of the CP and the rest as
regular member users. The CP holds all SIPs that are designed for cyber‐incident
response and cybersecurity collaboration.

●● Open Project (OP)—An OP is a project where users share public cybersecurity
information and resources (Sandhu et al. 2011). Information published in an OP is
public to every user who is subscribed to the project.

●● Secure Isolated Project (SIP)—A SIP (Zhang et al. 2014) is a special project with
constraints over its user membership, information, and resource utilization. The SIP

Role inheritance:

Project hierarchy: Domains
(D)

SIP
association

(assoc)

Expert
users

Expert User
Ownerships

(EUO)

Secure
Isolated
Domain

(SID)

Open Project
Ownership

(OPO)

Core Project
Ownership

(CPO)

Roles
(R)

Roles
(R)

Roles
(R)

Roles
(R)

Roles
(R)

Project-
Role
Pair
(PRP)

Project-
Role
Pair
(PRP)

Open
Project

(OP)

Core
Project

(CP)

Secure
Isolated
Projects

(SIP)

Security
Projects

(SP)

SIP
Ownership

(SIPO)

User
Assignment

(UA)

Users
(U)

User
Ownership

(UO)

 Project
Ownership

(PO)

Projects
(P)

Project-
Role
Pair
(PRP)

Project-
Role
Pair
(PRP)

Project-
Role
Pair
(PRP)

User Self-Subscription (USS)

Cybersecurity
forum

Routine Cyber-
Information Process

Cyber
Collaboration

Cybersecurity
committee

User
Assignment

(UA)

User
Assignment

(UA)

User
Assignment

(UA)

User
Assignment

(UA)

Security Project
Ownership

(SPO)

Figure 4.3  Hierarchical multitenancy OSAC model with SID extension (OSAC‐HMT‐SID) (ignoring the group, token, and services
components).

Security, Privacy, and Digital Forensics in the Cloud88

provides a controlled environment for organizations to collaborate on security
incidents.

●● Expert Users (EU)—To get outside community professionals involved, EUs (Sandhu
et al. 2011) are introduced to the SID. EUs originally don’t belong to the community.
They bring expertise from different cybersecurity categories. For instance, they may
come from an IT consultant company that focuses on specific cyber attacks. Or they
may be cybersecurity law‐enforcement officers specializing in cybercrime. The
involvement of EUs helps organizations handle cyber collaborations more effectively.

Following are the formalized concepts we just introduced, as well as the relationships
among them.

Definition 4.2  OSAC‐HMT‐SID Model Components in Addition
to OSAC‐HMT

●● SID is an implicitly existing SID, which is transparent to users. SID owns EU, CP, OP,
and SIP, correspondingly represented by Expert User Ownership (EOU), CP
Ownership (CPO), Open Project Ownership (OPO), and Secure Isolated Project
Ownership (SIPO).

●● SP, SIP, EU, and SO are finite sets of SPs, SIPs, EUs, and Swift Objects (SOs).
●● Security Project Ownership (SPO) is a function SPO: SP → D, mapping a SP to its

owning domain. Equivalently viewed as a one‐to‐one relation SPO ⊆ D.
●● Swift Object Ownership (SOO) is a function SOO: SO → P, mapping a SO to its own-

ing project. Equivalently viewed as a many‐to‐one relation SOO ⊆ SO × P.
●● User Self Subscription (USS) is a function USS ⊆ U × {<OP, member>}, a many‐to‐one

user‐to‐project role assignment relation for the Member role in the single OP.
●● SIP association (assoc) is a function assoc: SIP → 2D, mapping a SIP to all its member

domains/organizations.

4.3.2.1  Administrative OSAC‐HMT‐SID Model
The administrative aspects of OSAC‐HMT‐SID are discussed informally next. A formal
specification is given in Table 4.1.

Creation of the SID, CP, OP, and SP: A SID with a CP and OP is part of the community
cloud functionality the CSP provides to its customers on behalf of organizations
responding collaboratively to cyber incidents. The SID, CP, and OP are created when
the community cloud is set up. Each domain has one corresponding SP. The creation of
a SP is automatically done with the creation of a domain.

Initial user assignment for the SID, CP, OP, and SP: The SID has no admin users
assigned on the domain level. The admin users of the CP come from an organization’s
domain. When a domain is created, the cloud admin assigns a domain admin user as an
admin of the CP. We assume there is only one admin user for each domain. Domain
admins assign admin users for their SPs. The OP doesn’t have an admin user assigned
to it. Each user in the Cloud can self‐subscribe or unsubscribe as a member of the OP.

Create a SIP: Let uSet denote a set of domain admin users. A group of organizations
comes together to create a SIP. Each organization in the group has equal administra-
tive power over the SIP. The creation of the SIP succeeds based on agreement among
the organizations. Organization membership in the SIP is established with the

Access Control in Cloud IaaS 89

Table 4.1  OSAC‐HMT‐SID administrative model.

Operation Authorization Requirement Update

SipCreate(uSet, sip) /* A subset of
Core Project/domain admin users
together create a sip */

∀ u ∈ uSet.(u ∈ U ∧ [u, <CP,
admin>] ∈ UA) ∧ sip ∉ SIP

assoc(sip) ∪u∈uSet
UO(u) SIP′ = SIP ∪
{sip} UA′ = UA ∪ uSet
× {<sip, admin>}

SipDelete(uSet, sip) /* The same
subset of Core Project/domain
admin users together delete a sip*/

∀ u ∈ uSet.(u ∈ U ∧ (u, <sip,
admin>) ∈ UA ∧ (u, <CP, admin>)
∈ UA) ∧ assoc.(sip) = ∪u∈uSet
UO(u) ∧ sip ∈ SIP

assoc(sip) = NULL
SIP′ = SIP – {sip}
UA′ = UA – uSet ×
{<sip, admin>}

ExpertUserCreate(coreadmin, eu)
/* Core Project admin users can
create an expert user */

coreadmin ∈ U ∧ (coreadmin,
<CP, admin>) ∈ UA ∧ eu ∉ EU

EU′ = EU ∪ {eu}

ExpertUserDelete(coreadmin, eu)
/* Core Project admin users can
delete an expert user */

coreadmin ∈ U ∧ (coreadmin,
<CP, admin>) ∈ UA ∧ eu ∈ EU

EU′ = EU – {eu}

ExpertUserList(adminuser) /*
Admin users of Core Project and
SIPs can list expert users */

adminuser ∈ U ∧ (∃ proj) {proj ∈
({CP} ∪ SIP) ∧ (adminuser, <proj,
admin>) ∈ UA}

ExpertUserAdd(adminuser, r, eu,
proj) /* Core Project/sip admin can add
an expert user to Core Project/sip*/

adminuser ∈ U ∧ proj ∈ ({CP} ∪
SIP) ∧ (adminuser, <proj, admin>)
∈ UA ∧ eu ∈ EU ∧ r ∈ R

UA′ = UA ∪ (eu, [proj,
r])

ExpertUserRemove(adminuser, r,
eu, proj) /* Core Project/sip admin
can remove an expert user from
Core Project/sip */

adminuser ∈ U ∧ proj ∈ ({CP} ∪
SIP) ∧ (adminuser, <proj, admin>)
∈ UA ∧ eu ∈ EU ∧ r ∈ R ∧ (eu,
[proj, r]) ∈ UA

UA′ = UA – (eu,
[proj, r])

UserAdd(adminuser, r, u, sp, p) /*
CP/Sip admin can add a user from
their home domain Security Project
to CP/sip*/

adminuser ∈ U ∧ (adminuser,
<p, admin>) ∈ UA ∧ p ∈ ({CP} ∪ SIP)
∧ r ∈ R ∧ u ∈ U ∧(u, <sp, r>) ∈ UA
∧ SPO(sp) = UO(adminuser)

UA′ = UA ∪ (u, [p, r])

UserRemove(adminuser, r, u, sp,
p) /* CP/Sip admin can remove a
user from the Core Project/sip */

adminuser ∈ U ∧ (adminuser,
<p, admin>) ∈ UA ∧ p ∈ ({CP} ∪ SIP)
∧ r ∈ R ∧ u ∈ U ∧ (u, <sp., r>) ∈
UA ∧ SPO(sp) = UO(adminuser) ∧
(u, [p, r]) ∈ UA

UA′ = UA – (u, [p, r])

OpenUserSubscribe(u, member,
OP) /* Users subscribe to Open
Project */

u ∈ U ∧ (u, <OP, member>) ∉ USS USS′ = USS ∪ (u, <OP,
member>)

OpenUserUnsubscribe(u,
member, OP) /* Users unsubscribe
from Open Project */

u ∈ U ∧ (u, <OP, member>) ∈ USS USS′ = USS – (u, <OP,
member>)

CopyObject(u, so1, sp., so2, p) /*
Copy object from Security Project to
Core Project/SIP */

sol ∈ SO ∧ sp. ∈ SP ∧ so2 ∉ SO ∧
SOO(so1) = sp ∧ UO(u) = SPO(sp)
∧ u ∈ U ∧ (∃ r ∈ R) {(u, <sp, r>) ∈
UA ∧ (u, <p, r>) ∈ UA)} ∧ p ∈
({CP} ∪ SIP)

SO′ = SO ∪ {so2}
SOO(so2) = p

ExportObject(adminuser, so1,
p. so2 sp) /* Export object from Core
Project/SIP to Security Project */

adminuser ∈ ∪ ∧ (adminuser,
<p, admin>) ∈ UA ∧ p ∈ ({CP} ∪ SIP)
∧ so1 ∈ SO ∧ SOO(so1) = p ∧ so2
∉ SO ∧ sp ∈ SP ∧ (adminuser, <sp.,
admin>) ∈ UA

SO′ = SO U {so2}
SOO(so2) = sp

Security, Privacy, and Digital Forensics in the Cloud90

creation of the SIP. The size of the group ranges from one organization to the total
number of organizations held in the community cloud. The group of organizations
sets up a SIP by sending the SIP‐creation request to the cloud admin. Users who are
allowed to issue a SIP‐creation command are admin users in CPs, who are domain
admins as well. When a SIP is created, the users who issued the SIP‐creation com-
mand automatically become the admin users of the SIP.

Delete a SIP: After the collaboration is finished, a SIP needs to be securely deleted. The
delete command is issued by the same set of admin users (uSet) who issued the SIP‐
creation command. All information and resources are securely deleted. All users
assigned to the SIP are removed from it. Removing information and resources guar-
antees no information and resources will leak after the SIP has been deleted. Removing
users guarantees no users will have access to information and resources that belonged
to a SIP.

Create/Delete an EU: New EUs are created when additional cyber expertise is needed,
such as when a consultant company is introduced to the community or a new cyber-
security agent is involved with one of the collaboration groups. CP admin users send
the EU‐creation command to the cloud admin. he cloud admin returns the new EU
and adds the user to the EU list. CP admin users can request to delete an EU. After
the EU is deleted, the user will lose all access to any information and resources in the
community cloud.

List EUs: CP and SIP admin users can list EUs in the SID. EUs are important human
resources for cyber‐collaboration activities. By listing the EUs in the SID, collabora-
tive groups with SIPs can easily add experts to their SIPs.

Add/remove an EU: An EU is visible to all projects in the SID except the OP. Project
admins in the SID can add EUs to their projects due to collaboration. After the cyber
collaboration is done, project admins can remove EUs from their projects.

Add/remove a user to/from a CP/SIP: Admin users of a CP/SIP can add/remove users
of their home SPs to/from CP or the corresponding SIP due to the need for collabora-
tion. The removed user will lose access to information and resources that they had
during collaborations in the CP/SIP.

Subscribe/unsubscribe a user to the OP: Every user in the OP is a normal member
user. They can share cyber data but have no control over other users. Users sub-
scribe/unsubscribe themselves to/from the OP. They will not be able to access and
share any data once they leave the OP.

Copy data between a SP and CP/SIP: Users can copy data from SPs of their home
domains to a CP and SIP. Users may be scoped to multiple projects in their home
domains, but only data from SPs are allowed to be copied to a CP/SIP. Admin users
can export data from CPs and SIPs to SPs of their home domains.

4.4  Access Control in AWS Cloud IaaS

In this section, we investigate a model for the AWS public cloud and demonstrate its
flexibility by extending the access‐control model to include information and resource
sharing. The content of this section has been published in (Zhang et al. 2015b). As we
did for OpenStack, for simplicity, we assume that each organization from the cloud
community has only one tenant that is an AWS account.

Access Control in Cloud IaaS 91

4.4.1  AWS Access‐Control Model

As a public CSP, AWS provides web services to its customers through AWS accounts.
Customers that own an account have access to cloud resources. They can create users
and grant them access to cloud resources in the account. A user belongs to a unique
account. Users can also access resources in other accounts with federated permissions.
We discuss the AWS access control (AWS‐AC) model from two perspectives: within a
single account and across accounts. AWS offers a form of policy‐based access control,
wherein permissions are defined over cloud resources in a policy file and policies are
attached to entities such as users, groups, roles, and resources. Figure 4.4 depicts this
model within a single account. In this and other figures in this chapter, dotted lines
denote virtual relations between entities, whereas solid lines denote explicit relations.
Cross‐account access will be discussed later in the context of Figure 4.5.

The AWS‐AC model has seven components: accounts (A), users (U), groups (G),
roles (R), services (S), object types (OT), and operations (OP). We also introduce other
entities such as policies and credentials, which are implicitly included in the model:

●● Accounts—In AWS, accounts are basic resource containers that allow customers to
own specific amounts of (virtual) cloud resources. Accounts are the units of usages of
cloud resources and billing. Customers get public cloud services through an AWS
account.

●● Users and groups—Users are individuals who can be authenticated by AWS and
authorized to access cloud resources through an account. A group is simply a set of
users. Users and groups belong to an account. The existence of groups is for the con-
venience of managing multiple users as a single unit. Each policy attached to a group

Group
Ownership

(GO) OT
Ownership

(OTO)

Roles
Ownership

(RO)

User
Ownership

(UO) Users
(U)

User_
group

Virtual
user_role

Accounts
(A)

Object
Types
(OT)

PRMS

Operations
(OP)“Roles”

(R)

Groups
(G) Virtual

Permission
Assignment

(VPA)

Virtual
Permission
Assignment

(VPA)

Virtual
Permission
Assignment

(VPA)

Services
(S)

Figure 4.4  AWS access control within a single account.

Security, Privacy, and Digital Forensics in the Cloud92

applies to all group members. For simplicity, we use the term users to represents both
users and groups in the rest of this discussion.

●● Virtual permission assignment—In AWS, users’ permissions over services and
resources are defined in policy files. Policy files can be attached to a user, a group, a
role, or a specific cloud resource. By attaching a policy to a user, a group, or a role,
users gain permissions to corresponding cloud resources. The policy defines the
actions the user will perform and cloud resources on which the actions will function.
Multiple permissions can be defined in one policy file. Multiple policy files can be
attached to one entity. AWS achieves permission assignment in a virtual manner via
the policies attached to various relevant entities.

●● Roles—Roles in AWS are mainly used for cross‐account permission purposes.
However, roles can also be used for internal users in an account. Policy files can be
attached to a role. Roles also define the trust relation between principals, which can
be either AWS accounts or users. Users use roles through the AssumeRole action to
access corresponding resources. To emphasize the difference between the usual con-
cept of roles in role‐based access control (RBAC) and roles in AWS, we use quotation
marks around “Roles” in the figures.

●● Services—Services refer to cloud services AWS provides to its customers. A CSP
leases cloud resources to its customers in terms of services. AWS provides customers
with services such as compute, storage, networking, administration, and database.

●● Object types and operations—An object type represents a specific type of object.
From the CSP’s viewpoint, objects are more like services. We define object types as
particular service types the Cloud provides. For instance, with the compute service
EC2, the object type is a VM; with the storage service S3, the object type is a
bucket, etc.

Account A

Account B Services
(S)

User
Ownership

(UO)

OT
Ownership

(OTO)Virtual
Permission
Assignment

(VPA)
virtual

user_role Object
Types
(OT)

Operations
(OP)

PRMS

“Roles”
(R)

Role
Ownership

(RO)

User
(U)

Figure 4.5  AWS access control across accounts (users in account A access services and resources in
account B).

Access Control in Cloud IaaS 93

●● Credentials—AWS credentials are used for both authentication and authorization.
Account owners can create IAM users with their own security credentials to allow
these users to access AWS services and resources. Account owners can also grant
external federated users from other accounts temporary security credentials to allow
them to access the account’s AWS services and resources.

●● Cross‐account access—Users in one AWS account can access services and resources
in another AWS account through the action AssumeRole with temporary security
credentials, as shown in Figure 4.5. In this and other figures, a thick arrow represents
an action taken by a user to assume a role. Users from account A access services and
resources in account B through roles created in account B, by being attached with
policies of the action AssumeRole and a defined target resource.

With these concepts described above, we can formalize the AWS‐AC model as
follows.

Definition 4.3  AWS‐AC Model Components

●● A, U, G, R, S, OT, and OP are finite sets of existing accounts, users, groups, roles,
services, object types, and operations, respectively, in an AWS public cloud
system.

●● User Ownership (UO) is a function UO: U → A, mapping a user to its owning account.
Equivalently viewed as a many‐to‐one relation UO ⊆ U × A.

●● Group Ownership (GO) is a function GO: G → A, mapping a group to its owning
account. Equivalently viewed as a many‐to‐one relation GO ⊆ G × A.

●● Roles Ownership (RO) is a function RO: R → A, mapping a role to its owning account.
Equivalently viewed as a many‐to‐one relation GO ⊆ R × A.

●● Object Type Owner (OTO) is a function OTO: OT → S, mapping an object type to its
owning service. Equivalently viewed as a many‐to‐one relation OTO ⊆ OT × S.

●● PERMS = OT × OP is the set of permissions.
●● Virtual Permission Assignment (VPA) is a many‐to‐many virtual relation VPA ⊆ (U ∪

G ∪ R) × PERMS, resulting from policies attached to users, groups, roles, and
resources.

●● user_group ⊆ U × G is a many‐to‐many relation assigning users to groups, where the
user and group must be owned by the same account.

●● virtual_user_role (VUR) is a virtual relation VUR ⊆ U × R, resulting from policies
attached to various entities. AssumeRole is an action allowing users to activate a role
authorized in the VUR.

4.4.2  Secure Information and Resource‐Sharing Model in AWS

In this section, we present an access‐control model for AWS with the SID extension
(AWS‐AC‐SID). We build the AWS‐AC‐SID model on top of the AWS‐AC model to
include SID functionality (Zhang et al. 2014). We present the AWSAC‐SID model so as
to cover only the additional components added to the AWS‐AC model. Figure 4.6 shows
the AWS‐AC‐SID model.

The additional components included in AWSAC‐SID model are SID, SIP, EU, CP, and
OP. These are described next:

Security, Privacy, and Digital Forensics in the Cloud94

●● Secure Isolated Domain (SID)—A SID (Zhang et al. 2014) is a special domain hold-
ing security information and resources for cross‐organizational security collabora-
tions. The SID provides an administrative boundary for cybersecurity information
and resource collection and analysis, and a secure isolated environment for cyberse-
curity collaborations in a community of organizations. The SID holds all SIPs designed
for cyber‐incident response and security collaboration within this community of
organizations. SID also holds a CP and an OP, as shown in Figure 4.7.

“Roles”
(R)

“Roles”
(R)

“Roles”
(R)

Users
(U)

Roles
Ownership

(RO)

OT
Ownership

(OTO)

Roles
Ownership

(RO)

Virtual
Permission
Assignment

(VPA)

Virtual
Permission
Assignment

(VPA)

Virtual
Permission
Assignment

(VPA)

Virtual
user_role

(VUR)

Virtual
user_role

(VUR)

Virtual
user_role

(VUR)

PRMS

SIP_
association

(assoc)

Secure
Isolated
Project
(SID)

Secure
Isolated
Domain

(SID)

SID_
association

(uSet)

[Community
organizations]

Virtual
user_role

(VUR)

Virtual
user_role

(VUR)
Roles

Ownership
(RO)

User
Ownership

(UO)

Core
Project

(CP)

Export
Users
(EU)User

Ownership
(UO)

Open
Projects

(OP)

Object
Types
(OT)

Services
(S)

[Non-community
organizations]

Accounts
(A)

Accounts
(A)

Operations
(OP)

Figure 4.6  Amazon Web Services (AWS) Access Control model with SID extension (AWSAC‐SID)
(ignoring the groups entity).

Access Control in Cloud IaaS 95

●● Secure Isolated Project (SIP)—A SIP (Zhang et al. 2014) is a special project with
constraints over its user membership. It is used to collect, store, and analyze cyberse-
curity information for specific security reasons. A SIP provides a controlled environ-
ment for a group of organizations within the community to collaborate and coordinate
on cyber incidents and other security issues.

●● Core Project (CP)—A CP is a shared project holding the cybersecurity committee
(Sandhu et al. 2011) for the community of organizations. Each organization in the
community has at least one representative security user in the committee.

●● Open Project (OP)—An OP is an open shared project where users from the com-
munity of organizations share common cybersecurity information and resources
(Sandhu et al. 2011). It is a common forum for all community users to share general
security information. Information published in the OP is public to every user in the
project.

●● Expert Users (EU)—To involve outside professionals, EUs (Sandhu et al. 2011) are
introduced to the SID. EU don’t belong to the community of organizations. They are
from other professional security organizations in the same public cloud. These
experts bring different cybersecurity skills. For instance, they may come from an IT
consultant company that focuses on specific cyber attacks. They may be cybersecu-
rity law‐enforcement officers specializing in cybercrime. The involvement of EUs
helps organizations handle cyber collaborations more effectively. The SID maintains
an EU list that is available for collaboration inside the SID.

The following formalizes these concepts as well as the relationships among them.

Definition 4.4  AWS‐AC‐SID Model Components in Addition to the
AWS‐AC Model

●● SIP, EU, and O are finite sets of SIPs, EUs, and objects.
●● SID is a unique SID serving a community of organizations. The SID owns a CP, an OP,

and a number of SIPs. The SID also maintains EU resources.
●● SIP association (assoc) is a function assoc: SIP → 2A, mapping a SIP to all its member

accounts/organizations.
●● Object Ownership (OO) is a function OO: O → A, mapping an object to its owning

account. Equivalently viewed as a many‐to‐one relation OO ⊆ O × A. O is a resource
that belongs to an account. We didn’t include Object (O) and Object Ownership
(OO) in Figure 4.6, since it mainly shows the administrative perspective of the model.

Core
Project

(CP)

Open
Project

(CP)

Secure
Isolated
Project
SIP-n

Secure
Isolated
Project
SIP-1

Secure Isolated Domain
(SID)

Figure 4.7  SID composition.

Security, Privacy, and Digital Forensics in the Cloud96

4.4.2.1  Administrative AWS‐AC‐SID Model
For proprietary products such as AWS, we cannot modify the cloud platform. SID func-
tionality can be provided as a security service to all organizations in the SID community
by a third party in AWS. The CP and OP are created with the SID. Each organization
can join several SIDs with different communities of organizations. Each of these SIDs is
isolated from the others.

The roles can be two types, administrative and member, which denote the permission
of being able to manage users and permissions only for resources, respectively. The
roles CPadmin and SIPadmin represent limited administrative power in the CP or a SIP,
respectively, which gives the CP or SIP admin users permission to add and remove
other users from their home account to the CP or a SIP. The roles CPmember,
OPmember, and SIPmember represent operative permissions that can be given to nor-
mal users to access the CP, the OP, or a SIP. Since roles in AWS are local, SIPadmin and
SIPmember are two sets of roles, separately representing the set of admin roles and the
set of member roles in all SIPs; while CPadmin, CPmember, and OPmember are single
roles in an account.

The administrative aspects of the AWS‐AC‐SID model are discussed informally
below. A formal specification is given in Table 4.2.

Initially set up the SID: In the case of one SID serving one community of organi-
zations, we can initially set up the SID with one CP and one OP. The member
organizations of the SID are fixed. Let uSet denote a fixed group of security admin
users from all organizations of the community, with one admin user for one organi-
zation. Each organization in the community has equal limited administrative
power in the SID, which is carried through uSet. The SID maintains uSet as a core
group of admin users in the SID. Only users from uSet later can dynamically create
SIPs in the SID.

With the setting up of the SID, users in uSet automatically get limited administrative
permission in the CP, represented by the role CPadmin. With this role, CP admin users
can add and remove other users from their home account to the CP. The OP is open for
all users from the community of organizations. No admin users are needed for the OP.
All users can add themselves to the OP with the role OPmember as a normal mem-
ber user.

Create a SIP—A SIP is created whenever there is a need for cyber collaboration among
a subset of the community organizations. It might be because of a cyber incident, a
collaborative security program, or a secure information‐sharing program. A subset of
the community of organizations’ representative security admin users subuSet together
creates a SIP. The creation of a SIP succeeds based on agreement among the subset of
the community of organizations. Each organization in the SIP has equal limited
administrative power, represented by a role in SIPadmin. The role gives SIP admin
users permission to add and remove other users from their home account to the SIP.
Organizations set up a SIP by sending the SIP‐creation request to the SID manager
account.

Delete a SIP—After the collaboration is finished, a SIP needs to be securely deleted.
The delete command is issued by the same set of the security admin users (subuSet)
who issue the SIP‐creation request. All information and resources are securely
deleted in the SIP. All users assigned to the SIP are removed from it.

Access Control in Cloud IaaS 97

Table 4.2  AWS‐AC‐SID administrative model.

Operation Authorization Requirement Update

SipCreate(subuSet, sip) /* A
subset of organization security
admin users together create a sip */

∀ u ∈ subuSet.(u ∈ uSet) ∧ sip ∉ SIP assoc(sip) = ∪u∈subuSet
UO(u) SIP′ = SIP ∪ {sip}

SipDelete(subuSet, sip) /* The
same subset of security admin
users together delete a sip*/

∀ u ∈ subuSet.(u ∈ uSet) ∧ sip ∈ SIP
∧ assoc(sip) = ∪u∈subuSetUO(u)

assoc(sip) = NULL
SIP′ = SIP – {sip}

CpUserAdd(adminu, u) /* CP
admin adds a user from their
home account to CP */

adminu ∈ uSet ∧ u ∈ U ∧
UO(u) = UO(adminu)

VUR′ = VUR ∪
{(u, CPmember)}

CpUserRemove(adminu, u) /* CP
admin removes a user from CP */

adminu ∈ uSet ∧ u ∈ U ∧
UO(u) = UO(adminu) ∧ (u,
CPmember) ∈ VUR

VIR′ = VIR –
{(u, CPmember)}

SIPUserAdd(adminu, u, r, sip) /*
Sip admin adds a user from their
home account to SIP*/

adminu ∈ uSet ∧ UO(adminu) ∈
assoc.(sip) ∧ u ∈ U ∧ r ∈ SIPmember
∧ RO(r) = sip ∧ sip ∈ SIP ∧
UO(u) = UO(adminu)

VUR′ = VUR ∪ {(u, r)}

SIPUserRemove(adminu, u, r,
sip) /* Sip admin removes a user
from SIP */

adminu ∈ uSet ∧ UO(adminu) ∈
assoc.(sip) ∧ u ∈ U ∧ r ∈ SIPmember
∧ RO(r) = sip ∧ (u, r) ∈ VUR ∧ sip ∈
SIP ∧ UO(u) = UO(adminu)

VUR′ = VUR – {(u, r)}

OpenUserAdd(u) /* Users add
themselves to OP*/

u ∈ U ∧ UO(u) ∈ UO(uSet) VUR′ = VUR ∪
{(u, OPmember)}

OpenUserRemove(u) /* Users
remove themselves from OP */

u ∈ U ∧ UO(u) ∈ UO(uSet) ∧
(u, OPmember) ∈ VUR

VUR′ = VUR –
{(u, OPmember)}

CpEUserAdd(adminu, eu) /* CP
admin adds an expert user to CP */

adminu ∈ uSet ∧ eu ∈ EU VUR′ = VUR ∪ {(eu,
CPmember)}

CpEUserRemove(adminu, eu) /*
CP admin removes an expert user
from CP */

adminu ∈ uSet ∧ eu ∈ EU ∧
(eu, CPmember) ∈ VUR

VUR′ = VUR – {(eu,
CPmember)}

SipEUserAdd(adminu, eu, r, sip)
/* SIP admin adds an expert user
to SIP */

adminu ∈ uSet ∧ UO(adminu) ∈
assoc(sip) ∧ eu ∈ EU ∧ r ∈
SIPmember ∧ RO(r) = sip ∧ sip ∈
SIP

VUR′ = VUR ∪ {(eu, r)}

SipEUserRemove(adminu, eu, r,
sip) /* SIP admin removes an
expert user from SIP */

adminu ∈ uSet ∧ UO(adminu) ∈
assoc(sip) ∧ eu ∈ EU ∧ r ∈
SIPmember ∧ RO(r) = sip ∧ (eu, r) ∈
VUR ∧ sip ∈ SIP

VUR′ = VUR – {(eu, r)}

CpCopyObject(u, o1, o2) /*Users
copy objects from organization
accounts to CP */

o1 ∈ O ∧ 02 ∉ O ∧ UO(u) = 00(o1)
∧ u ∈ U ∧ (u, CPmember) ∈ VUR

O′ = O ∪ {o2}
OO(o2) = CP

CpExportObject(adminu, o1, o2)
/* Admin users export objects from
CP to organizations accounts */

adminu ∈ uSet ∧ o1 ∈ O ∧
OO(o1) = CP ∧ o2 ∉ O

O′ = O ∪ {o2}
OO(o2) = UO(adminu)

(Continued)

Security, Privacy, and Digital Forensics in the Cloud98

Add/remove a user to/from a CP—CP admin users are the set of security administra-
tive users (uSet) from the community of organizations. These limited administrative
users can add/remove users of their organizations to/from the CP. All users added to
the CP are existing users from an organization’s account. The limited administrative
users don’t have permission to create new users. They can only add existing users to
the CP. When users are removed from the CP, they lose access to corresponding
information and resources in the CP, regardless of the ownership of the piece of infor-
mation in the past.

Add/remove a user to/from a SIP—Users from subuSet who are assigned the role
SIPadmin have limited administrative power in the SIP. They can add/remove users
of their home accounts to/from the corresponding SIP due to a need for collabora-
tion. Users lose access to information and resources after they are removed from the
SIP. Administrative users in a SIP can see all users added from the community of
organizations, as well as information and resources they bring in, which means there
are no hidden users, information, or resources in a SIP.

Add/remove a user to an OP—Every user in the collaborative community of organiza-
tions is allowed to join the OP. Users in the OP have equal but limited permissions.
They can share cyber data but have no control over other users. We use the role
OPmember to represent this limited permission. Users add/remove themselves from
their organizations to/from OP. Users cannot access and share any data once they
leave the OP.

Add/remove an EU to/from a SIP—EUs are required when external cyber expertise
needs to be involved. For instance, a cyber incident requires experts from security
consultant companies, government cyber experts, cyber police, etc. SID services
maintain a relationship with external expertise. EUs can be added/remove to/from
CPs and SIPs as members. Users from uSet can request to add/remove EUs to/from
the CP, while users from subuSet can request to add/remove EUs to/from a SIP. There
are situations in which an existing EU in a SIP needs to be removed. For instance, the
contract with a cyber‐consultant company ends, or a cybersecurity agent finishes
their task as part of cyber collaboration. In such cases, securely deleting an EU is
necessary. After the EU is deleted, the user loses all access to information and resource
in the SIP.

Copy data between organization accounts and a CP/SIP—Users can copy data from
their home accounts to the CP or a SIP. Administrative users from uSet or subuSet
can export data from the CP or a SIP to their home accounts.

Table 4.2  (Continued)

Operation Authorization Requirement Update

SipCopyObject(u, r, o1, o2, sip)
/*Users copy objects from
organization accounts to a SIP */

o1 ∈ O ∧ o2 ∉ O ∧ UO(u) = OO(o1)
∧ u ∈ U ∧ r ∈ SIPmember ∧
RO(r) = sip ∧ (u, r) ∈ VUR ∧ sip ∈
SIP

O′ = O ∪ {o2}
OO(o2) = sip

SipExportObject(adminu, o1, o2,
sip) /* Admin users export objects
from SIP to organization accounts */

adminu ∈ uSet ∧ UO(adminu) ∈
assoc(sip) ∧ o1 ∈ O ∧ OO(o1) = sip
∧ o2 ∉ O

O′ = O ∪ {o2}
OO(o2) = UO(adminu)

Access Control in Cloud IaaS 99

4.5  Access Control in Azure Cloud IaaS

In this section, we introduce a model for the Microsoft Azure cloud and demonstrate its
flexibility by extending the access‐control model to include information and resource
sharing. As we did for AWS, we assume that each organization from the cloud com-
munity has only one tenant that is an Azure account.

4.5.1  Azure Access‐Control Model

In Azure, any user has the ability to create an Azure account. The user who creates an
Azure account will be the owner and super‐administrative user of that account. Local
users created in an Azure Active Directory (AAD) can create their own Azure accounts
that are isolated from the parent account. Azure has two main components to manage
users’ access to resources in the Cloud: AAD and Subscriptions (Sub). To use resources
in Azure, a user has to be assigned to a subscription. AAD helps to manage users,
including both local AAD users and other valid Microsoft users. Azure offers a form of
RBAC wherein permissions are defined over cloud resources within roles in resource
groups. Roles can then be assigned to users. Roles are predefined in Azure.

The Azure Access Control (Azure‐AC) model has 14 entities: Accounts (A), Azure
Active Directory (AAD), Subscription (Sub), Azure Active Directory Role (AADR),
Azure Active Directory User (AADU), Non‐Azure Active Directory User (NAADU),
Group (G), Resource Group (RG), Role (R), Subscription Role (SubR), Resource (RS),
Service (S), Object Type (OT), and Operation (OP), as shown in Figure 4.8:

●● Account (A)—To have its own public cloud resources, an organization needs to open
an Azure account. An Azure account allows an organization to own specific (virtual)
cloud resources that can be accessed through Azure cloud services.

●● Azure Active Directory (AAD)—AAD is Microsoft’s multitenant cloud‐based direc-
tory and identity‐management service. It provides a full suite of identity‐management
capabilities including multifactor authentication, device registration, self‐service pass-
word management, privileged account management, RBAC, security monitoring, and
so on. AAD also provides single sign‐on (SSO) access to cloud SaaS applications. In
addition, it can integrate with other identity‐management solutions used in industry.

●● Subscription (Sub)—Users have access to cloud resources via subscriptions.
Subscriptions are the units of usage and billing for cloud resources. In order to have
access to cloud resources, users must be assigned to at least one subscription.

●● Azure Active Directory Role (AADR)—AADRs allow users to manage the directory
and identity‐related features. AAD has a set of administrative roles, including billing,
global, password, service, and user administrator. Each of these administrative roles
is designed for a different specific administrative purpose. It also has a normal user
role, which has no administrative power.

●● Subscription Role (SubR)—SubRs are a separate role set from AADRs. SubRs are
administrative roles that give users permissions to manage cloud resources via a sub-
scription. SubRs include service administrator and co‐administrators, both of which
can give users access to cloud services. The services administrator and co‐administra-
tors can be either Microsoft accounts or AAD users. A service administrator cannot
be a local AAD user from the same AAD assigned to that subscription.

AAD
Ownership

AADO

Account
Ownership

(AO)

Accounts
(A)

Subscription
Ownership

(SubO)

Subscription
Assignment

(SA)

Resource
Co-Ownership

(RO)

Resources
(RS)

Services
(S)

OT
Ownership

(OTO)

Ot_
resource

PRMS

Operations
(OP)

Groups
(G)

*Permission
Assignment

(PA)

SUBRole
Ownership
(SubRA)

AADRole
Ownership
(AADRO)

AADRoles
(AADR)

AAD
Users

(AADU)

Azure Active
Directories

(AAD)

Subscriptions
(Sub)

NonAAD
users

(NAADU)

AADAdmin
User

Assignment
(AADAUA)

Group
Ownership

(GO)

User_
group

AAD User
Ownership
(AADUO)

RG
Ownership

(RGO)

SubRoles
(SubR)

Roles
(R)

RG-R pair
Group

Assignment
(GA)

User
Assignment

(UA)

SubAdmin User
Assignment

(SAUA)

Resource
Groups

(RG)

Resource
Co-Ownership

(RO)

Object
Types
(OT)

Figure 4.8  Azure Access Control (Azure‐AC) model.

Access Control in Cloud IaaS 101

●● Azure Active Directory User (AADU) and Non‐Azure Active Directory User
(NAADU)—These are individuals who can be authenticated by Azure and author-
ized to access cloud resources through an Azure account. Users from both Microsoft
accounts and partner organization accounts are allowed to access to cloud resources
in Azure. AADUs are users created in AAD. They can be administrative users of the
directory or normal users. NAADUs are users not from the local AAD, but from
partner organizations and other Microsoft users.

●● Group (G)—A group is simply a set of users; it can include both AADUs and NAADUs.
Groups belong to an AAD account. The existence of groups serves to allow the con-
venient management of multiple users as a single unit. Each policy attached to a
group applies to all group members.

●● Resource Group (RG)—RGs are logical resource containers that allow customers to
add various cloud resources like databases, VMs, etc. RGs provides a way to monitor
and control users’ access to collections of cloud resources.

●● Role (R)—Users are assigned to a RG with roles to get permissions to access cloud
resources. Roles allow users to have permissions to access cloud resources: for
instance, VMs, storage, networking, etc. Roles can be different collections of meta‐
permissions like read and write toward a specific resource. Roles can only be assigned
to users inside a RG.

●● Resource (RS)—Resources refer to cloud assets that can be owned by users. Cloud
assets are cloud resources such as VMs, databases, storage, etc. Since the only way for
users to access resources is through subscriptions, we also define that the subscrip-
tion has ownership over the resources.

●● Service (S)—Services refer to cloud services Azure provides to its customers. A CSP
leases cloud resources to its customers in terms of services. Azure provides custom-
ers with services such as compute, storage, networking, administration, and databases.

●● Object Type (OT) and Operation (OP)—An OT represents a specific type of object.
From the CSP’s viewpoint, objects are more like services. We define OTs as particular
service types the Cloud provides. For instance, with the compute service, the OT is a
VM; with the storage service, the OT is a storage container; etc.

With these concepts described, we can formalize the Azure‐AC model as follows.

Definition 4.5  Azure‐AC Model Components

●● A, AAD, Sub, RG, R, AADR, SubR, AADU, NAADU, G, RS, S, OT, and OP are finite
sets of existing accounts, Azure Active Directories, subscriptions, resource groups,
roles, Azure AD roles, subscription roles, AAD users, non‐Azure AD users, groups,
resources, services, object types, and operations, respectively, in an Azure cloud
system.

●● Account Ownership (AO) is a function AO: A → U, mapping an account to its own-
ing user.

●● AAD Ownership (AADO) is a function AADO: AAD → A, mapping an AAD to its
owning account. Equivalently viewed as a many‐to‐one relation AADO ⊆ AAD × A.

●● Subscription Ownership (SubO) is a function SubO: Sub → A, mapping a subscrip-
tion to its owning account. Equivalently viewed as a many‐to‐one relation SubO ⊆
Sub × A.

Security, Privacy, and Digital Forensics in the Cloud102

●● Resource Group Ownership (RGO) is a function RGO: U → Sub, mapping a RG to its
owning subscription. Equivalently viewed as a many‐to‐one relation GRO ⊆ RG × Sub.

●● AAD User Ownership (AADUO) is a function AADUO: AADU → AAD, mapping a
user to its owning AAD. Equivalently viewed as a many‐to‐one relation AADUO ⊆
AADU × AAD.

●● Group Ownership (GO) is a function GO: G → AAD, mapping a group to its owning
AAD. Equivalently viewed as a many‐to‐one relation GO ⊆ G × AAD.

●● Azure AD Roles Ownership (AADRO) is a function AADRO: AADR → AAD, map-
ping a Azure AD role to its owning AAD. Equivalently viewed as a many‐to‐one rela-
tion AADRO ⊆ U × A.

●● Resource Co‐Ownership (RSO) is a function RSO: RS → Sub ∨ RS → (AADU ∪
NAAUD), mapping a piece of a resource to its owning subscription and user.
Equivalently viewed as a many‐to‐one relation RSO ⊆ RS × Sub ∪ RS × (AADU ∪
NAAUD).

●● Object Type Owner (OTO) is a function OTO: OT → S, mapping an OT to its owning
service. Equivalently viewed as a many‐to‐one relation OTO ⊆ OT × S.

●● Resource Group Role (RG‐R) pair ⊆ GR × R is a many‐to‐many relation mapping RGs
to roles.

●● Subscription Assignment (SubA) is a many‐to‐one relation SubA ⊆ Sub × AAD.
●● Subscription Roles Assignment (SubRA) is a many‐to‐ many relation SubRA ⊆

Sub × SubR.
●● AADAdmin User Assignment (AADAUA) is a many‐to‐many relation AADAUA ⊆

(AADU ∪ NonAADU) × AADR, mapping a user to a AAD.
●● SubAdmin User Assignment (SAUA) is a many‐to‐many relation SAUA ⊆ (AADU ∪

NonAADU) × SubR. There is one exception to the SAUA relation in assigning a ser-
vice admin to a subscription. Every subscription has only one service admin user
assigned to it, while it can have up to 200 co‐admin users assigned to it.

●● User Assignment (UA) is a many‐to‐many relation UA ⊆ (AADU ∪ NonAADU) × RG‐R,
mapping a user to a RG role pair.

●● Group Assignment (GA) is a many‐to‐many relation GA ⊆ G × RG.
●● Permission Assignment (PA) is a many‐to‐many relation PA ⊆ (RG × R) × PREM,

assigning RG role pairs to permissions. One thing we need to mention is that Azure
has fixed sets of collections of permissions that users can choose from, instead of
giving users the capability to define their own permission sets.

●● user_group ⊆ U × G is a many‐to‐many relation assigning users to groups, where the
user and group must be owned by the same account.

●● ot_resource ⊆ OT × RS is a one‐to‐many relation mapping resources to OTs.
●● PRMS = OT × OP is the set of permissions.

4.5.2  Secure Information and Resource‐Sharing Model in Azure

In this section, we present an access‐control model for Azure with the SID extension
(Azure‐AC‐SID). We extend the Azure‐AC model to include SID functionality
(Zhang et al. 2014). We present the Azure‐AC‐SID model so as to cover only
the additional components added to the Azure‐AC model. Figure 4.9 shows the
Azure‐AC‐SID model.

Access Control in Cloud IaaS 103

The following introduces the Azure‐AC‐SID model. The additional components
included are Secure Isolated Domain (SID), Secure Isolated Project (SIP), Expert User
(EU), User (U), Core Project (CP), and Open Project (OP):

●● Secure Isolated Domain (SID)—The SID (Zhang et al. 2014) is a special domain,
holding security information and resources for cross‐organizational security collabo-
ration. The SID provides an administrative boundary and a secure isolated environ-
ment for cybersecurity collaborations in a community of organizations. Each SID
holds several SIPs designed for cyber‐incident response and security collaboration
among a group of organizations, a CP, and an OP for general secure information and
resource sharing.

RG-R pair

Roles
(R)

RG
Ownership

(RGO)

RG
Ownership

(RGO) RG
Ownership

(RGO)
OT

Ownership
(OTO)

Ot_
resource

Resource
(RS)

Services
(S)

Resource
Co-Ownership

(RO)

Resource
Groups

(RG)

Resource
Co-Ownership

(RO)

Operations
(OP)

PRMS

Permission
Assignment

(PA)

Users
(U)

Expert
Users
(EU)

SID-
Association

(assoc)

SIPs
[Sub]

Open
project
[Sub]

Core
project
[Sub]

SIP/CP/OP
Ownership

(SIPO/CPO/OPO)

SIDs

Organization
Accounts

(OA)

User
Ownership

(UO)

User
Assignment

(UA)

Object
Types
(OT)

Figure 4.9  Azure Access Control model with SID extension (Azure‐AC‐SID) (ignoring the groups
entity).

Security, Privacy, and Digital Forensics in the Cloud104

●● Secure Isolated Project (SIP)—The SIP (Zhang et al. 2014) is a special project with
limited user membership. It is used to collect, store, and analyze cybersecurity
information for specific cyber incidents. A SIP provides an isolated, controlled
environment for a group of organizations within the community to collaborate and
coordinate on cyber incidents and other security issues. Subscriptions provide
isolated resource containers for different projects to use. Thus, we design projects
using subscriptions.

●● Core Project (CP)—The CP is a shared project holding the cybersecurity committee
(Sandhu et al. 2011) for the community of organizations. Each organization in the
community has representative security users in the committee. CPs handle routine
security tasks for the community.

●● Open Project (OP)—The OP is an open shared project where users from the com-
munity of organizations share common cybersecurity information and resources
(Sandhu et al. 2011). It is a common forum for all organizational users in the com-
munity to share general security information. Information published in the OP is
public to every user associated with the subscription.

●● Expert User (EU)—EUs (Sandhu et al. 2011) are external non‐organizational profes-
sionals. They don’t belong to the group of organizations. They are from other profes-
sional security organizations that bring different cybersecurity skills. They could be
from IT consultant companies or from government cybersecurity law‐enforcement
departments. A SID maintains an EU list that is available to any project inside the SID.

●● User (U)—Users include both AADUs and NAADUs, which refer to either Microsoft
users or partner organization users. We use one User entity to represents all users
that are allowed to access cloud resources, since from the standpoint of SID function-
ality, as long as the user is associated with the organization’s AAD, it does not care
where the user comes from.

●● Organization accounts—Organization accounts represent organizations in the
community. They can be either AAD accounts or organizations enterprise accounts
that are identified by AAD. Organization accounts allow organizations to own a spe-
cific amount of (virtual) cloud resources.

The following formalizes these concepts, as well as the relationships among them.

Definition 4.6  Azure‐AC‐SID Model Components in Addition to the Azure‐
AC Model

●● SID, SIP, CP, OP, EU, U, and O are finite sets of SIDs, SIPs, CPs, OPs, EU, users, and
objects. The SID serves communities of organizations. A SID owns a CP, an OP, and
a number of SIPs. A SID also maintains EU resources.

●● CP/OP/SIP ownership (CPO/OPO/SIPO) is a function CPO/OPO/SIPO: CP/OP/
SIPO → SID, mapping a single CP/OP/SIP to its owning SID, which equals mapping
a specific subscription to a SID.

●● SID association (assoc) is a function assoc: SID → 2A, mapping a SID to all its member
organization accounts.

●● User Ownership (UO) is a function UO: U → OA, mapping a user to its owning
organization account. Equivalently viewed as a many‐to‐one relation UO ⊆ U × OA.

●● Object Ownership (OO) is a function OO: O → OA, mapping an object to its owning
organization account. Equivalently viewed as a many‐to‐one relation OO ⊆ O × OA.

Access Control in Cloud IaaS 105

4.5.2.1  Administrative Azure‐AC‐SID Model
Similar to the AWS‐AC‐SID model, each SID has a CP and an OP as a security service
provided to all organizations in the SID community. The CP and OP are created with
the SID. Each organization can join different SIDs with different communities of organ-
izations. Each of these SIDs is isolated from the others. We only discuss the model in
which the SIDs are manually set up, serving different communities of organizations in
the Azure public cloud.

We design a SID manager as an automated agent that serves cloud communities of
organizations and manages SIDs and their constituent components throughout their
life cycle. The SID manager processes SID requests from communities of organizations
and maintains a separate SID for each community. Within each SID, it facilitates the
creation and deletion of SIPs. Each time a cyber‐collaboration request is sent to the SID
manager, it creates a new subscription, assigning the subscription to the group of organ-
izations that made the request. After the collaboration is done, the SIP is deleted.

Considering that Azure already has dedicated roles for managing subscriptions and
AAD, we will use those existing AAD administrative roles and subscription roles to
manage SIPs, the CP, and the OP in a SID. Azure provides five AAD admin roles and
two subscription admin roles. For simplicity, we will constrain the administrative roles
to include only the AAD global admin role and subscription co‐admin role. Azure also
provides a set of operative roles in RGs, which allows users to have permission to access
cloud resources.

To make role assignment simple and clear, we constrain roles to be two types, admin-
istrative roles and member roles, which denote the permission of being able to manage
users and permissions only for accessing cloud resources. We use the admin role
SIDAdmin to represent all admin permissions a user can get from AAD and subscrip-
tions. We use the member role SIDmember to represent all normal roles a user can have
in a RG. Admin users have the capability to add and remove other users from their
home organizations to a CP subscription or a SIP subscription. Member users can be
added/removed from/to a project subscription inside a SID. Member users are those
who have access to real cloud services and resources, like creating or deleting a VM.

The administrative aspects of the Azure‐AC‐SID model are discussed informally
next. A formal specification is given in Table 4.3.

Initially set up the SID: For every community of organizations that will have cyber col-
laboration, we offer one SID associated with the community. The number of organiza-
tions associated with the SID is fixed. Let uSet denotes the fixed group of security admin
users, each of which represents one and only one organization in the community. Each
organization in the community has equal limited administrative power in the SID, which
is carried through uSet. The SID maintains uSet as a core group (Sandhu et al. 2011) of
SID admin users. Only users from uSet later can dynamically create SIPs in the SID.

Inside the SID, organizations can request multiple SIPs for the convenience of differ-
ent cyber collaborations. The number of SIPs depends on how much collaboration is
initialized by the group of organizations. A SID is initially set up with a CP and an OP,
and organizations can then automatically request to create and delete SIPs, as well as
add or remove users to/from SIPs. With the initialization of a SID, admin users from
uSet automatically get limited administrative permission in a CP in a SID, which is
represented by role SIDadmin. Normal users from the community automatically get
permissions to be able to add them to the OP with role the SIDmember.

Security, Privacy, and Digital Forensics in the Cloud106

Create a SIP: A set of security admin users uSet together creates a SIP for cyber collabo-
ration among the community of organizations. The creation of a SIP succeeds based
on agreement among the community of organizations. Each organization in the SIP
has equally limited administrative power, which is represented by the role SIDadmin.

Delete a SIP: After the collaboration is finished, a SIP needs to be securely deleted. The
delete command is issued by the same subset of the security admin users (uSet) who
created the SIP. All information, data, and resources are securely deleted from the
SIP. All users assigned to the SIP are removed from it.

Table 4.3  Azure‐AC‐SID administrative model.

Operation Authorization Requirement Update

SipCreate(uSet, sip, sid) /* A set
of organization security admin
users together create a sip */

∀ u ∈ uSet.(u ∈ uSet) ∧ sip ∉ SIP assoc(sid) = ∪u∈uSetUO(u)
SIPO(sip) = sid SIP′ =
SIP ∪ {sip}

SipDelete(subuSct, sip, sid) /*
The same subset of security admin
users together delete a sip*/

∀ u ∈ subuSet.(u ∈ uSet) ∧ sip ∈
SIP ∧
assoc(sid) = ∪u∈subuSetUO(u) ∧
SIPO(sip) = sid

assoc(sid) = NULL
SIPO(sip) = NULL
SIP′ = SIP – {sip}

UserAdd(adminu, u, p, sid) /*
Admin users add a user from their
home account to a Cp/Sip */

adminu ∈ uSet ∧ u ∈ U ∧
UO(u) = UO(adminu) ∧ p ∈
(CP ∪ SIP) ∧ (CPO(p) = sid ∪
SIP(p) = sid)

UA′ = ∃ rg ∈ p.(UA ∪
{(u, [rg, SIDmember])})

UserRemove(adminu, u, p, sid) /*
Admin users remove a user from a
Cp/Sip */

adminu ∈ uSet ∧ u ∈ U ∧
UO(u) = UO(adminu) ∧ p ∈ (CP
∪ SIP) ∧ (CPO(p) = sid ∪
SIP(p) = sid) ∧ ∃ rg ∈ p.(UA ∪
{(u, [rg, SIDmember])})

UA′ = UA – {(u, [rg,
SIDmember])}

OpenUserAdd(u, op, sid) /* Users
add themselves to a Op */

u ∈ U ∧ UO(u) ∈ UO(uSet) ∧ op
∈ OP ∧ OPO(op) = sid

UA′ = ∃ rg ∈ op.(UA ∪
{(u, [rg, SIDmember])})

OpenUserRemove(u, op sid) /*
Users remove themselves from a
Op */

u ∈ U ∧ UO(u) ∈ UO(uSet) ∧ op
∈ OP ∧ OPO(op) = sid ∧ ∃ rg ∈
op.(UA ∪ {(u, [rg, SIDmember])})

UA′ = UA – {(u, [rg,
SIDmember])}

ExpertUserAdd(adminu, eu,
p, sid) /* Admin users add an
expert user to a Cp/Sip */

adminu ∈ uSet ∧ eu ∈ EU ∧ p ∈
(CP ∪ SIP) ∧ (CPO(p) = sid ∪
SIPO(p) = sid)

UA′ = ∃ rg ∈ p.(UA ∪
{(eu, [rg, SIDmember])})

ExpertUserRemove(adminu, eu,
p, sid) /* Admin users remove an
expert user from a Cp/Sip */

adminu ∈ uSet ∧ eu ∈ EU ∧ p ∈
(CP ∪ SIP) ∧ (CPO(p) = sid ∪
SIPO(p) = sid) ∧ ∃ rg ∈ p.(UA ∪
{(eu, [rg, SIDmember])})

UA′ = UA – {(eu, [rg,
SIDmember])}

CopyObject(u, o1, o2, p) /*Users
copy objects from organization
accounts to a Cp/Sip */

o1 ∈ O ∧ o2 ∉ O ∧
UO(u) = OO(o1) ∧ u ∈ U ∧ p ∈
(CP ∪ SIP) ∧ 3 rg.((u, [rg,
SIDmember]) ∈ UA)

O′ = O ∪ {o2} OO(o2) = p

ExportObject(adminu, o1, o2, p)
/* Admin users export objects
from a Cp/Sip to organization
accounts */

adminu ∈ uSet ∧ o1 ∈ O ∧ o2 ∉
O ∧ OO(o1) = p ∧ p ∈ (CP ∪
SIP) ∧ ∃ rg.((adminu, [rg,
SIDadmin]) ∈ UA)

O′ = O ∪ {o2}
OO(o2) = UO(adminu)

Access Control in Cloud IaaS 107

Add/remove a user to/from a CP or SIPs: CP and SIPs admin users are the set of secu-
rity administrative users (uSet) from the community of organizations. These limited
administrative users can add/remove users of their organizations to/from the CP and
SIPs. All the users added to the CP or SIPs are existing users from an organization’s
account. The limited administrative users don’t have permission to create new users
or delete an existing user. They can only add existing users to the CP or SIPs. When
users are removed from the CP or a SIP, they lose access to corresponding information
and resources in the CP or the SIP, regardless of the ownership of the piece of informa-
tion in the past. Admin users in the CP or a SIP can see all users added from the
community of organizations, as well as information and resources they bring in, which
means there are no hidden users, information, or resources in a CP or a SIP.

Add/remove a user to/from an OP: Every user in the collaborative community of
organizations is allowed to join the OP. Users in the OP have equal but limited per-
missions. They can share cyber data but have no control over other users. We use the
role SIDmember to represent this limited permission. Users add/remove themselves
from their organizations to/from the OP. Users cannot access and share any data once
they leave the OP.

Add/remove an EU to/from a CP or SIPs: EUs are required when external cyber
expertise needs to be involved. For instance, a cyber incident needs experts from
security consultant companies, government cyber experts, cyber police, etc. SID ser-
vices maintain a relationship with external experts. EUs can be added/removed to/
from a CP and SIPs as members. Users from uSet can request to add/remove EUs to/
from the CP or a SIP. An existing EU in the CP or a SIP can also be removed. For
instance, at the end of a cyber collaboration, an unneeded EU is securely deleted.
After the EU is deleted, the user loses all access to any information and resources in
the CP or a SIP.

Copy data between organization accounts and a CP or SIPs: Users can copy data
from their home accounts to the CP or a SIP. The administrative users from uSet can
export data from the CP or a SIP to their home accounts.

4.6  Conclusions

In this chapter, we introduced access‐control models for OpenStack, AWS, and
Microsoft Azure cloud IaaS platforms. We identified fundamental elements of access
control in cloud IaaS. We also explored models for information and resource sharing in
cybersecurity to show the flexibility of those cloud access‐control models. We designed
these models mainly based on the concept and architecture of the cloud platforms. We
gave formal descriptions of administrative models, which provide a clear specification
of how the users and resources are managed and controlled in the model.

References

E. Cohen, R. K. Thomas, W. Winsborough, and D. Shands. (2002). Models for coalition‐
based access control (CBAC). In: Proceedings of the Seventh ACM Symposium on
Access Control Models and Technologies, 97–106. New York: ACM.

Security, Privacy, and Digital Forensics in the Cloud108

Hassan, Q. (2011). Demystifying cloud computing. The Journal of Defense Software
Engineering (CrossTalk) 24 (1): 16–21.

R. Krishnan, R. Sandhu, J. Niu, and W. Winsborough. (2009). Towards a framework for
group‐centric secure collaboration. In: 5th International Conference on Collaborative
Computing, Networking, Applications and Worksharing, 1–10. Piscataway, NJ: IEEE.

P. Mell and T. Grance. (2011). The NIST definition of cloud computing. NIST Sp. Pub.
800‐145.

L. Pearlman, V. Welch, I. Foster, C. Kesselman, and S. Tuecke. (2002). A community
authorization service for group collaboration. In: 3rd IEEE International Workshop on
Policies for Distributed Systems and Networks, 50–59. IEEE.

R. Sandhu, K. Z. Bijon, X. Jin, and R. Krishnan. (2011). RT‐based administrative models for
community cyber security information sharing. In: 7th International Conference on
Collaborative Computing: Networking, Applications and Worksharing, 473–478. IEEE.

Shands, D., Yee, R., Jacobs, J., and Sebes, E.J. (2000). Secure virtual enclaves: Supporting
coalition use of distributed application technologies. In: IEEE DARPA Information
Survivability Conference and Exposition, 335–350. IEEE.

B. Tang and R. Sandhu. (2014). Extending OpenStack access control with domain trust. In:
8th International Conference on Network and System Security (NSS), 54–69.

Y. Zhang, R. Krishnan, and R. Sandhu. (2014). Secure information and resource sharing in
cloud infrastructure as a service. In: Proceedings of the 2014 ACM Workshop on
Information Sharing & Collaborative Security, 81–90. New York: ACM.

Y. Zhang, F. Patwa, R. Sandhu, and B. Tang. (2015). Hierarchical secure information and
resource sharing in openstack community cloud. In: IEEE Conference on Information
Reuse and Integration (IRI), 419–426. IEEE.

Y. Zhang, F. Patwa, and R. Sandhu. (2015). Community‐based secure information and
resource sharing in AWS public cloud. In: IEEE Conference on Collaboration and
Internet Computing (CIC), 46–53, IEEE.

